WG 14 Document: N 1698

This material was originally published in a series of articles in Dr. Dobb’s (www.drdobbs.com) and is reprinted
here, with permission, for use by C++ committee members. Qutside the committee, please refer to readers to
the following links, rather than distributing this document. (Copyright 2012 Dr. Dobb’s)

http://www.drdobbs.com/cpp/232800444 (C11 overview, concurrency, etc.)
http://www.drdobbs.com/cpp/232901670 (C11 security, Annex K, Annex L)
http://www.drdobbs.com/cpp/240001401 (Alignment, Unicode, ease-of-use features, C++ compatibility)

C11: The New C Standard
by Thomas Plum

The committee that standardizes the C programming language (ISO/IEC JTC1/SC22/WG14) has
completed a major revision of the C standard. The previous version of the standard, completed in 1999,
was colloquially known as “C99.” As one might expect, the new revision completed at the very end of
2011 is known as “C11.”

Concurrency

C11 standardizes the semantics of multi-threaded programs, potentially running on multi-core
platforms, and lightweight inter-thread communication using atomic variables.

The header <threads.h> provides macros, types, and functions to support multi-threading. Here is
a summary of the macros, types, and enumeration constants:

Macros: thread local, ONCE FLAG, TSS DTOR ITERATIONS cnd t, thrd t,
tss t, mtx t, tss dtor t, thrd start t, once flag.

Enumeration constants to passtomtx _init:mtx plain, mtx recursive, mtx timed.

Enumeration constants for threads: thrd timedout, thrd success, thrd busy,
thrd error, thrd nomem.

Functions for condition variables:

call once(once flag *flag, void (*func) (void));

cnd broadcast (cnd t *cond);

cnd destroy(cnd t *cond);

cnd _init(cnd t *cond);

cnd_signal (cnd_t *cond);

cnd timedwait (cnd t *restrict cond, mtx t *restrict mtx, const struct
timespec *restrict ts);

cnd wait(cnd t *cond, mtx t *mtx);

Dr. Dobb’s C11 Overview 1

The mutex functions:

void mtx destroy(mtx t *mtx);

int mtx init(mtx t *mtx, int type);
int mtx lock(mtx t *mtx);

int mtx timedlock (mtx t *restrict mtx,
const struct timespec *restrict ts);
int mtx trylock(mtx t *mtx);

int mtx unlock(mtx t *mtx);

Thread functions:

int thrd create(thrd t *thr, thrd start t func, void *arg);
thrd t thrd current(void);

int thrd detach(thrd t thr);

int thrd equal (thrd t thr0, thrd t thrl);

noreturn void thrd exit (int res);

int thrd join(thrd t thr, int *res);

int thrd sleep(const struct timespec *duration, struct timespec
*remaining) ;

void thrd yield(void);

Thread-specific storage functions:

int tss create(tss_t *key, tss dtor t dtor);
void tss _delete(tss_t key);

void *tss get(tss_t key);

int tss_set(tss_t key, void *val);

These standardized library functions are more likely to be used as a foundation for easier-to-use APIs
than as a platform for building applications. (See “When Tasks Replace Objects”, by Andrew Binstock,
March 28, 2012, for discussion of higher-level APIs.) For example, when using these low-level library
functions it is very easy to create a data race, in which two or more threads write (or write-and-read) to
the same location without synchronization. The C (and C++) standards permit any behavior whatever if
a data race happens to some variable x. For example, some bytes of the value of x might be set by one
thread and other bytes could be set by another thread (“torn values”), or some side-effect that appears
to take place after assignment to x might (to another thread or another processor) appear to take place
before that assignment. Here is a short program that contains an obvious data race, where the 64-bit

integer (Long long)named x is written and read by two threads:

#include <threads.h>

#include <stdio.h>

#define N 100000

char bufl[N][99]={0}, buf2[N][99]={0};
long long oldl, o0ld2, limit=N;

long long x = 0;

static void dol () {
long long ol, o2, nl;
for (long long il = 1; il < limit; ++il) {
oldl = x, x = il;
ol = oldl; 02 = o0ld2;

if (ol > 0) { // x was set by this thread
if (ol != il-1)
sprintf (bufl[il], "thread 1: o0l1=%711d, il=%711d, o02=%711d", ol, il, o02);
} else { // x was set by the other thread
nl = x, x = 1il;

if (nl < 0 && nl > ol)

Dr. Dobb’s C11 Overview

sprintf (bufl[il], "thread 1: ol=%711d, i1=%711d, nl=%711d", ol, il, nl);

}

static void do2 () {
long long ol, 02, n2;
for (long long i2 = -1; i2 > -limit; --12) {
old2 = x, x = i2;

ol oldl; o2 = old2;
if (02 < 0) { // x was set by this thread
if (02 != i2+1)
sprintf (buf2[-i2], "thread 2: 02=%711d, i2=%711d, ol1=%711d", o2, i2, ol);
} else { // x was set by the other thread
n2 = x, x = 12;
if (n2 > 0 && n2 < 02)
sprintf (buf2[-i2], "thread 2: 02=%711d, i2=%711d, n2=%711d", o2, i2, n2);:

}

int main(int argc, char *argvl[])
{
thrd t thrl;
thrd t thr2;
thrd create(&thrl, dol, 0);
thrd create(&thr2, do2, 0);
thrd join(&thr2, 0);
thrd join(&thrl, 0);
for (long long i = 0; i < limit; ++i) {

if (bufl[i][0] != '\0")
printf ("%s\n", bufl[i]);
if (buf2[i] [0] != '\0")

printf ("$s\n", buf2([i]);
}

return 0;

}

If you had an implementation that already conformed to the C11 standard, and you compiled this
program for a 32-bit machine (so that a 64-bit 1long long is written in 2 or more memory cycles), you
could expect to see confirmation of the data race, with a varying number of lines of output such as this:

thread 2: 02=-4294947504, i2= -21, ol= 19792

The traditional solution for data races has been to create a lock. However, using atomic data can
sometimes be more efficient. Loads and stores of atomic types are done with sequentially consistent
semantics. In particular, if thread-1 stores a value in an atomic variable named x, and thread-2 reads
that value, then all other stores previously performed in thread-1 (even to non-atomic objects) become
visible to thread-2. (The C11 and C++11 standards also provide other models of memory consistency,
but even experts are cautioned to avoid them.)

The new header <stdatomic.h> provides a large set of named types and functions for manipulation
of atomic data. For example, atomic 1llong is the typename provided for atomic long long
integers. Similar names are provided for all the integer types. One of these typenames,

atomic_ flag, is required to be lock free. The standard includes a macro named
ATOMIC VAR INIT (n), forinitialization of atomic integers, as shown below.

The data race in the previous example can be cured by making x an atomic 1long variable. Simply
change the one line that declares x in the above listing:

#include <stdatomic.h>

Dr. Dobb’s C11 Overview 3

atomic_llong x = ATOMIC VAR INIT(0);

By using this atomic variable, the code operates without producing any data-race output.

A Note on Keywords

The C committee prefers not to create new keywords in the user name space, as it is generally expected
that each revision of C will avoid breaking older C programs. By comparison, the C++ committee (WG21)
prefers to make new keywords as normal-looking as the old keywords. For example, C++11 defines a
new thread local keyword to designate static storage local to one thread. C11 defines the new
keyword as Thread local. Inthe new C11 header <threads.h>, there is a macro definition to
provide the normal-looking name:

#define thread local _Thread local

In these articles, | will assume that you include the appropriate headers, so | will show the normal-
looking names.

The thread_local Storage Class

This new thread local storage class provides static storage that is unique to each new thread, and
is initialized before the thread begins execution. However, there are no safeguards to prevent you from
taking the address of a thread_local variable and passing it to other threads; what happens next is
implementation-defined (i.e., not portable). Each thread has its own copy of errno in

thread local storage.

Threads are Optional

C11 has designated several features as optional. For example, if the implementation defines a macro
named STDC NO THREADS , then it will presumably not provide a header named
<threads.h> nor any of the functions defined therein.

Politics, Design, and Incomplete Information

As a general rule, WG21 entrusts Bjarne Stroustrup with the overall design-and-evolution responsibility;
do an online search for “camel is a horse designed by committee” to understand the reasons for this
approach. However, there is one design principle that motivates both WG14 and WG21: don’t leave
room for a more-efficient systems-programming language underneath our language (C or C++).

Some participants (call them “Group A”) expect that atomic data will remain a seldom-used specialty,
but others (call them “Group B”) believe that atomic data will become a crucial feature, at least for a

systems-programming language.

Over the past decades, various higher-level languages have been built based on C: Java, C#, Objective C,
and of course, C++ and subsets-or-supersets based on C++ (such as D and Embedded C++). Many

Dr. Dobb’s C11 Overview 4

companies that participate in WG14 and WG21 have made decisions regarding the languages in which
their apps will be written. Those companies that chose C++ as their upper-level app language (call them
“Group D”) are often content for C to be stabilized (or for WG21 to control its standardization), whereas
companies that chose other languages (call them “Group C”) sometimes regard C as a crucial foundation
under their upper-level app language.

With this much background, | can give an account of the evolution of atomics in C11. The design of
atomics in C++11 made crucial use of templates, such that atomic<T> isthe simple and universal way
of getting the atomic version of any type T, evenif Tisa class or struct type; and atomic<T*>
retains all the compile-time type information of what T* points to. However, for several years, the C
design used only the several dozen named types (such as atomic 1long shown above). One
advantage of the named-type approach is that it requires no changes to the compiler itself; it can be
implemented in a library-only solution, which invokes system-dependent intrinsic functions at the very
lowest level. However, the named-type approach precludes creating an atomic for any C struct (no
matter how small) or for a T* pointer (for a general T which is known to the compiler). Largely due to
the influence of Group B and Group C opinions within WG14, a decision was made to require a C11
compiler to recognize an atomic T for any type T.

There was also a subsequent controversy within WG14 about the compiler syntax for specifying an
atomic T. One approach (“atomic-parenthesis”) was motivated by compatibility with C++: let
_Atomic (T) be the syntax for designating an atomic T. Then that same source program could be
compiled as C++ simply by defining one macro:

#define Atomic(T) atomic<T>

The other side of the controversy preferred to create a new type-qualifier (analogous to the C99
treatment of Complex); using this syntax (“atomic-space”), the type atomic T would be written as
“ Atomic T”. A program written using that syntax could not directly be compiled as C++ (without
making use of compatibility macros that would look essentially like the atomic-parenthesis approach).

Both sides of this controversy agreed that, once a team commits to modifying the compiler for this
feature of C11, it’s a relatively minor amount of incremental work to implement both the atomic-
parenthesis syntax and the atomic-space syntax. In the end, that’s the position that prevailed in WG14.
In the meantime, the price of that decision is that only the named-type approach is available today (until
compilers implement the C11 syntaxes), and the most vocal Group D participants can grumble about the
decisions of WG14 creating incompatibilities with C++.

Getting the C11 Standard

C11 and C++11 are available from the ANSI store. For C11, use this link:
http://webstore.ansi.org/RecordDetail.aspx?sku=INCITS%2fISO%2fIEC+9899-2012. For C++11, use this
link: http://webstore.ansi.org/RecordDetail.aspx?sku=INCITS%2fISO%2fIEC+14882-2012 . Each costs
$30 USD for PDF. The whole process takes only a few minutes.

Dr. Dobb’s C11 Overview 5

C11 and Cybersecurity

C and C++ are members of the same family of languages. The evolutionary boldness of C++ removes
some of the marketplace pressure on C; the people who are continually pushing for innovation are
naturally drawn to the C++ development process. Each language had a coherent original design (by
Dennis Ritchie and Bjarne Stroustrup, respectively), followed by successive refinement in a very
competitive marketplace of ideas. Both languages share an extreme concern for performance, with the
slogan “don’t leave space for a more-efficient systems-programming language underneath our language
(C or C++)”, as | mentioned last month. It’s unfair to complain that the original designs assighed too
little importance to cybersecurity; both languages pre-date the beginnings of concern for security. But
in recent years the marketplace has started to emphasize cybersecurity, and the programming
languages are responding in several ways.

In early 2002, Bill Gates’ “battleship-turning” memo made cybersecurity a top goal for Microsoft. About
a year later, Microsoft proposed a new “bounds-checking” library to WG14, which eventually became
Technical Report 24731-1; now it has become part of C11 as the (optional) Annex K. (Look here for an
almost-final draft of C11.)

The C11 Annex K functions

I'll start my tour of Annex K with the fopen s function. The main innovation is that files are opened
with exclusive (also known as non-shared) access. Furthermore, if the mode string doesn’t begin with
'u' (and of course, if the code is being remediated from using the older fopen , then mode doesn’t
begin with 'u'), then to the extent that the underlying system supports it, the file gets a file permission
that prevents other users on the system from accessing the file.

In this article, I'll sequentially enumerate the security benefits of these “_s” functions; the new
semantics illustrate pattern #1, “least privilege”. This “exclusive” mode was previously available in the
Posix open() function, but the ISO standard for C doesn’t standardize system-dependent low-level /0.
See Robert Seacord’s book Secure Coding in C and C++ for detailed discussion of these various security
benefits of the Annex K library.

If a file is opened with '"x' as the last character in the mode argument, and the requested filename is
already in use, the fopen s function fails (as opposed to truncating the existing file, which is
presumably already being used by someone). If the application program had been required first to
check whether the file was in use and then to create the new file, this would illustrate the “time-of-
check versus time-of-use (TOCTOU)” vulnerability; the Annex K version assists with pattern #2,
“minimize TOCTOU vulnerability”.

The mode argument is passed to fopen s asaconst char* pointer, asisthe filename
argument. Requiring these pointers to be non-null is one of the runtime-constraints of the fopen s
function, to use the C11 terminology.

If any of the runtime-constraints are violated, the library function (fopen_ s in this case) invokes the

run time-constraint handler. (In Visual Studio, this handler is known as the invalid parameter handler —
same concept, different name.) This is pattern #3: invoke the runtime-constraint handler if any

Dr. Dobb’s C11 Overview 6

runtime-constraint is violated. Usually, a runtime-constraint violation would have resulted in an
undefined behavior if not caught.

If the runtime-constraints were not violated, then fopen s returns the resulting FILE* pointer
through an argument, rather than producing it as the returned value of the function. If fopen s fails
for any of several reasons, it returns a nonzero value according to the conventions encoded in
<errno.h>; the various Annex K headers provide the typedef name errno_t for this int returned
value. This, then, is pattern #4: reduce the inconsistency of return-value idioms to the greatest extent
possible, by uniformly returning errno_t for erroneous conditions that didn’t violate a runtime-
constraint.

This initial discussion about fopen s has introduced the first four patterns of the Annex K library: (1)
provide least privilege; (2) minimize TOCTOU vulnerability; (3) reduce the return value variability using
errno_t returned values; (4) use runtime-constraint handlers for logic errors.

In the original C standard, and in C++ still today, most library functions specify something like “if copying
takes place between objects that overlap, the behavior is undefined”. In C99 and C11, there is a
syntactic way to specify this restriction, the restrict keyword. As a result of all these various design
decisions, the calling sequence for fopen s looks like this:

errno_t fopen s (FILE * restrict * restrict streamptr,
const char * restrict filename,
const char * restrict mode);

Designing the runtime-constraint handler provides the implementation and the project team a range of
choices. The logically simplest handler simply invokes abort (). A somewhat more complex
architecture gives the user a choice between aborting or debugging, potentially preserving the full state
of the stack frames and global variables. (From a standards-conformance point of view, the invocation
of an interactive debugger is equivalent to invoking abort () —anything that happens subsequently is
under the control of the interactive user.)

Other forms of handlers could be used. In an application that never terminates, the handler could
reinitialize, flush the current transaction, start a new transaction, and so forth. In a specialized testing

situation, the handler could log the failures.

The freopen_ s function illustrates the same patterns as fopen_ s, including the 'x"' and 'u'
mode flags.

Continuing with the file oriented functions, consider tmpnam_s:
errno_t tmpnam s(char *s, rsize t maxsize);
The function illustrates pattern #5:
In the calling sequence of the function, every pointer through which the function might modify

an array is immediately followed by the number of elements which the function is permitted to
modify.

Dr. Dobb’s C11 Overview 7

In the case of tmpnam_ s, the second argument specifies a maximum for the number of characters that
can be modified by tmpnam_s. The type of the second argumentis rsize t, designating a
“restricted size t”value. The intent is to prevent the common error of inadvertently passing a
negative value, which after conversion to an unsigned type, becomes a huge number, and in this case,
defeating the purpose of bounds-checking the string written into s. This common error is intended to
be caught within tmpnam s by comparing maxsize against RSIZE MAX and invoking the runtime-
constraint handler if it’s larger. (I've said “intended” several times, because Annex K makes it optional
whether RSIZE MAX is any smaller than RSIZE MAX.) This manner of designating bounding values
with the type rsize t is pattern #6 of the Annex K library.

Next, consider the tmpfile s function:
errno_t tmpfile s(FILE * restrict * restrict streamptr);
It could be invoked like this:

FILE *myTempFile = 0;
errno_t err = tmpfile s (&myTempFile);

There is a window of TOCTOU vulnerability between obtaining a filename from tmpnam s and
subsequently creating that file with fopen_s; using tmpfile s eliminates that particular
vulnerability. Consequently, tmpfile s illustrates patterns 1, 2, 3, and 4.

Pattern #7 is easy to describe: “eliminate the $n format”. For the details, refer to Seacord and the
original Rationale for the library that become Annex K. The basic problem with %n is that the printf
family of functions are intuitively thought of as “output” functions, but the $n format can be used to
modify memory, and therefore provides an attack surface.

These, then, are the ” s versions of the formatted output functions: fprintf s, printf s,
snprintf s, sprintf s, vfprintf s, vprintf s, vsnprintf s, vsprintf s,
fwprintf s, snwprintf s, swprintf s, vfwprintf s, vsnwprintf s,
vswprintf s, vwprintf s, wprintf s.

Pattern #8 is rather technical, but significant: if the various formatted functions produce overlapping
stores, the resulting behavior is not undefined, but is merely unspecified. Implementing patterns 4
(handlers for e.g. null arguments), 5 (buffer sizes), 6 (RSIZE_MAX), and 8 (overlapping stores), we have
the ” s” versions of the formatted input functions: fscanf s, scanf s, sscanf s,
vfscanf s, vscanf s, vsscanf s, fwscanf s, swscanf s, vfwscanf s,
vswscanf_s , vwscaﬁf_s, wscanf_s B B B

Pattern #9 is even more technical: when the time-and-date functions produce a “year” value, it should
be bounded to the interval [0, 9999]; added to the other patterns, this produces the time-and-date
functions: asctime s, ctime s, gmtime s, localtime s.

Pattern #10 guarantees that memset s will over-write the argument array, even if the optimizer
thinks that those stores are “useless”, such as when over-writing a password before leaving a function.

Dr. Dobb’s C11 Overview 8

Pattern #11 provides an extra argument to keep track of previous state information, to avoid static
buffers that would prevent re-entrancy or use in a multi-threaded environment: bsearch s,
gsort s, strtok s, wcstok s.

Pattern #12 is to chop (or zero-fill) the resulting string if a runtime-constraint error happens: gets_s,
getenv_ s, wctomb s, mbstowcs s, wcstombs s, memcpy S, memmove s,
strcpy s, strncpy s, strcat s, strncat s, strerror s, strnlen s,
WCSCpy_ S, WCSNncpy s, wmemcpy S, wmemmove s, wcscat s, wcsncat s,
wcsnlen s, wcrtomb s, mbsrtowcs s, wcsrtombs s

Pattern #13 is to provide the bounds that will be needed to allocate buffers: the strerrorlen s
function tells how many characters will be needed to store the locale-specific error message for one
specific errno value.

Finally, pattern #14 is illustrated by all the functions in Annex K: permit a localized remediation of
existing code, without global design changes. Each of the various * s” functions can replace its
previous version by changing only one or two lines of the existing code.

The Annex K functions are widely available on Visual Studio and a few other places; still, there’s no
reason why they shouldn’t already be available on all platforms. Perhaps there is some degree of “not
invented here” resistance; | hope these articles will help create greater marketplace demand. Talk to
your compiler/library providers.

Annex L

There has been a tendency to approach the requirements for safety-critical, zero defects, and
cybersecurity with the same developmental methods, producing high-integrity applications at a
correspondingly high cost. However, cybercriminal exploits tend to focus on the most popular apps,
which are often produced under less-than-ideal schedule and budget constraints. The languages chosen
for hopefully-popular apps are frequently C and C++.

Within WG14 there have been several initiatives to improve software security without sacrificing the
efficiency advantages of C, or the developmental methodologies that organizations are already familiar
with.

Within the world of safety-critical development methods, it is common to target the elimination of all
undefined behaviors (UBs) in C, on the grounds that compilers are free to do anything whatever when
an app produces UB. However, compiler developers are very influential within WG14, and they know
that in almost all cases of UB, the hardware actually produces a benign result, and that often when some
corner case is identified as UB, the standard is marking it as “non-portable”, and not as “dangerous”.

The Analyzability Annex of C11 (Annex L) identifies a small number of UBs as “critical UB”, classifying all
the others as “bounded UB”, and imposes some implementation constraints on the resulting behavior.
The net result is that when an implementation provides this analyzable behavior, and the app is
subjected to static analysis, the actual app when executed does implement the source code of the
program as analyzed.

Dr. Dobb’s C11 Overview 9

With the benefit of hindsight, | have found one improvement that | will suggest for the Analyzability
Annex: an implementation should be permitted by Annex L to generate code that violates the
constraints in the Annex, provided that it produces a warning message when it does so. After all,
“analyzability” relies on a project methodology that focuses attention upon the warnings generated by
the static analyzer and the compiler, so guaranteeing the production of a warning is all that should be
required by Annex L.

The C Secure Coding Rules project

ISO and IEC currently define a Technical Specification (TS) to have less than the official status of an
International Standard (IS). WG14 has used this less-formal approach to several topic areas (including
the Bounds-Checking Library TR 24731-1 mentioned above) for specifications that may benefit from
experience in the marketplace before being standardized.

Further work is under way within WG14, a Technical Specification (TS 17961) for “C Secure Coding
Rules” (CSCR). Most of the TSs (and ISs) produced by the programming language committees target the
compiler-and-library marketplaces, but the CSCR TS primarily targets the static analyzers marketplace.

C11 Ease of Use

The 2011 revision of the ISO standard for C (“C11”) provides several ease-of-use features, most of which
are compatible with C++11. In order to use the normal-looking names I'll show here, you need to
include these headers: <stddef.h>, <stdlib.h>, <assert.h>, <complex.h>,
<stdnoreturn.h>, <uchar.h>, <stdatomic.h>, and<stdalign.h>.

Alignment

C11, and C++11, provide new syntax for specifying alignment. The expression alignof (type-name)
a designates the alignment of type-name; it is a constant expression, as is the familiar sizeof (type-
name) . (There’s one exception in C: applying sizeof to a variable length array, or VLA, produces a
non-constant expression.) The expression alignof (char) is, of course, always 1.

There is a similar syntax for declarations:
int alignas (double) b;
specifies that b is an int, but is aligned suitably for a double. Or for a more realistic example,
alignas (double) unsigned char buf[sizeof (double)];
specifies that buf is a array of unsigned char, whose size and alighment would be suitable to hold
adouble.

Alignment can be specified as an integer: alignas (constant-expression) specifies the constant-
expression as an alignment. Thus, alignas (type-name) means the same thing as

alignas (alignof (type-name)).

For each target platform, there is some type which has the largest alignment requirement; that type can
be named by the typedefmax align t, so a declaration that specifies alignas (max_align t)

Dr. Dobb’s C11 Overview 10

requests an alignment that will be suitable for any type on that platform. If a program requests an
alignment that is greater than alignof (max align t),the program is not portable, because
support for an over-aligned type is optional.

The C11 library provides aligned alloc(size t bound, size t nbytes), which allocates
nbytes of storage aligned on a bound boundary. The most common use case heard by the committee
was to request a buffer aligned on a cache boundary (typically 32k or 64k); however, you have to check
your own compiler’s manual, because the implementation gets to determine the valid alignments.

Unicode strings and constants

The new u8 prefix for strings creates a string (i.e., an array of char) which is encoded using the UTF-8
encoding. If your text editor and your compiler are using the ASCII representation (most are), then the
string u8"John Doe" will contain the same characters as the ordinary string "John Doe". The
crucial difference comes when your program needs to represent international characters beyond the
basic 7-bit ASCII (English) characters. If your text editor and compiler can handle the characters, then
your program could contain a string like u8"o A &£ Q", and pass that string to the various C library
functions that handle ordinary strings (arrays of char).

The UTF-8 encoding is increasingly popular; for example, it is the default encoding for XML. To the
extent that you have a choice about character representations, it appears to me, with benefit of decades
of hindsight, that UTF-8, using the u8 strings, is the simplest and best choice.

However, you may not have this simple choice, so C11 (and C++11) also provide several other Unicode
representations. A string like u"aQ"creates an array of char16_t values (encoded in UTF-16);
similarly, a string like U" oQ" creates an array of char32 t values (encoded in UTF-32). Also, there are
character constants for char16 t and char32 t values, writtenasu'a' and U'a'. Unfortunately,
if you need to use these more complex features, you may need to know about endian-ness, surrogate
characters, differences between Windows and UNIX/Linux representations, and this overview article
couldn’t provide enough details to address all those issues.

Type-generic Macros

The C99 standard introduced type-generic macros into the standardized library; for example, you could
invoke fabs (x), where x is either float, double, or long double. What happened auto-
magically was that invocation of the type-generic macro abs would cause invocation of one of three
separate library functions fabsf (float) , fabs (double) ,or fabsl (long double).
However, in C99 you had no opportunity to use the same magic for your own purposes. Now, in C11,
you could create an fabs (x) that would be portable to any other C11 compiler:

#define fabs (X) Generic((X),
long double: fabsl,
default: fabs,
float: fabsf
) (X)

Dr. Dobb’s C11 Overview 11

This method defines a macro named fabs, which will cause the invocation of several different named
library functions, using the new C11 syntax for the Generic keyword. That fabs macrois an
ordinary macro defined in the preprocessor. For example, fabs could be undefined (using #undef).
As you see, type-generic macros provide only a tiny portion of the full-blown overloading that is
available in C++, but it’s enough for purposes such as the type-generic math library.

Miscellaneous Ease-of-use Features

It is now possible, in C11 and C++11, to inform the compiler that a function will not return. For example.
exit is a function that does not return, so it can be declared like this:

noreturn void exit (int status);

Using noreturn in this way can assist the compiler’s optimizer, possibly eliminating unnecessary
warnings.

Cl1and C++11 provide static_assert (constant-expr, string-literal) ; if the constant-expr is zero,
then a diagnostic message containing the text of the string-literal will be printed. As the name implies,
the static_assert is evaluated at compile time, so it can prevent compilation with incompatible options;
for example

static assert (sizeof (void*) == 4,
"64-bit code generation not supported");

One common use of static assert is to verify that resource configuration is adequate:

static assert (NUMBER OF BUCKETS < 16,
"NUMBER OF BUCKETS must be at least 16");

The message produced by static assert will contain, besides the string-literal argument, the file
name, line number, and function name (if any).

The C11 standard provides three macros that are helpful for C/C++ compatibility for programs that use
complex floating-point values:

double complex CMPLX (double x, double vy);
float complex CMPLXF (float x, float y);
long double complex CMPLXL (long double x, long double vy);

Your C++ version of the program could create corresponding macro definitions (but the C++11 standard
does not provide these):

#define CMPLX (x, V) std::complex ((double)x, (double)y)
#define CMPLXF (x, y) std::complex((float)x, (float)y)
#define CMPLXL (x, y) std::complex((long double)x, (long double)y)

Finally, there’s a committee decision that was inadvertently left out of the published standard: the pre-
defined macros __STDC_VERSION__and __STDC_LIB_EXT1__ are defined to be 201112L.

Dr. Dobb’s C11 Overview 12

Several other corrections and improvements were made, which won't be itemized here.
Compatibility with C++

Compatibility with the evolving standard for C++ was a high priority, and a serious challenge, since both
standards were completed in the fourth quarter of 2011.

All the new features described in this ease-of-use article can be used in a C11 program, or a C++11
program, with all the same semantics (except, of course, for the type-generic macro).

Last month’s article (“cybersecurity”) described the C11 Annexes K and L (bounds-checking interfaces
and analyzability), both of which are not part of C++11. However, the Annex K library is widely available
from C++ environments that provide additional libraries for use by the C++ application; certainly
Microsoft’s Visual Studio has been in this category for several years.

The first article in this series (“threading and atomics”) covers several compatibility challenges. I've
been told, by people whose expertise | respect, that when you incorporate multi-threading into your
design, you should put all the threading control into the C++ components, or alternatively put all the
threading control into the C components. A mix-and-match approach to the threading controls raises
serious issues. And if the app contains both C and C++ components, there are other (unrelated) good
reasons to make the main program to be a C++ program (initialization of statics, setting up the
exception-handling mechanism, etc.). A further consideration is that some compilation environments
are fairly close to the C++11 standard for multi-threading, where the C11 implementation may be
lagging behind somewhat.

However, with regard to accessing atomic data, the compatibility situation is somewhat more favorable.
Depending upon your compiler-and-library environment, you should fairly soon be able to use the
named atomic_ * basic atomic types in both C11 and C++11. Somewhat more ambitiously, you could
usethe Atomic (T) syntax (“_Atomic parenthesis”), and if your C++11 environment doesn’t already
support this syntax, you could create your own compatibility header containing this definition:

#define _Atomic (T) atomic<T>

However, I’'m uncertain as to when, or whether, any particular C11 implementation will support the full
type-qualifier syntax of Atomic T (“_Atomicspace”).

I’'m just about ready to summarize the compatibility situation, but first some discussion about
conformance testing and optional subsets. From the very beginning of the C standards process (going
back to the 1980’s), the marketplace for C compilers has been attentive to, and concerned about, the
various agencies and processes for formal certification of conformance to the ISO/IEC C standard. Even
now in the third decade of the successive C standards, a formal certification process is provided by The
Open Group for POSIX operating systems, which requires a C compiler. By contrast, there has never yet
been a formal certification for C++ compilers; it’s probably true that no commercial C++ compiler has
ever fully conformed to any ISO/IEC C++ standard.

Dr. Dobb’s C11 Overview 13

Given this greater attention to conformance details, it’s worth noting that the C11 standard has
identified eight different portions of the standard as optional: variable length arrays (VLAs), complex
types, IEC 60559 (“IEEE”) floating-point (Annex F), IEEE complex (Annex G), bounds-checking interfaces
(Annex K), analyzability (Annex L), multithreading, and atomic. A compiler could conform to C11 and
provide all of these, or none of these, or some portion of these. The minimum requirement of C11 is, of
course, to provide none of these. The message from the marketplace, or so it seems to me, is that C99
imposed a number of requirements that were needed only by small portions of the marketplace (what
some on the committee referred to as “boutique” markets).

I'll conclude with a table that describes the C/C++ compatibility issues of these eight optional C11
features:

C11 Features C++ Compatibility Issues
1. Variable length arrays (VLAs) Will never be part of a C++ standard
2. Complex types <complex.h> User program can be compatible, with effort

3. IEC 60559 floating-point arithmetic (Annex F) | Could be provided by a C++ environment,
but not required

4. IEC 60559 complex arithmetic (Annex G) Could be provided by a C++ environment,
but not required

5. Bounds-checking interfaces (Annex K) Could be provided by a C++ environment,
but not required

6. Analyzability (Annex L) Could be provided by a C++ environment,
but not required

7. Multithreading <threads.h> Choose C11 or C++11; don’t mix

8. Atomic primitives and types <stdatomic.h> User program can be compatible, with effort

Dr. Thomas Plum is Vice President of Technology and Engineering at Plum Hall, Inc., and is a member of
the C and C++ committees which developed C11 and C++11. He can be reached at
tplum@plumhall.com. The author gratefully acknowledges helpful suggestions from Pete Becker (the
project editor of the 2011 C++ standard), Robert Seacord of CERT, and David Keaton (chairman of the US
committee for C language).

Dr. Dobb’s C11 Overview 14

