
© ISO/IEC 2013 – All rights reserved Working Group Draft – March 1, 2013

ISO/IEC JTC 1/SC 22/WG 14 N1676

Date: yyyy-mm-dd

Reference number of document: ISO/IEC TS 18661

Committee identification: ISO/IEC JTC 1/SC 22/WG 14 5

Secretariat: ANSI

Information Technology — Programming languages, their environments,
and system software interfaces — Floating-point extensions for C —
Part 1: Binary floating-point arithmetic

Technologies de l’information — Langages de programmation, leurs environnements et interfaces du logiciel 10
système — Extensions à virgule flottante pour C — Partie I: Binaire arithmétique flottante

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to
change without notice and may not be referred to as an International Standard. 15

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of
which they are aware and to provide supporting documentation.

Document type: Technical Specification
Document subtype:
Document stage: (20) Preparation
Document language: E

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

Deleted: WG 14 N1664

Deleted: 0000

Deleted: nnn-n

Deleted: Binary

ISO/IEC TS 18661 Working Group Draft – March 1, 2013 WG 14 N1676

ii © ISO/IEC 2012 – All rights reserved

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the
reproduction of working drafts or committee drafts in any form for use by participants in the ISO
standards development process is permitted without prior permission from ISO, neither this document
nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose 5
without prior written permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed
as shown below or to ISO’s member body in the country of the requester:

ISO copyright office
Case postale 56 CH-1211 Geneva 20 10
Tel. +41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement. 15

Violators may be prosecuted.

WG 14 N1676 Working Group Draft – March 1, 2013 ISO/IEC TS 18661

© ISO/IEC 2012 – All rights reserved iii

Contents Page

Foreword ... iv	
Introduction.. v	
 Background.. v	
 IEC 60559 floating-point standard ... v	 5
 C support for IEC 60559... vi	
 Purpose .. vii	
1	 Scope ... 1	
2	 Conformance ... 1	
3	 Normative references ... 1	 10

4	 Terms and definitions... 1	
5	 C standard conformance.. 2	
5.1	 Freestanding implementations ... 2	
5.2	 Predefined macros... 2	
6	 Revised floating-point standard .. 3	 15

7	 Types.. 4	
7.1	 Terminology.. 4	
7.2	 Canonical representation .. 5	
8	 Operation binding ... 6	
9	 Floating to integer conversion... 10	 20

10	 Conversions between floating types and character sequences .. 11	
10.1	 Conversions with decimal character sequences .. 11	
10.2	 Conversions to character sequences .. 12	
11	 Constant rounding directions.. 12	
12	 NaN support... 18	 25

13	 Integer width macros .. 22	
14	 Mathematics <math.h> .. 23	
14.1	 Nearest integer functions.. 23	
14.1.1	 Round to integer value in floating type .. 23	
14.1.2	 Convert to integer type .. 26	 30
14.2	 The llogb functions.. 28	
14.3	 Max-min magnitude functions .. 29	
14.4	 The nextup and nextdown functions .. 30	
14.5	 Functions that round result to narrower type ... 32	
14.6	 Comparison macros .. 34	 35
14.7	 Inquiry macros ... 35	
14.8	 Total order functions ... 36	
14.9	 The canonicalize functions ... 38	
14.10	 NaN functions ... 39	
15	 The floating-point environment <fenv.h> ... 40	 40
15.1	 The fesetexcept function... 40	
15.2	 The fetestexceptflag function .. 41	
15.3	 Control modes.. 41	
16	 Type-generic math <tgmath.h>.. 43	
Bibliography... 45	 45

John Benito� 3/1/13 8:29 AM

John Benito� 3/1/13 8:29 AM

John Benito� 3/1/13 8:29 AM

John Benito� 3/1/13 8:29 AM

John Benito� 3/1/13 8:29 AM

John Benito� 3/1/13 8:29 AM

John Benito� 3/1/13 8:29 AM

John Benito� 3/1/13 8:29 AM

John Benito� 3/1/13 8:29 AM

John Benito� 3/1/13 8:29 AM

John Benito� 3/1/13 8:29 AM

John Benito� 3/1/13 8:29 AM

John Benito� 3/1/13 8:29 AM

John Benito� 3/1/13 8:29 AM

John Benito� 3/1/13 8:29 AM

John Benito� 3/1/13 8:29 AM

Deleted: 4

Deleted: 5

Deleted: 10

Deleted: 10

Deleted: 11

Deleted: 17

Deleted: 25

Deleted: 27

Deleted: 28

Deleted: 31

Deleted: 34

Deleted: 37

Deleted: 38

Deleted: 40

Deleted: 42

Deleted: 44

ISO/IEC TS 18661 Working Group Draft – March 1, 2013 WG 14 N1676

iv © ISO/IEC 2012 – All rights reserved

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and 5
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an 10
International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TS 18661 was prepared by Technical Committee ISO JTC 1, Information Technology, Subcommittee
SC 22, Programming languages, their environments, and system software interfaces. 15

ISO/IEC TS 18661 consists of the following parts, under the general title Floating-point extensions for C:

⎯ Part 1: Binary floating-point arithmetic

⎯ Part 2: Decimal floating-point arithmetic

⎯ Part 3: Interchange and extended types

⎯ Part 4: Supplemental functions 20

⎯ Part 5: Supplemental attributes

Part 1 updates ISO/IEC 9899:2011 (Information technology — Programming languages, their environments
and system software interfaces — Programming Language C), Annex F in particular, to support all required
features of ISO/IEC/IEEE 60559:2011 (Information technology — Microprocessor Systems — Floating-point
arithmetic). 25

Part 2 supersedes ISO/IEC TR 24732:2009 (Information technology – Programming languages, their
environments and system software interfaces – Extension for the programming language C to support decimal
floating-point arithmetic).
 30
Parts 3-5 specify extensions to ISO/IEC 9899:2011 for features recommended in ISO/IEC/IEEE 60559:2011.

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

Deleted: nnn-n

Deleted: nnn

Deleted: 2008

WG 14 N1676 Working Group Draft – March 1, 2013 ISO/IEC TS 18661

© ISO/IEC 2012 – All rights reserved v

Introduction

Background

IEC 60559 floating-point standard

The IEEE 754-1985 standard for binary floating-point arithmetic was motivated by an expanding diversity in
floating-point data representation and arithmetic, which made writing robust programs, debugging, and moving 5
programs between systems exceedingly difficult. Now the great majority of systems provide data formats and
arithmetic operations according to this standard. The IEC 60559:1989 international standard was equivalent to
the IEEE 754-1985 standard. Its stated goals were:

1 Facilitate movement of existing programs from diverse computers to those that adhere to this
standard. 10

2 Enhance the capabilities and safety available to programmers who, though not expert in
numerical methods, may well be attempting to produce numerically sophisticated programs.
However, we recognize that utility and safety are sometimes antagonists.

3 Encourage experts to develop and distribute robust and efficient numerical programs that are
portable, by way of minor editing and recompilation, onto any computer that conforms to this 15
standard and possesses adequate capacity. When restricted to a declared subset of the
standard, these programs should produce identical results on all conforming systems.

4 Provide direct support for

a. Execution-time diagnosis of anomalies

b. Smoother handling of exceptions 20

c. Interval arithmetic at a reasonable cost

5 Provide for development of

a. Standard elementary functions such as exp and cos

b. Very high precision (multiword) arithmetic

c. Coupling of numerical and symbolic algebraic computation 25

6 Enable rather than preclude further refinements and extensions.

To these ends, the standard specified a floating-point model comprising:

• formats	 -‐	 for	 binary	 floating-‐point	 data,	 including	 representations	 for	 Not-‐a-‐Number	
(NaN)	 and	 signed	 infinities	 and	 zeros	
	 30

• operations	 –	 basic	 arithmetic	 operations	 (addition,	 multiplication,	 etc.)	 on	 the	 format	
data	 to	 compose	 a	 well-‐defined,	 closed	 arithmetic	 system	 (It	 also	 specified	 conversions	
between	 floating-‐point	 formats	 and	 decimal	 character	 sequences,	 and	 a	 few	 auxiliary	
operations.)	
	 35

• context	 -‐	 status	 flags	 for	 detecting	 exceptional	 conditions	 (invalid	 operation,	 division	 by	
zero,	 overflow,	 underflow,	 and	 inexact)	 and	 controls	 for	 choosing	 different	 rounding	
methods	

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

Deleted: for binary floating-point
arithmetic

Deleted: formats

Deleted: ,	 and

Deleted: that

Deleted: .	

Deleted:),

Deleted: ,	 conversions	 between	 floating-‐
point	 formats	 and	 decimal	 character	
sequences,	 and	 a	 few	 auxiliary	 operations.

ISO/IEC TS 18661 Working Group Draft – March 1, 2013 WG 14 N1676

vi © ISO/IEC 2012 – All rights reserved

The IEC 60559:2011 international standard is equivalent to the IEEE 754-2008 standard for floating-point
arithmetic, which is a major revision to IEEE 754-1985.

The revised standard specifies more formats, including decimal as well as binary. It adds a 128-bit binary
format to its basic formats. It defines extended formats for all of its basic formats. It specifies data interchange
formats (which may or may not be arithmetic), including a 16-bit binary format and an unbounded tower of 5
wider formats. To conform to the floating-point standard, an implementation must provide at least one of the
basic formats, along with the required operations.

The revised standard specifies more operations. New requirements include -- among others -- arithmetic
operations that round their result to a narrower format than the operands (with just one rounding), more
conversions with integer types, more inquiries and comparisons, and more operations for managing flags and 10
modes. New recommendations include an extensive set of mathematical functions and seven reduction
functions for sums and scaled products.

The revised standard places more emphasis on reproducible results, which is reflected in its standardization
of more operations. For the most part, behaviors are completely specified. The standard requires conversions
between floating-point formats and decimal character sequences to be correctly rounded for at least three 15
more decimal digits than is required to distinguish all numbers in the widest supported binary format; it fully
specifies conversions involving any number of decimal digits. It recommends that transcendental functions be
correctly rounded.

The revised standard requires a way to specify a constant rounding direction for a static portion of code, with
details left to programming language standards. This feature potentially allows rounding control without 20
incurring the overhead of runtime access to a global (or thread) rounding mode.

Other features recommended by the revised standard include alternate methods for exception handling,
controls for expression evaluation (allowing or disallowing various optimizations), support for fully reproducible
results, and support for program debugging.

The revised standard, like its predecessor, defines it model of floating-point arithmetic in the abstract. It 25
neither defines the way in which operations are expressed (which might vary depending on the computer
language or other interface being used), nor does it define the concrete representation (specific layout in
storage, or in a processor's register, for example) of data or context, except that it does define specific
encodings that are to be used for data that may be exchanged between different implementations that
conform to the specification. 30

IEC 60559 does not include bindings of its floating-point model for particular programming languages.
However, the revised standard does include guidance for programming language standards, in recognition of
the fact that features of the floating-point standard, even if well supported in the hardware, are not available to
users unless the programming language provides a commensurate level of support. The implementation’s
combination of both hardware and software determines conformance to the floating-point standard. 35

C support for IEC 60559

The C standard specifies floating-point arithmetic using an abstract model. The representation of a floating-
point number is specified in an abstract form where the constituent components (sign, exponent, significand)
of the representation are defined but not the internals of these components. In particular, the exponent range,
significand size, and the base (or radix) are implementation defined. This allows flexibility for an 40
implementation to take advantage of its underlying hardware architecture. Furthermore, certain behaviors of
operations are also implementation defined, for example in the area of handling of special numbers and in
exceptions.

The reason for this approach is historical. At the time when C was first standardized, before the floating-point
standard was established, there were various hardware implementations of floating-point arithmetic in 45
common use. Specifying the exact details of a representation would have made most of the existing
implementations at the time not conforming.

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

Deleted: This standard was motivated by an
expanding diversity in floating-point data
representation and arithmetic, which made writing
robust programs, debugging, and moving programs
between systems exceedingly difficult.

Deleted: Now the great majority of systems
provide data formats and arithmetic operations
according to this standard.

Deleted: includes

Deleted: IEC 9899:1999 (C99),

WG 14 N1676 Working Group Draft – March 1, 2013 ISO/IEC TS 18661

© ISO/IEC 2012 – All rights reserved vii

Beginning with ISO/IEC 9899:1999 (C99), C has included an optional second level of specification for
implementations supporting the floating-point standard. C99, in conditionally normative Annex F, introduced
nearly complete support for the IEC 60559:1989 standard for binary floating-point arithmetic. Also, C99’s
informative Annex G offered a specification of complex arithmetic that is compatible with IEC 60559:1989.

ISO/IEC 9899:2011 (C11) includes refinements to the C99 floating-point specification, though is still based on 5
IEC 60559:1989. C11 upgrades Annex G from “informative” to “conditionally normative”.

ISO/IEC Technical Report 24732:2009 introduced partial C support for the decimal floating-point arithmetic in
IEC 60559:2011. TR 24732, for which technical content was completed while IEEE 754-2008 was still in the
later stages of development, specifies decimal types based on IEC 60559:2011 decimal formats, though it
does not include all of the operations required by IEC 60559:2011. 10

Purpose

The purpose of this Technical Specification is to provide a C language binding for IEC 60559:2011, based on
the C11 standard, that delivers the goals of IEC 60559 to users and is feasible to implement. It is organized
into five Parts.

Part 1, this document, provides suggested changes to C11 that cover all the requirements, plus some basic 15
recommendations, of IEC 60559:2011 for binary floating-point arithmetic. C implementations intending to
support IEC 60559:2011 are expected to conform to conditionally normative Annex F as enhanced by the
suggested changes in Part 1.

Part 2 enhances TR 24732 to cover all the requirements, plus some basic recommendations, of IEC
60559:2011 for decimal floating-point arithmetic. C implementations intending to provide an extension for 20
decimal floating-point arithmetic supporting IEC 60559-2011 are expected to conform to Part 2.

Part 3 (Interchange and extended types), Part 4 (Supplementary functions), and Part 5 (Supplementary
attributes) cover recommended features of IEC 60559-2011. C implementations intending to provide
extensions for these features are expected to conform to the corresponding Parts.

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

Deleted: ;

Deleted: 2008

WORKING DRAFT ISO/IEC/WD 18661

© ISO/IEC 2012 – All rights reserved 1

Information Technology — Programming languages, their
environments, and system software interfaces — Floating-point
extensions for C — Part 1: Binary floating-point arithmetic

1 Scope 5

This document, Part 1 of ISO/IEC Technical Specification 18661, extends programming language C to support
binary floating-point arithmetic conforming to ISO/IEC/IEEE 60559:2011. It covers all requirements of IEC
60559 as they pertain to C floating types that use IEC 60559 binary formats.

This document does not cover decimal floating-point arithmetic, nor most other optional features of IEC
60559. 10

This document is primarily an update to IEC 9899:2011 (C11), normative Annex F (IEC 60559 floating-point
arithmetic). However, it proposes that the new interfaces that are suitable for general implementations be
added in the Library clauses of C11. Also it includes a few auxiliary changes in C11 where the specification is
problematic for IEC 60559 support.

2 Conformance 15

An implementation conforms to Part 1 of Technical Specification 18661 if

a) It meets the requirements for a conforming implementation of C11 with all the suggested changes to
C11, as specified in Part 1 of Technical Specification 18661; and

b) It defines __STDC_IEC_60559_BFP__ to 201ymmL. 20

3 Normative references

The following referenced documents are indispensable for the application of this document. Only the editions
cited apply.

ISO/IEC 9899:2011, Information technology — Programming languages, their environments and system 25
software interfaces — Programming Language C

ISO/IEC/IEEE 60559:2011, Information technology — Microprocessor Systems — Floating-point arithmetic
(with identical content to IEEE 754-2008, IEEE Standard for Floating-Point Arithmetic. The Institute of
Electrical and Electronic Engineers, Inc., New York, 2008)

4 Terms and definitions 30

For the purposes of this document, the terms and definitions given in ISO/IEC 9899:2011 and ISO/IEC/IEEE
60559:2011 and the following apply.

4.1
C11
standard ISO/IEC 9899:2011, Information technology — Programming languages, their environments and 35
system software interfaces — Programming Language C

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

Deleted: 00000

Deleted: TS 00000-1

Deleted: TS 00000-1

Deleted: this

Deleted: this

ISO/IEC TS 18661 Working Group Draft – March 1, 2013 WG 14 N1676

2 © ISO/IEC 2013 – All rights reserved

5 C standard conformance

5.1 Freestanding implementations

The following suggested change to C11 expands the conformance requirements for freestanding implements
so that they might conform to this Part of Technical Specification18661

Suggested change to C11: 5

Replace the third sentence of 4#6:

A conforming freestanding implementation shall accept any strictly conforming program that does not
use complex types and in which the use of the features specified in the library clause (clause 7) is
confined to the contents of the standard headers <float.h>, <iso646.h>, <limits.h>,
<stdalign.h>, <stdarg.h>, <stdbool.h>, <stddef.h>, <stdint.h>, and 10
<stdnoreturn.h>.

with:

A conforming freestanding implementation shall accept any strictly conforming program that does not
use complex types and in which the use of the features specified in the library clause (clause 7) is
confined to the contents of the standard headers <fenv.h>, <float.h>, <iso646.h>, 15
<limits.h>, <math.h>, <stdalign.h>, <stdarg.h>, <stdbool.h>, <stddef.h>,
<stdint.h>, and <stdnoreturn.h> and the numeric conversion functions (7.22.1) of the
standard header <stdlib.h>.

The library functions, macros, and types defined in this Part of Technical Specification 18661 are defined by
their respective headers if the macro __STDC_WANT_IEC_18661_EXT1__ is defined at the point in the 20
source file where the appropriate header is first included.

 25

 30

5.2 Predefined macros

The following suggested change to C11 replaces __STDC_IEC_559__, the conformance macro for Annex F,
with __STDC_IEC_60559_BFP__, for consistency with other conformance macros and to distinguish its
application to binary floating-point arithmetic. Note that an implementation may continue to define
__STDC_IEC_559__, so that current programs that use __STDC_IEC_559__ may remain valid under the 35
suggested changes in this Part of Technical Specification 18661.

Suggested change to C11:

In 6.10.8.3#1, replace:

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

Deleted: 1

Deleted: this

Deleted: 00000

Deleted: 3 Normative references

Deleted: The following referenced documents are
indispensable for the application of this document.
Only the editions cited apply.

Deleted: ISO/IEC 9899:2011, Information
technology — Programming languages, their
environments and system software interfaces —
Programming Language C

Deleted: ISO/IEC/IEEE 60559:2011, Information
technology — Microprocessor Systems —
Floating-point arithmetic (with identical content to
IEEE 754-2008, IEEE Standard for Floating-Point
Arithmetic. The Institute of Electrical and Electronic
Engineers, Inc., New York, 2008)

Deleted: 4 Terms and definitions

Deleted: For the purposes of this document, the
terms and definitions given in ISO/IEC 9899:2011
and ISO/IEC/IEEE 60559:2011 and the following
apply.

Deleted: 4.1

Deleted: standard ISO/IEC 9899:2011,
Information technology — Programming
languages, their environments and system
software interfaces — Programming Language C

Deleted: C11

Deleted: 1

Deleted: this

WG 14 N1676 Working Group Draft – March 1, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 3

__STDC_IEC_559__ The integer constant 1, intended to indicate conformance to Annex F (IEC
60559 binary floating-point arithmetic).

with:

__STDC_IEC_60559_BFP__ The integer constant 201ymmL, intended to indicate conformance to
Annex F (IEC 60559 binary floating-point arithmetic). 5

The following suggested changes to C11 obsolesce __STDC_IEC_559_COMPLEX__, the current
conformance macro for Annex G, in favour of __STDC_IEC_60559_COMPLEX__, for consistency with other
conformance macros.

Suggested changes to C11:

In 6.10.8.3#1, after the new __STDC_IEC_60559_BFP__ item, insert the item: 10

__STDC_IEC_60559_COMPLEX__ The integer constant 201ymmL, intended to indicate conformance
to the specifications in annex G (IEC 60559 compatible complex arithmetic).

In 6.10.8.3#1, append to the __STDC_IEC_559_COMPLEX item:

Use of this macro is an obsolescent feature.

6 Revised floating-point standard 15

C11 Annex F specifies C language support for the floating-point arithmetic of IEC 60559:1989. This document
proposes changes to C11 to bring Annex F into alignment with IEC 60559:2011. The suggested change to
C11 below updates the introduction to Annex F to acknowledge the revision to IEC 60559.

Suggested change to C11:

Change F.1 from: 20

F.1 Introduction

[1] This annex specifies C language support for the IEC 60559 floating-point standard. The IEC
60559 floating-point standard is specifically Binary floating-point arithmetic for microprocessor
systems, second edition (IEC 60559:1989), previously designated IEC 559:1989 and as IEEE
Standard for Binary Floating-Point Arithmetic (ANSI/IEEE 754−1985). IEEE Standard for Radix-25
Independent Floating-Point Arithmetic (ANSI/IEEE 854−1987) generalizes the binary standard to
remove dependencies on radix and word length. IEC 60559 generally refers to the floating-point
standard, as in IEC 60559 operation, IEC 60559 format, etc. An implementation that defines
__STDC_IEC_559__ shall conform to the specifications in this annex.356) Where a binding between
the C language and IEC60559 is indicated, the IEC 60559-specified behavior is adopted by 30
reference, unless stated otherwise. Since negative and positive infinity are representable in IEC
60559 formats, all real numbers lie within the range of representable values.

to:

F.1 Introduction

[1] This annex specifies C language support for the IEC 60559 floating-point standard. The IEC 35
60559 floating-point standard is specifically Floating-point arithmetic (ISO/IEC/IEEE 60559:2011),
also designated as IEEE Standard for Floating-Point Arithmetic (IEEE 754−2008). The IEC 60559
floating-point standard supersedes the IEC 60559:1989 binary arithmetic standard, also designated
as IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754−1985). IEC 60559 generally refers
to the floating-point standard, as in IEC 60559 operation, IEC 60559 format, etc. 40

ISO/IEC TS 18661 Working Group Draft – March 1, 2013 WG 14 N1676

4 © ISO/IEC 2013 – All rights reserved

[2] The IEC 60559 floating-point standard specifies decimal, as well as binary, floating-point
arithmetic. It supersedes IEEE Standard for Radix-Independent Floating-Point Arithmetic (ANSI/IEEE
854−1987), which generalized the binary arithmetic standard (IEEE 754-1985) to remove
dependencies on radix and word length.

[3] An implementation that defines __STDC_IEC_60559_BFP__ to 201ymmL shall conform to the 5
specifications in this annex.356) Where a binding between the C language and IEC 60559 is
indicated, the IEC 60559-specified behavior is adopted by reference, unless stated otherwise.

Note that the last sentence of F.1 which is removed above is inserted into a more appropriate place by a later
suggested change (see 12 below).

In footnote 356), change “__STDC_IEC_559__” to “__STDC_IEC_60559_BFP__”. 10

7 Types

7.1 Terminology

IEC 60559 now includes a 128-bit binary format as one of its three binary basic formats: binary32, binary64,
and binary128. The binary128 format continues to meet the less specific requirements for a binary64-
extended format, as in the previous IEC 60559. The suggested changes to C11 below reflect the new 15
terminology in IEC 60559; these changes are not substantive.

Suggested changes to C11:

In F.2#1, change the third bullet from:

— The long double type matches an IEC 60559 extended format,357) else a non-IEC 60559
extended format, else the IEC 60559 double format. 20

to:

— The long double type matches the IEC 60559 binary128 format, else an IEC 60559 binary64-
extended format,357) else a non-IEC 60559 extended format, else the IEC 60559 binary64 format.
 25

In F.2#1, change the sentence after the bullet from:

Any non-IEC 60559 extended format used for the long double type shall have more precision than
IEC 60559 double and at least the range of IEC 60559 double.358)

to:

Any non-IEC 60559 extended format used for the long double type shall have more precision than 30
IEC 60559 binary64 and at least the range of IEC 60559 binary64.358)

Change footnote 357) from:

357) ‘‘Extended’’ is IEC 60559’s double-extended data format. Extended refers to both the common
80-bit and quadruple 128-bit IEC 60559 formats.

to: 35

357) IEC 60559 binary64-extended formats include the common 80-bit IEC 60559 format.

In F.2, change the recommended practice from:

Recommended practice

WG 14 N1676 Working Group Draft – March 1, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 5

[2] The long double type should match an IEC 60559 extended format.

to:

Recommended practice

[2] The long double type should match the IEC 60559 binary128 format, else an IEC 60559
binary64-extended format. 5

7.2 Canonical representation

IEC 60559 refers to preferred encodings in a format – or, in C terminology, preferred representations of a type
– as canonical. Some types also contain redundant or ill-specified representations, which are non-canonical.
All representations of types with IEC 60559 binary interchange formats are canonical; however, types with IEC
60559 extended formats may have non-canonical encodings. (Types with IEC 60559 decimal interchange 10
formats, covered in Part 2 of Technical Specification 18661, contain non-canonical redundant
representations.)

Suggested change to C11:

In 5.2.4.2.2#3, change the sentence:

A NaN is an encoding signifying Not-a-Number. 15

to:

A NaN is a value signifying Not-a-Number.

In 5.2.4.2.2 footnote 22, change:

… the terms quiet NaN and signaling NaN are intended to apply to encodings with similar behavior.

to: 20

… the terms quiet NaN and signaling NaN are intended to apply to values with similar behavior.

After 5.2.4.2.2#5, add:

[5a] An implementation may prefer particular representations of values that have multiple
representations in a floating type, 6.2.6.1 not withstanding. The preferred representations of a floating
type, including unique representations of values in the type, are called canonical. A floating type may 25
also contain non-canonical representations, for example, redundant representations of some or all of
its values, or representations that are extraneous to the floating-point model. Typically, floating-point
operations deliver results with canonical representations.

In 5.2.4.2.2#5a, attach a footnote to the wording:

An implementation may prefer particular representations of values that have multiple representations 30
in a floating type, 6.2.6.1 not withstanding.

where the footnote is:

*) The library operations iscanonical and canonicalize distinguish canonical (preferred)
representations, but this distinction alone does not imply that canonical and non-canonical
representations are of different values. 35

In 5.2.4.2.2#5a, attach a footnote to the wording:

James W Thomas� 3/1/13 8:09 AM
Deleted: this

ISO/IEC TS 18661 Working Group Draft – March 1, 2013 WG 14 N1676

6 © ISO/IEC 2013 – All rights reserved

A floating type may also contain non-canonical representations, for example, redundant
representations of some or all of its values, or representations that are extraneous to the floating-
point model.

where the footnote is:

*) Some of the values in the IEC 60559 decimal floating types have non-canonical representations (as 5
well as a canonical representation).

8 Operation binding

IEC 60559 includes several new required operations. Table 1 in the suggested change to C11 below shows
the complete mapping of IEC 60559 operations to C operators, functions, and function-like macros. The new
IEC 60559 operations map to C functions and function-like macros; no new C operators are proposed. 10

Suggested change to C11:

Replace F.3:

F.3 Operators and functions

[1] C operators and functions provide IEC 60559 required and recommended facilities as listed below.

— The +, −, *, and / operators provide the IEC 60559 add, subtract, multiply, and divide 15
operations.

— The sqrt functions in <math.h> provide the IEC 60559 square root operation.

— The remainder functions in <math.h> provide the IEC 60559 remainder operation. The
remquo functions in <math.h> provide the same operation but with additional information.

— The rint functions in <math.h> provide the IEC 60559 operation that rounds a floating-point 20
number to an integer value (in the same precision). The nearbyint functions in <math.h>
provide the nearbyinteger function recommended in the Appendix to ANSI/IEEE 854.

— The conversions for floating types provide the IEC 60559 conversions between floating-point
precisions.

— The conversions from integer to floating types provide the IEC 60559 conversions from 25
integer to floating point.

— The conversions from floating to integer types provide IEC 60559-like conversions but always
round toward zero.

— The lrint and llrint functions in <math.h> provide the IEC 60559 conversions, which
honor the directed rounding mode, from floating point to the long int and long long int 30
integer formats. The lrint and llrint functions can be used to implement IEC 60559
conversions from floating to other integer formats.

— The translation time conversion of floating constants and the strtod, strtof, strtold,
fprintf, fscanf, and related library functions in <stdlib.h>, <stdio.h>, and
<wchar.h> provide IEC 60559 binary-decimal conversions. The strtold function in 35
<stdlib.h> provides the conv function recommended in the Appendix to ANSI/IEEE 854.

— The relational and equality operators provide IEC 60559 comparisons. IEC 60559 identifies a
need for additional comparison predicates to facilitate writing code that accounts for NaNs.
The comparison macros (isgreater, isgreaterequal, isless, islessequal,
islessgreater, and isunordered) in <math.h> supplement the language operators to 40

WG 14 N1676 Working Group Draft – March 1, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 7

address this need. The islessgreater and isunordered macros provide respectively a
quiet version of the <> predicate and the unordered predicate recommended in the Appendix
to IEC 60559.

— The feclearexcept, feraiseexcept, and fetestexcept functions in <fenv.h>
provide the facility to test and alter the IEC 60559 floating-point exception status flags. The 5
fegetexceptflag and fesetexceptflag functions in <fenv.h> provide the facility to
save and restore all five status flags at one time. These functions are used in conjunction with
the type fexcept_t and the floating-point exception macros (FE_INEXACT,
FE_DIVBYZERO, FE_UNDERFLOW, FE_OVERFLOW, FE_INVALID) also in <fenv.h>.

— The fegetround and fesetround functions in <fenv.h> provide the facility to select 10
among the IEC 60559 directed rounding modes represented by the rounding direction
macros in <fenv.h> (FE_TONEAREST, FE_UPWARD, FE_DOWNWARD, FE_TOWARDZERO) and
the values 0, 1, 2, and 3 of FLT_ROUNDS are the IEC 60559 directed rounding modes.

— The fegetenv, feholdexcept, fesetenv, and feupdateenv functions in <fenv.h>
provide a facility to manage the floating-point environment, comprising the IEC 60559 status 15
flags and control modes.

— The copysign functions in <math.h> provide the copysign function recommended in the
Appendix to IEC 60559.

— The fabs functions in <math.h> provide the abs function recommended in the Appendix to
IEC 60559. 20

— The unary minus (−) operator provides the unary minus (−) operation recommended in the
Appendix to IEC 60559.

— The scalbn and scalbln functions in <math.h> provide the scalb function recommended
in the Appendix to IEC 60559.

— The logb functions in <math.h> provide the logb function recommended in the Appendix to 25
IEC 60559, but following the newer specifications in ANSI/IEEE 854.

— The nextafter and nexttoward functions in <math.h> provide the nextafter function
recommended in the Appendix to IEC 60559 (but with a minor change to better handle signed
zeros).

— The isfinite macro in <math.h> provides the finite function recommended in the 30
Appendix to IEC 60559.

— The isnan macro in <math.h> provides the isnan function recommended in the Appendix to
IEC 60559.

— The signbit macro and the fpclassify macro in <math.h>, used in conjunction with the
number classification macros (FP_NAN, FP_INFINITE, FP_NORMAL, FP_SUBNORMAL, 35
FP_ZERO), provide the facility of the class function recommended in the Appendix to IEC
60559 (except that the classification macros defined in 7.12.3 do not distinguish signaling
from quiet NaNs).

with:

F.3 Operations 40

[1] C operators, functions, and function-like macros provide the operations required by IEC 60559 as
shown in the following table. Specifications for the C facilities are provided in the listed clauses.

ISO/IEC TS 18661 Working Group Draft – March 1, 2013 WG 14 N1676

8 © ISO/IEC 2013 – All rights reserved

Table 1 — Operation binding

IEC 60559 operation C operation Clauses - C11
roundToIntegralTiesToEven roundeven 7.12.9.7a, F.10.6.7a
roundToIntegralTiesAway round 7.12.9.6, F.10.6.6
roundToIntegralTowardZero trunc 7.12.9.8, F.10.6.8
roundToIntegralTowardPositive ceil 7.12.9.1, F.10.6.1
roundToIntegralTowardNegative floor 7.12.9.2, F.10.6.2
roundToIntegralExact rint 7.12.9.4, F.10.6.4
nextUp nextup 7.12.11.5, F.10.8.5
nextDown nextdown 7.12.11.6, F.10.8.6
remainder remainder, remquo 7.12.10.2, F.10.7.2,

7.12.10.3, F.10.7.3
minNum fmin 7.12.12.3, F.10.9.3
maxNum fmax 7.12.12.2, F.10.9.2
minNumMag fminmag 7.12.12.5, F.10.9.5
maxNumMag fmaxmag 7.12.12.4, F.10.9.4
scaleB scalbn, scalbln 7.12.6.13, F.10.3.13
logB logb, ilogb, llogb 7.12.6.11, F.10.3.11,

7.12.6.5, F.10.3.5
addition + 6.5.6
formatOf addition with narrower format fadd, faddl, daddl 7.12.13a.1, F.10.10a
subtraction - 6.5.6
formatOf subtraction with narrower
format

fsub, fsubl, dsubl 7.12.13a.2, F.10.10a

multiplication * 6.5.5
formatOf multiplication with narrower
format

fmul, fmull, dmull 7.12.13a.3, F.10.10a

division / 6.5.5
formatOf division with narrower format fdiv, fdivl, ddivl 7.12.13a.4, F.10.10a
squareRoot sqrt 7.12.7.5, F.10.4.5
formatOf squareRoot with narrower
format

fsqrt, fsqrtl, dsqrtl 7.12.13a.6, F.10.10a

fusedMultiplyAdd fma 7.12.13.1, F.10.10.1
formatOf fusedMultiplyAdd with
narrower format

ffma, ffmal, dfmal 7.12.13a.5, F.10.10a

convertFromInt cast and implicit conversion 6.3.1.4, 6.5.4
convertToIntegerTiesToEven fromfp, ufromfp 7.12.9.9, F.10.6.9
convertToIntegerTowardZero fromfp, ufromfp 7.12.9.9, F.10.6.9
convertToIntegerTowardPositive fromfp, ufromfp 7.12.9.9, F.10.6.9
convertToIntegerTowardNegative fromfp, ufromfp 7.12.9.9, F.10.6.9
convertToIntegerTiesToAway fromfp, ufromfp, lround,

llround
7.12.9.9, F.10.6.9,
7.12.9.7, F.10.6.7

convertToIntegerExactTiesToEven fromfpx, ufromfpx 7.12.9.10, F.10.6.10
convertToIntegerExactTowardZero fromfpx, ufromfpx 7.12.9.10, F.10.6.10
convertToIntegerExactTowardPositive fromfpx, ufromfpx 7.12.9.10, F.10.6.10
convertToIntegerExactTowardNegative fromfpx, ufromfpx 7.12.9.10, F.10.6.10
convertToIntegerExactTiesToAway fromfpx, ufromfpx 7.12.9.10, F.10.6.10
convertFormat - different formats cast and implicit conversions 6.3.1.5, 6.5.4
convertFormat - same format canonicalize 7.12.11.7, F.10.8.7
convertFromDecimalCharacter strtod, wcstod, scanf,

decimal floating constants
7.21.6.2, 7.22.1.3,
7.29.4.1.1, F.5

convertToDecimalCharacter printf, strfromd,
strfromf, strfroml

7.21.6.1, 7.22.1.2a,
F.5

convertFromHexCharacter strtod, wcstod, scanf,
hexadecimal floating
constants

7.21.6.2, 7.22.1.3,
7.29.4.1.1

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

Deleted: floating types

Deleted: floating type

Deleted: strfromflt

WG 14 N1676 Working Group Draft – March 1, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 9

convertToHexCharacter printf, strfromd,
strfromf, strfroml

7.21.6.1, 7.22.1.2a

copy memcpy, memmove 7.24.2.1, 7.24.2.2
negate -(x) 6.5.3.3
abs fabs 7.12.7.2, F.10.4.2
copySign copysign 7.12.11.1, F.10.8.1
compareQuietEqual == 6.5.9, F.9.3
compareQuietNotEqual != 6.5.9, F.9.3
compareSignalingEqual iseqsig
compareSignalingGreater > 6.5.8, F.9.3
compareSignalingGreaterEqual >= 6.5.8, F.9.3
compareSignalingLess < 6.5.8, F.9.3
compareSignalingLessEqual <= 6.5.8, F.9.3
compareSignalingNotEqual ! iseqsig(x) 7.12.14.7, F.10.11.1
compareSignalingNotGreater ! (x > y) 6.5.8, F.9.3
compareSignalingLessUnordered ! (x >= y) 6.5.8, F.9.3
compareSignalingNotLess ! (x < y) 6.5.8, F.9.3
compareSignalingGreaterUnordered ! (x <= y) 6.5.8, F.9.3
compareQuietGreater isgreater 7.12.14.1
compareQuietGreaterEqual isgreaterequal 7.12.14.2
compareQuietLess isless 7.12.14.3
compareQuietLessEqual islessequal 7.12.14.4
compareQuietUnordered isunordered 7.12.14.6
compareQuietNotGreater ! isgreater(x, y) 7.12.14.1
compareQuietLessUnordered ! isgreaterequal(x, y) 7.12.14.2
compareQuietNotLess ! isless(x, y) 7.12.14.3
compareQuietGreaterUnordered ! islessequal(x, y) 7.12.14.4
compareQuietOrdered ! isunordered(x, y) 7.12.14.6
class fpclassify, signbit,

issignaling
7.12.3.1, 7.12.3.6

isSignMinus signbit 7.12.3.6
isNormal isnormal 7.12.3.5
isFinite isfinite 7.12.3.2
isZero iszero 7.12.3.9
isSubnormal issubnormal 7.12.3.8
isInfinite isinf 7.12.3.3
isNaN isnan 7.12.3.4
isSignaling issignaling 7.12.3.7
isCanonical iscanonical 7.12.3.1a
radix FLT_RADIX 5.2.4.2.2
totalOrder totalorder F.10.12.1
totalOrderMag totalordermag F.10.12.2
lowerFlags feclearexcept 7.6.2.1
raiseFlags fesetexcept 7.6.2.3a
testFlags fetestexcept 7.6.2.5
testSavedFlags fetestexceptflag 7.6.2.4a
restoreFlags fesetexceptflag 7.6.2.4
saveAllFlags fegetexceptflag 7.6.2.2
getBinaryRoundingDirection fegetround 7.6.3.1
setBinaryRoundingDirection fesetround 7.6.3.2
saveModes fegetmode 7.6.3.0
restoreModes fesetmode 7.6.3.1a
defaultModes fesetmode(FE_DFL_MODE) 7.6.3.1a, 7.6

[2] The IEC 60559 requirement that certain of its operations be provided for operands of different
formats (of the same radix) is satisfied by C’s usual arithmetic conversions (6.3.1.8) and function-call

James W Thomas� 3/1/13 8:09 AM
Deleted: strfromflt

ISO/IEC TS 18661 Working Group Draft – March 1, 2013 WG 14 N1676

10 © ISO/IEC 2013 – All rights reserved

argument conversions (6.5.2.2). For example, the following operations take float f and double d
inputs and produce a long double result:

(long double)f * d
powl(f, d)

[3] Whether C assignment (6.5.16) (and conversion as if by assignment) to the same format is an IEC 5
60559 convertFormat or copy operation is implementation-defined, even if <fenv.h> defines the
macro FE_SNANS_ALWAYS_SIGNAL (F.2.1).

[4] The unary - operator raises no floating-point exceptions, even if the operand is a signaling NaN.

[5] The C inquiry macros fpclassify, iscanonical, isfinite, isinf, isnan, isnormal,
issignaling, issubnormal, and iszero provide the IEC 60559 operations indicated in Table 1 10
provided their arguments are in the format of their semantic type. Then these macros raise no
floating-point exceptions, even if an argument is a signaling NaN.

[6] The C nearbyint functions (7.12.9.3, F.10.6.3) provide the nearbyinteger function recommended
in the Appendix to (superseded) ANSI/IEEE 854.

[7] The C nextafter (7.12.11.3, F.10.8.3) and nexttoward (7.12.11.4, F.10.8.4) functions provide 15
the nextafter function recommended in the Appendix to (superseded) IEC 60559:1989 (but with a
minor change to better handle signed zeros).

[8] The C getpayload, setpayload, and setpayloadsig (F.10.13) functions provide program
access to NaN payloads, defined in IEC 60559.

[9] The C fegetenv (7.6.4.1), feholdexcept (7.6.4.2), fesetenv (7.6.4.3) and feupdateenv 20
(7.6.4.4) functions provide a facility to manage the dynamic floating-point environment, comprising the
IEC 60559 status flags and dynamic control modes.

9 Floating to integer conversion

IEC 60559 allows but does not require floating to integer type conversions to raise the “inexact” floating-point
exception for non-integer inputs within the range of the integer type. It recommends that implicit conversions 25
raise “inexact” in these cases.

Suggested change to C11:

Replace footnote 360):

360) ANSI/IEEE 854, but not IEC 60559 (ANSI/IEEE 754), directly specifies that floating-to-integer
conversions raise the ‘‘inexact’’ floating-point exception for non-integer in-range values. In those 30
cases where it matters, library functions can be used to effect such conversions with or without
raising the ‘‘inexact’’ floating-point exception. See rint, lrint, llrint, and nearbyint in
<math.h>.

with:

360) IEC 60559 recommends that implicit floating-to-integer conversions raise the ‘‘inexact’’ floating-35
point exception for non-integer in-range values. In those cases where it matters, library functions can
be used to effect such conversions with or without raising the ‘‘inexact’’ floating-point exception. See
fromfp, ufromfp, fromfpx, ufromfpx, rint, lrint, llrint, and nearbyint in <math.h>.

WG 14 N1676 Working Group Draft – March 1, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 11

10 Conversions between floating types and character sequences

10.1 Conversions with decimal character sequences

IEC 60559 now requires correct rounding for conversions between its supported formats and decimal
character sequences with up to H decimal digits where

H ≥ M + 3, 5

M = 1+ceiling(p×log10(2))

p is the precision of the widest supported IEC 60559 binary format.

M is large enough that conversion from the widest supported format to a decimal character sequence with M
decimal digits and back will be the identity function. IEC 60559 also now completely specifies conversions
involving more than H decimal digits. The following suggested changes to C11 satisfy these requirements. 10

Suggested change to C11:

Rename F.5 from:

F.5 Binary-decimal conversion

to:

F.5 Conversions between binary floating types and decimal character sequences 15

Insert after F.5#2:

[2a] The <float.h> header defines the macro

CR_DECIMAL_DIG

which expands to an integral constant expression suitable for use in #if preprocessing directives
whose value is a number such that conversions between all supported IEC 60559 binary types and 20
character sequences with at most CR_DECIMAL_DIG significant decimal digits are correctly rounded.
The value of CR_DECIMAL_DIG shall be at least DECIMAL_DIG + 3. If the implementation correctly
rounds for all numbers of significant decimal digits, then CR_DECIMAL_DIG shall have the value of
the macro UINTMAX_MAX.

[2b] Conversions of IEC 60559 binary-floating types to character sequences with more than 25
CR_DECIMAL_DIG significant decimal digits shall correctly round to CR_DECIMAL_DIG significant
digits and pad zeros on the right.

[2c] Conversions from character sequences with more than CR_DECIMAL_DIG significant decimal
digits to IEC 60559 binary floating types shall correctly round to an intermediate character sequence
with CR_DECIMAL_DIG significant decimal digits, according to the applicable rounding direction, and 30
correctly round the intermediate result (having CR_DECIMAL_DIG significant decimal digits) to the
destination type. The “inexact” floating-point exception is raised (once) if either conversion is inexact.
(The second conversion may raise the “overflow” or “underflow” floating-point exception.)

In F.5#2c, attach a footnote to the wording:

The “inexact” floating-point exception is raised (once) if either conversion is inexact. 35

where the footnote is:

ISO/IEC TS 18661 Working Group Draft – March 1, 2013 WG 14 N1676

12 © ISO/IEC 2013 – All rights reserved

*) The intermediate conversion is exact only if all input digits after the first CR_DECIMAL_DIG digits
are 0.

10.2 Conversions to character sequences

The following suggested changes to C11 allow freestanding implementations to provide the conversions from
floating types to character sequences as required by IEC 60559, without having to support <stdio.h>. 5

Suggested changes to C11:

After 7.22.1.2, add:

7.22.1.2a The strfromd, strfromf, and strfroml functions

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT1__ 10
#include <stdlib.h>
int strfromd (char * restrict s, size_t n, const char * restrict

format, _FloatN fp);
int strfromf (char * restrict s, size_t n, const char * restrict

format, _FloatNx fp); 15
int strfroml (char * restrict s, size_t n, const char * restrict

format, _DecimalN fp);

Description

[1] The strfromd, strfromf, and strfroml functions are equivalent to snprintf(s, n, 20
format, fp) (7.21.6.5), except the format string contains only an optional precision and one of
the conversion specifiers a, A, e, E, f, F, g, or G, which applies to the type (double, float, or long
double) indicated by the function suffix (rather than by a length modifier). Use of these functions with
any other format string results in undefined behavior.

Returns 25

[1] The strfromd, strfromf, and strfroml functions return the number of characters that would
have been written had n been sufficiently large, not counting the terminating null character, or a
negative value if an encoding error occurred. Thus, the null-terminated output has been completely
written if and only if the returned value is nonnegative and less than n.

11 Constant rounding directions 30

IEC 60559 now requires a means for programs to specify constant values for the rounding direction mode for
all standard operations in static parts of code (as specified by the programming language). The following
suggested changes meet this requirement by adding standard pragmas for specifying constant values for the
rounding direction mode. Minor terminology changes in the C11 references to rounding direction modes and
the floating-point environment are needed to distinguish two kinds of rounding direction modes: constant and 35
dynamic.

Suggested changes to C11:

Change 5.1.2.3#5:

[5] When the processing of the abstract machine is interrupted by receipt of a signal, the values of
objects that are neither lock-free atomic objects nor of type volatile sig_atomic_t are 40
unspecified, as is the state of the floating-point environment. The value of any object that is modified
by the handler that is neither a lock-free atomic object nor of type volatile sig_atomic_t

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

Deleted: 7.22.1.3 The strfromflt function

Deleted: 00000

Deleted: strfromflt

Deleted: …);

Descripton
[2

Deleted: strfromflt function is

Deleted:) if

Deleted: , an optional L length modifier,

Deleted: format specifier.

Deleted: strfromflt

Deleted: [3] The strfromflt functon returns
the value returned by snprintf (7.21.6.5), for
valid input.

In 7.22.1.3#2, attach a footnote to the wording:
Use of strfromflt with any other format string
results in undefined behavior.

where the footnote is:
*) The strfromflt function may be equivalent
to snprintf for all inputs.

WG 14 N1676 Working Group Draft – March 1, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 13

becomes indeterminate when the handler exits, as does the state of the floating-point environment if it
is modified by the handler and not restored.

to:

[5] When the processing of the abstract machine is interrupted by receipt of a signal, the values of
objects that are neither lock-free atomic objects nor of type volatile sig_atomic_t are 5
unspecified, as is the state of the dynamic floating-point environment. The value of any object that is
modified by the handler that is neither a lock-free atomic object nor of type volatile
sig_atomic_t becomes indeterminate when the handler exits, as does the state of the dynamic
floating-point environment if it is modified by the handler and not restored.

After 7.6#1, insert the paragraph: 10

[1a] A floating-point control mode may be constant (7.6.2) or dynamic. The dynamic floating-point
environment includes the dynamic floating-point control modes and the floating-point status flags.

Replace 7.6#2:

[2] The floating-point environment has thread storage duration. The initial state for a thread’s floating-
point environment is the current state of the floating-point environment of the thread that creates it at 15
the time of creation.

with:

[2] The dynamic floating-point environment has thread storage duration. The initial state for a thread’s
dynamic floating-point environment is the current state of the dynamic floating-point environment of
the thread that creates it at the time of creation. 20

Replace 7.6#3:

[3] Certain programming conventions support the intended model of use for the floating-point
environment: …

with:

[3] Certain programming conventions support the intended model of use for the dynamic floating-point 25
environment: …

Replace 7.6#4:

[4] The type

fenv_t

represents the entire floating-point environment. 30

with:

[4] The type

fenv_t

represents the entire dynamic floating-point environment.

Replace 7.6#9: 35

[9] The macro

ISO/IEC TS 18661 Working Group Draft – March 1, 2013 WG 14 N1676

14 © ISO/IEC 2013 – All rights reserved

FP_DFL_ENV

represents the default floating-point environment — the one installed at program startup — and has
type “pointer to const-qualified fenv_t”. It can be used as an argument to <fenv.h> functions that
manage the floating-point environment.

with: 5

[9] The macro

FP_DFL_ENV

represents the default dynamic floating-point environment — the one installed at program startup —
and has type “pointer to const-qualified fenv_t”. It can be used as an argument to <fenv.h>
functions that manage the dynamic floating-point environment. 10

Modify 7.6.1#2 by replacing:

If part of a program tests floating-point status flags, sets floating-point control modes, or runs under
non-default mode settings, but was translated with the state for the FENV_ACCESS pragma ‘‘off’’, the
behavior is undefined.

with: 15

If part of a program tests floating-point status flags, sets floating-point control modes, or establishes
non-default mode settings using any means other than the FENV_ROUND pragmas, but was translated
with the state for the FENV_ACCESS pragma ‘‘off’’, the behavior is undefined.

Modify footnote 213) by replacing:

In general, if the state of FENV_ACCESS is ‘‘off’’, the translator can assume that default modes are in 20
effect and the flags are not tested.

with:

In general, if the state of FENV_ACCESS is ‘‘off’’, the translator can assume that the flags are not
tested, and that default modes are in effect, except where specified otherwise by an FENV_ROUND
pragma. 25

Following 7.6.1 "The FENV_ACCESS pragma", insert:

7.6.1a Rounding control pragma

[1] The pragma defined in 7.6.1a is available to the program if the macro
__STDC_WANT_IEC_18661_EXT1__ is defined at the point in the source file where the <fenv.h>
header is first included. 30

Synopsis

[2] #define __STDC_WANT_IEC_18661_EXT1__
#include <fenv.h>
#pragma STDC FENV_ROUND direction
 35

Description

[3] The FENV_ROUND pragma provides a means to specify a constant rounding direction for binary
floating-point operations within a translation unit or compound statement. The pragma shall occur
either outside external declarations or preceding all explicit declarations and statements inside a

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

Deleted: 00000

Deleted: 00000

WG 14 N1676 Working Group Draft – March 1, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 15

compound statement. When outside external declarations, the pragma takes effect from its
occurrence until another FENV_ROUND pragma is encountered, or until the end of the translation unit.
When inside a compound statement, the pragma takes effect from its occurrence until another
FENV_ROUND pragma is encountered (including within a nested compound statement), or until the
end of the compound statement; at the end of a compound statement the static rounding mode is 5
restored to its condition just before the compound statement. If this pragma is used in any other
context, its behavior is undefined.

[4] direction shall be one of the rounding direction macro names defined in 7.6, or FE_DYNAMIC. If
any other value is specified, the behavior is undefined. If no FENV_ROUND pragma is in effect, or the
specified constant rounding mode is FE_DYNAMIC, rounding is according to the mode specified by 10
the dynamic floating-point environment, which is the dynamic rounding mode that was established
either at thread creation or by a call to fesetround, fesetenv, or feupdateenv. If the
FE_DYNAMIC mode is specified and FENV_ACCESS is “off”, the translator may assume that the
default rounding mode is in effect.

[5] Within the scope of an FENV_ROUND directive establishing a mode other than FE_DYNAMIC, all 15
floating-point operators and invocations of functions indicated in Table 2 below, for which macro
replacement has not been suppressed (7.1.4), shall be evaluated according to the specified constant
rounding mode (as though no constant mode was specified and the corresponding dynamic rounding
mode had been established by a call to fesetround). Invocations of functions for which macro
replacement has been suppressed and invocations of functions other than those indicated in Table 2 20
shall not be affected by constant rounding modes — they are affected by (and affect) only the
dynamic mode. Floating constants (6.4.4.2) that occur in the scope of a constant rounding mode shall
be interpreted according to that mode.

Table 2 — Functions affected by constant rounding modes

Header Function groups
<math.h> acos, asin, atan, atan2
<math.h> cos, sin, tan
<math.h> acosh, asinh, atanh
<math.h> cosh, sinh, tanh
<math.h> exp, exp2, expm1,
<math.h> log, log10, log1p, log2
<math.h> scalbn, scalbln, ldexp
<math.h> cbrt, pow, sqrt
<math.h> erf, erfc
<math.h> lgamma, tgamma
<math.h> rint, nearbyint, lrint llrint
<math.h> fdim
<math.h> fma
<math.h> fadd, daddl, fsub, dsubl, fmul, dmull, fdiv, ddivl,

ffma, dfmal, fsqrt, dsqrtl
<stdlib.h> strfromd, strfromf, strfroml, strtod, strtof,

strtold
<wchar.h> wcstod, wcstof, wcstold
<stdio.h> printf and scanf families

 25

[6] Constant rounding modes (other than FE_DYNAMIC) could be implemented using dynamic
rounding modes as illustrated in the following example:

{
#pragma STDC FENV_ROUND direction
// compiler inserts: 30
// #pragma STDC FENV_ACCESS ON

James W Thomas� 3/1/13 8:09 AM
Deleted: strfromflt

ISO/IEC TS 18661 Working Group Draft – March 1, 2013 WG 14 N1676

16 © ISO/IEC 2013 – All rights reserved

// int __savedrnd;
// __savedrnd = __swapround(direction);
... operations affected by constant rounding mode ...
// compiler inserts:
// __savedrnd = __swapround(__savedrnd); 5
... operations not affected by constant rounding mode ...
// compiler inserts:
// __savedrnd = __swapround(__savedrnd);
... operations affected by constant rounding mode ...
// compiler inserts: 10
// __swapround(__savedrnd);

}

where __swapround is defined by:

static inline int __swapround(const int new) { 15
const int old = fegetround();
fesetround(new);
return old;

}
 20
In 7.6.4.1 Description, change:

[2] The fegetenv function attempts to store the current floating-point environment in the object
pointed to by envp.

to:
 25

[2] The fegetenv function attempts to store the current dynamic floating-point environment in the
object pointed to by envp.

In 7.6.4.2 Description, change:

[2] The feholdexcept function saves the current floating-point environment in the object pointed to 30
by envp

to:

[2] The feholdexcept function saves the current dynamic floating-point environment in the object
pointed to by envp 35

In 7.6.4.3 Description, change:

[2] The fesetenv function attempts to establish the floating-point environment represented by the
object pointed to by envp. The argument envp shall point to an object set by a call to fegetenv or
feholdexcept, or equal a floating-point environment macro. 40

to:

[2] The fesetenv function attempts to establish the dynamic floating-point environment represented
by the object pointed to by envp. The argument envp shall point to an object set by a call to
fegetenv or feholdexcept, or equal a dynamic floating-point environment macro. 45

In 7.6.4.4 Description, change:

[2] The feupdateenv function attempts to save the currently raised floating-point exceptions in its
automatic storage, install the floating-point environment represented by the object pointed to by

WG 14 N1676 Working Group Draft – March 1, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 17

envp, and then raise the saved floating-point exceptions. The argument envp shall point to an object
set by a call to feholdexcept or fegetenv, or equal a floating-point environment macro.

to:

[2] The feupdateenv function attempts to save the currently raised floating-point exceptions in its 5
automatic storage, install the dynamic floating-point environment represented by the object pointed to
by envp, and then raise the saved floating-point exceptions. The argument envp shall point to an
object set by a call to feholdexcept or fegetenv, or equal a dynamic floating-point environment
macro.

In F.8.1, replace: 10

[1] IEC 60559 requires that floating-point operations implicitly raise floating-point exception status
flags, and that rounding control modes can be set explicitly to affect result values of floating-point
operations. When the state for the FENV_ACCESS pragma (defined in <fenv.h>) is ‘‘on’’, these
changes to the floating-point state are treated as side effects which respect sequence points.364) 15

with:

[1] IEC 60559 requires that floating-point operations implicitly raise floating-point exception status
flags, and that rounding control modes can be set explicitly to affect result values of floating-point
operations. These changes to the floating-point state are treated as side effects which respect 20
sequence points.364)

Change footnote 364) from:

364) If the state for the FENV_ACCESS pragma is ‘‘off’’, the implementation is free to assume the
floating-point control modes will be the default ones and the floating-point status flags will not be 25
tested, which allows certain optimizations (see F.9).

to:

364) If the state for the FENV_ACCESS pragma is ‘‘off’’, the implementation is free to assume the
dynamic floating-point control modes will be the default ones and the floating-point status flags will 30
not be tested, which allows certain optimizations (see F.9).

In F.8.2, replace:

[1] During translation the IEC 60559 default modes are in effect:

with: 35

[1] During translation, constant rounding direction modes (7.6.2) are in effect where specified.
Elsewhere, during translation the IEC 60559 default modes are in effect:

Change footnote 365) from:
 40

365) As floating constants are converted to appropriate internal representations at translation time,
their conversion is subject to default rounding modes and raises no execution-time floating-point
exceptions (even where the state of the FENV_ACCESS pragma is ‘‘on’’). Library functions, for
example strtod, provide execution-time conversion of numeric strings.

to: 45

365) As floating constants are converted to appropriate internal representations at translation time,
their conversion is subject to constant or default rounding modes and raises no execution-time
floating-point exceptions (even where the state of the FENV_ACCESS pragma is ‘‘on’’). Library
functions, for example strtod, provide execution-time conversion of numeric strings. 50

ISO/IEC TS 18661 Working Group Draft – March 1, 2013 WG 14 N1676

18 © ISO/IEC 2013 – All rights reserved

In F.8.3, replace:

[1] At program startup the floating-point environment is initialized …

with:
 5

[1] At program startup the dynamic floating-point environment is initialized …

In F.8.3, change the second bullet from:

— The rounding direction mode is rounding to nearest.
 10

to:

— The dynamic rounding direction mode is rounding to nearest.

12 NaN support

The 2011 update to IEC 60559 retains support for signaling NaNs. Although C11 notes that floating types may 15
contain signaling NaNs, it does not otherwise specify signaling NaNs. Some unqualified references to NaNs in
C11 do not properly apply to signaling NaNs, so that an implementation could not add signaling NaN support
as an extension without contradicting C11. The goal of the following suggested changes is to allow
implementations to conditionally support signaling NaNs as specified in IEC 60559, but to require only minimal
support for signaling NaNs. 20

Suggested changes to C11:

In 7.12.1#2, after the second sentence, insert:

Whether a signaling NaN input causes a domain error is implementation-defined.

After 7.12#5, add:

[5a] The signaling NaN macros 25

 SNANF
 SNAN
 SNANL

each is defined if and only if the respective type contains signaling NaNs (5.2.4.2.2). They expand 30
into a constant expression of the respective type representing a signaling NaN. If a signaling NaN
macro is used for initializing an object of the same type that has static or thread-local storage
duration, the object is initialized with a signaling NaN value.

In 7.12.14, change 4th sentence from:

The following subclauses provide macros that are quiet (non floating-point exception raising) versions 35
of the relational operators, and other comparison macros that facilitate writing efficient code that
accounts for NaNs without suffering the ‘‘invalid’’ floating-point exception.

to:

Subclauses 7.12.14.1 through 7.12.14.6 provide macros that are quiet versions of the relational
operators: the macros do not raise the "invalid" floating-point exception as an effect of quiet NaN 40
arguments. The comparison macros facilitate writing efficient code that accounts for quiet NaNs
without suffering the ‘‘invalid’’ floating-point exception.

WG 14 N1676 Working Group Draft – March 1, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 19

In the second paragraphs of 7.12.14.1 through 7.12.14.5, append to "when x and y are unordered" the phrase
"and neither is a signaling NaN"

In 7.12.14.6#2, append to the Description: "The unordered macro raises no floating-point exceptions if neither
argument is a signaling NaN."

Change F.2.1 from: 5

F.2.1 Infinities, signed zeros, and NaNs

[1] This specification does not define the behavior of signaling NaNs.342) It generally uses the term
NaN to denote quiet NaNs. The NAN and INFINITY macros and the nan functions in <math.h>
provide designations for IEC 60559 NaNs and infinities.

to: 10

F.2.1 Infinities and NaNs

[1] Since negative and positive infinity are representable in IEC 60559 formats, all real numbers lie
within the range of representable values (5.2.4.2.2).

[2] The NAN and INFINITY macros and the nan functions in <math.h> provide designations for IEC
60559 quiet NaNs and infinities. The SNANF, SNAN, and SNANL macros in <math.h> provide 15
designations for IEC 60559 signaling NaNs.

[3] This annex does not require the full support for signaling NaNs specified in IEC 60559. This annex
uses the term NaN, unless explicitly qualified, to denote quiet NaNs. Where specification of signaling
NaNs is not provided, the behavior of signaling NaNs is implementation defined (either treated as an
IEC 60559 quiet NaN or treated as an IEC 60559 signaling NaN). 20

[4] Any operator or <math.h> function that raises an "invalid" floating-point exception, if delivering a
floating type result, shall return a quiet NaN.

[5] In order to support signaling NaNs as specified in IEC 60559, an implementation should adhere to
the following recommended practice.

Recommended practice 25

[6] Any floating-point operator or <math.h> function or macro with a signaling NaN input, unless
explicitly specified otherwise, raises an "invalid" floating-point exception.

[7] NOTE Some functions do not propagate quiet NaN arguments. For example, hypot(x, y)
returns infinity if x or y is infinite and the other is a quiet NaN. The recommended practice in this
subclause specifies that such functions (and others) raise the "invalid" floating-point exception if an 30
argument is a signaling NaN, which also implies they return a quiet NaN in these cases.

[8] The <fenv.h> header defines the macro

FE_SNANS_ALWAYS_SIGNAL

if and only if the implementation follows the recommended practice in this subclause.

Append to the end of F.5 the following paragraph: 35

[4] The fprintf family of functions in <stdio.h> should behave as if floating-point operands were
passed through the canonicalize function of the same type.

In F.5#4, attach a footnote to the wording:

ISO/IEC TS 18661 Working Group Draft – March 1, 2013 WG 14 N1676

20 © ISO/IEC 2013 – All rights reserved

The fprintf family of functions in <stdio.h> should behave as if floating-point operands were
passed through the canonicalize function of the same type.

where the footnote is:

*) This is a recommendation instead of a requirement so that implementations may choose to print
signaling NaNs differently from quiet NaNs. 5

In F.9.2, bullet 1*x and x/1 -> x, replace "are equivalent" with "may be regarded as equivalent".

In F.10#3, change the last sentence:

The other functions in <math.h> treat infinities, NaNs, signed zeros, subnormals, and (provided the
state of the FENV_ACCESS pragma is ‘‘on’’) the floating-point status flags in a manner consistent with
the basic arithmetic operations covered by IEC 60559. 10

to:

The other functions in <math.h> treat infinities, NaNs, signed zeros, subnormals, and (provided the
state of the FENV_ACCESS pragma is ‘‘on’’) the floating-point status flags in a manner consistent with
IEC 60559 operations.

After F.10.4, insert: 15

[4a] The functions bound to operations in IEC 60559 (see Table 1) are fully specified by IEC 60559,
including rounding behaviors and floating-point exceptions.

In F.10, replace paragraphs 8 through 10:

[8] Whether or when library functions raise the ‘‘inexact’’ floating-point exception is unspecified,
unless explicitly specified otherwise. 20

[9] Whether or when library functions raise an undeserved ‘‘underflow’’ floating-point exception is
unspecified.372) Otherwise, as implied by F.8.6, the <math.h> functions do not raise spurious
floating-point exceptions (detectable by the user), other than the ‘‘inexact’’ floating-point exception.

[10] Whether the functions honor the rounding direction mode is implementation-defined, unless
explicitly specified otherwise. 25

with:

[8] Whether or when library functions not bound to operations in IEC 60559 raise the ‘‘inexact’’
floating-point exception is unspecified, unless stated otherwise.

[9] Whether or when library functions not bound to operations in IEC 60559 raise an undeserved
‘‘underflow’’ floating-point exception is unspecified.372) Otherwise, as implied by F.8.6, these 30
functions do not raise spurious floating-point exceptions (detectable by the user), other than the
‘‘inexact’’ floating-point exception.

[10] Whether the functions not bound to operations in IEC 60559 honor the rounding direction mode
is implementation-defined, unless explicitly specified otherwise.

Append to footnote 374): 35

Note also that this implementation does not handle signaling NaNs as required of implementations
that define FP_SNANS_ALWAYS_SIGNAL.

Change footnotes 242) and 243) from:

WG 14 N1676 Working Group Draft – March 1, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 21

242) NaN arguments are treated as missing data: if one argument is a NaN and the other numeric,
then the fmax functions choose the numeric value. See F.10.9.2.

243) The fmin functions are analogous to the fmax functions in their treatment of NaNs.

to:

242) Quiet NaN arguments are treated as missing data: if one argument is a quiet NaN and the other 5
numeric, then the fmax functions choose the numeric value. See F.10.9.2.

243) The fmin functions are analogous to the fmax functions in their treatment of quiet NaNs.

In F.10.3.4, replace paragraphs 2 and 3:

[2] frexp raises no floating-point exceptions.

[3] When the radix of the argument is a power of 2, the returned value is exact and is independent of 10
the current rounding direction mode.

with:

[2] frexp raises no floating-point exceptions if value is not a signalling NaN.

[3] The returned value is independent of the current rounding direction mode.

In F.10.4.2, replace paragraph 2: 15

[2] The returned value is exact and is independent of the current rounding direction mode.

with:

[2] fabs(x) raises no floating-point exceptions, even if x is a signalling NaN. The returned value is
independent of the current rounding direction mode.

In F.10.4.5, replace paragraph 1: 20

[1] sqrt is fully specified as a basic arithmetic operation in IEC 60559. The returned value is
dependent on the current rounding direction mode.

with:

— sqrt(±0) returns ±0.

— sqrt(+∞) returns +∞ 25

— sqrt(x) returns a NaN and raises the ‘‘invalid’’ floating-point exception for x < 0.

The returned value is dependent on the current rounding direction mode.

In F.10.6.6#3, attach a footnote to the wording:

The double version of round behaves as though implemented by

where the footnote is: 30

*) This implementation does not handle signaling NaNs as required of implementations that define
FP_SNANS_ALWAYS_SIGNAL.

ISO/IEC TS 18661 Working Group Draft – March 1, 2013 WG 14 N1676

22 © ISO/IEC 2013 – All rights reserved

In F.10.7.2, replace paragraph 1:

[1] The remainder functions are fully specified as a basic arithmetic operation in IEC 60559.

with:

— remainder(±0, y) returns ±0 for y not zero.

— remainder(x, y) returns a NaN and raises the “invalid” floating-point exception for x infinite or y 5
zero (and neither is a NaN).

— remainder(x, ±∞) returns x for x not infinite.

In F.10.8.1, replace paragraph 2:

[2] The returned value is exact and is independent of the current rounding direction mode.

with: 10

[2] copysign(x, y) raises no floating-point exceptions, even if x or y is a signalling NaN. The
returned value is independent of the current rounding direction mode.

In G.3#1, replace:

[1] A complex or imaginary value with at least one infinite part is regarded as an infinity (even if its
other part is a NaN). … 15

with:

[1] A complex or imaginary value with at least one infinite part is regarded as an infinity (even if its
other part is a quiet NaN). …

After G.6#4, append the paragraph:

[4a] In subsequent subclauses in G.6 "NaN" refers to a quiet NaN. The behavior of signaling NaNs in 20
Annex G is implementation defined.

Change footnote 378) from:

378) As noted in G.3, a complex value with at least one infinite part is regarded as an infinity even if
its other part is a NaN.

to: 25

378) As noted in G.3, a complex value with at least one infinite part is regarded as an infinity even if
its other part is a quiet NaN.

13 Integer width macros

C11 clause 6.2.6.2 defines the width of integer types. These widths are needed in order to use the fromfp,
ufromfp, fromfpx, and ufromfpx functions to round to the integer types. The following suggested changes 30
to C11 provide macros for the widths of integer types. On the belief that width macros would be generally
useful, the proposal adds them to <limits.h> and <stdint.h>.

Suggested changes to C11:

In 5.2.4.2.1#1, insert the following bullets, each after the current bullets for the same type:

WG 14 N1676 Working Group Draft – March 1, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 23

— width of type char
CHAR_WIDTH 8

— width of type signed char
SCHAR_WIDTH 8

— width of type unsigned char 5
UCHAR_WIDTH 8

— width of type short int
SHRT_WIDTH 16

— width of type unsigned short int
USHRT_WIDTH 16 10

— width of type int
INT_WIDTH 16

— width of type unsigned int
UINT_WIDTH 16

— width of type long int 15
LONG_WIDTH 32

— width of type unsigned long int
ULONG_WIDTH 32

— width of type long long int
LLONG_WIDTH 64 20

— width of type unsigned long long int
ULLONG_WIDTH 64

— width of type intmax_t
INTMAX_WIDTH 64

— width of type uintmax_t 25
UINTMAX_WIDTH 64

In 7.20.2.2, append

— width of minimum-width signed integer types
INT_LEASTN_WIDTH N 30

— width of minimum-width unsigned integer types
UINT_LEASTN_WIDTH N

In 7.20.2.3, append

— width of fastest minimum-width signed integer types 35
INT_FASTN_WIDTH N

— width of fastest minimum-width unsigned integer types
UINT_FASTN_WIDTH N

14 Mathematics <math.h>

The 2011 update to IEC 60559 requires several new operations that are appropriate for <math.h>. Also, in a 40
few cases, it tightens requirements for functions that are already in C11 <math.h>.

14.1 Nearest integer functions

14.1.1 Round to integer value in floating type

IEC 60559 requires a function that rounds a value of floating type to an integer value in the same floating type,
without raising the “inexact” floating-point exception, for each of the rounding methods: to nearest, to nearest 45
even, upward, downward, and toward zero. The C11 round, ceil, floor, and trunc functions may meet
this requirement for four of the five rounding methods, though are permitted to raise the “inexact” floating-point
exception. The following suggested changes add a function that rounds to nearest and remove the latitude to
raise the “inexact” floating-point exception.

Suggested changes to C11: 50

ISO/IEC TS 18661 Working Group Draft – March 1, 2013 WG 14 N1676

24 © ISO/IEC 2013 – All rights reserved

Change F.10.6.1:

[2] The returned value is independent of the current rounding direction mode.

to:

[2] The returned value is exact and is independent of the current rounding direction mode.

In F.10.6.1#3, change: 5

result = rint(x); // or nearbyint instead of rint

to:

result = nearbyint(x);

Delete F.10.6.1#4:

The ceil functions may, but are not required to, raise the ‘‘inexact’’ floating-point exception for finite 10
non-integer arguments, as this implementation does.

Change F.10.6.2:

[2] The returned value is independent of the current rounding direction mode.

to:

[2] The returned value is exact and is independent of the current rounding direction mode. 15

Delete the second sentence of F.10.6.2#3:

The floor functions may, but are not required to, raise the ‘‘inexact’’ floating-point exception for finite
non-integer arguments, as that implementation does.

Change F.10.6.6:

[2] The returned value is independent of the current rounding direction mode. 20

to:

[2] The returned value is exact and is independent of the current rounding direction mode.

Change F.10.6.6#3 from:

[3] The double version of round behaves as though implemented by

#include <math.h> 25
#include <fenv.h>
#pragma STDC FENV_ACCESS ON
double round(double x)
{

double result; 30
fenv_t save_env;
feholdexcept(&save_env);
result = rint(x);
if (fetestexcept(FE_INEXACT)) {

fesetround(FE_TOWARDZERO); 35
result = rint(copysign(0.5 + fabs(x), x));

}

WG 14 N1676 Working Group Draft – March 1, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 25

feupdateenv(&save_env);
return result;

}

The round functions may, but are not required to, raise the ‘‘inexact’’ floating-point exception for finite 5
non-integer numeric arguments, as this implementation does.

to:

[3] The double version of round behaves as though implemented by

#include <math.h>
#include <fenv.h> 10
#pragma STDC FENV_ACCESS ON
double round(double x)
{

double result;
fenv_t save_env; 15
feholdexcept(&save_env);
result = rint(x);
if (fetestexcept(FE_INEXACT)) {

fesetround(FE_TOWARDZERO);
result = rint(copysign(0.5 + fabs(x), x)); 20
feclearexcept(FE_INEXACT);

}
feupdateenv(&save_env);
return result;

} 25

After 7.12.9.7, add:

7.12.9.7a The roundeven functions

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT1__ 30
#include <math.h>
double roundeven(double x);
float roundevenf(float x);
long double roundevenl(long double x);

 35
Description

[2] The roundeven functions round their argument to the nearest integer value in floating-point
format, rounding halfway cases to even (that is, to the nearest value whose least significant bit 0),
regardless of the current rounding direction.

Returns 40

[3] The roundeven functions return the rounded integer value.

After F.10.6.7, add:

F.10.6.7a The roundeven functions

[1]
— roundeven(±0) returns ±0. 45
— roundeven(±∞) returns ±∞.

James W Thomas� 3/1/13 8:09 AM
Deleted: 00000

ISO/IEC TS 18661 Working Group Draft – March 1, 2013 WG 14 N1676

26 © ISO/IEC 2013 – All rights reserved

[2] The returned value is exact and is independent of the current rounding direction mode.

[3] See the sample implementation for ceil in F.10.6.1.

In F.10.6.8#1, delete the second sentence: The returned value is exact.

Replace F.10.6.8#2:

[2] The returned value is independent of the current rounding direction mode. The trunc functions 5
may, but are not required to, raise the ‘‘inexact’’ floating-point exception for finite non-integer
arguments.

with:

[2] The returned value is exact and is independent of the current rounding direction mode.

14.1.2 Convert to integer type 10

IEC 60559 requires conversion operations from each of its formats to each integer format, signed and
unsigned, for each of five different rounding methods. For each of these it requires an operation that raises the
“inexact” floating-point exception (for non-integer in-range inputs) and an operation that does not raise the
“inexact” floating-point exception. The suggested changes below satisfy this requirement with four new
functions that take two extra arguments to represent the rounding direction and the rounding precision. 15

Suggested changes to C11:

After 7.12#6, add:

[7.12.6a] The math rounding direction macros

 FP_INT_UPWARD
 FP_INT_DOWNWARD 20
 FP_INT_TOWARDZERO
 FP_INT_TONEARESTFROMZERO
 FP_INT_TONEAREST

represent the rounding directions of the functions ceil, floor, trunc, round, and roundeven, 25
respectively, that convert to integral values in floating-point formats. These macros are for use with
the fromfp, ufromfp, fromfpx, and ufromfpx functions.

After 7.12.9.8, add:

7.12.9.9 The fromfp and ufromfp functions

Synopsis 30

[1] #define __STDC_WANT_IEC_18661_EXT1__
 #include <stdint.h>
 #include <math.h>
 intmax_t fromfp(double x, int round, unsigned int width);
 intmax_t fromfpf(float x, int round, unsigned int width); 35
 intmax_t fromfpl(long double x, int round, unsigned int width);
 uintmax_t ufromfp(double x, int round, unsigned int width);
 uintmax_t ufromfpf(float x, int round, unsigned int width);
 uintmax_t ufromfpl(long double x, int round, unsigned int width);

 40
Description

James W Thomas� 3/1/13 8:09 AM
Deleted: 00000

WG 14 N1676 Working Group Draft – March 1, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 27

[2] The fromfp and ufromfp functions round x, using the math rounding direction indicated by
round, to a signed or unsigned integer, respectively, of width bits, and return the result value in the
integer type designated by intmax_t or uintmax_t, respectively. If the value of the round
argument is not equal to the value of a math rounding direction macro, the direction of rounding is
unspecified. If the value of width exceeds the width of the function type, the rounding is to the full 5
width of the function type. The fromfp and ufromfp functions do not raise the “inexact” floating-
point exception. If x is infinite or NaN or rounds to an integral value that is outside the range of
integers of the specified width, or if width is zero, the functions return an unspecified value and a
domain error occurs.

Returns 10

[3] The fromfp and ufromfp functions return the rounded integer value.

[4] EXAMPLE Upward rounding of double x to type int, without raising the “inexact” floating-point
exception, is achieved by

 (int)fromfp(x, FP_INT_UPWARD, INT_WIDTH).

7.12.9.10 The fromfpx and ufromfpx functions 15

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT1__
 #include <stdint.h>
 #include <math.h>
 intmax_t fromfpx(double x, int round, unsigned int width); 20
 intmax_t fromfpxf(float x, int round, unsigned int width);
 intmax_t fromfpxl(long double x, int round, unsigned int width);
 uintmax_t ufromfpx(double x, int round, unsigned int width);
 uintmax_t ufromfpxf(float x, int round, unsigned int width);
 uintmax_t ufromfpxl(long double x, int round, unsigned int width); 25

Description

[2] The fromfpx and ufromfpx functions differ from the fromfp and ufromfp functions,
respectively, only in that the fromfpx and ufromfpx functions raise the ‘‘inexact’’ floating-point
exception if a rounded result not exceeding the specified width differs in value from the argument x. 30

Returns

[3] The fromfpx and ufromfpx functions return the rounded integer value.

[4] NOTE Conversions to integer types that are not required to raise the inexact exception can be
done simply by rounding to integral value in floating type and then converting to the target integer
type. For example, the conversion of long double x to uint64_t, using upward rounding, is done 35
by

 (uint64_t)ceill(x)

After F.10.6.8, add:

F.10.6.9 The fromfp and ufromfp functions

[1] The fromfp and ufromfp functions raise the “invalid” floating-point exception and return an 40
unspecified value if the floating-point argument x is infinite or NaN or rounds to an integral value that
is outside the range of integers of the specified width.

James W Thomas� 3/1/13 8:09 AM
Deleted: 00000

ISO/IEC TS 18661 Working Group Draft – March 1, 2013 WG 14 N1676

28 © ISO/IEC 2013 – All rights reserved

[2] These functions do not raise the “inexact” floating-point exception.

F.10.6.10 The fromfpx and ufromfpx functions

[1] The fromfpx and ufromfpx functions raise the “invalid” floating-point exception and return an
unspecified value if the floating-point argument x is infinite or NaN or rounds to an integral value that
is outside the range of integers of the specified width. 5

[2] These functions raise the “inexact” floating-point exception if a valid result differs in value from the
floating-point argument x.

14.2 The llogb functions

IEC 60559 requires that its logB operations, for invalid input, return a value outside ±2 × (emax + p -1), where
emax is the maximum exponent and p the precision of the floating-point input format. If the width of the int 10
type is only 16 bits and the floating type has a 15-bit exponent (like the binary128 format), then the ilogb
functions cannot meet this requirement. The following suggested changes to C11 add the llogb functions,
which return long int and hence can satisfy this requirement for the long double types provided by
current and expected implementations.

Suggested changes to C11: 15

After 7.12#8, add:

[8.a] The macros

FP_LLOGB0
FP_LLOGBNAN

 20
expand to integer constant expressions whose values are returned by llogb(x) if x is zero or NaN,
respectively. The value of FP_LLOGB0 shall be either LONG_MIN or -LONG_MAX. The value of
FP_LLOGBNAN shall be either LONG_MAX or LONG_MIN.

After 7.12.6.6, add:

7.12.6.6a The llogb functions 25

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT1__
 #include <math.h>
 long int llogb(double x);
 long int llogbf(float x); 30
 long int llogbl(long double x);

Description

[2] The llogb functions extract the exponent of x as a signed long int value. If x is zero they
compute the value FP_LLOGB0; if x is infinite they compute the value LONG_MAX; if x is a NaN they 35
compute the value FP_LLOGBNAN; otherwise, they are equivalent to calling the corresponding logb
function and casting the returned value to type long int. A domain error or range error may occur if
x is zero, infinite, or NaN. If the correct value is outside the range of the return type, the numeric
result is unspecified.

Returns 40

[3] The llogb functions return the exponent of x as a signed long int value.

James W Thomas� 3/1/13 8:09 AM
Deleted: 00000

WG 14 N1676 Working Group Draft – March 1, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 29

Forward references: the logb functions (7.12.6.n).

After F.10.3.6, add:

F.10.3.6a The llogb functions

[1] The llogb functions are equivalent to the ilogb functions, except that the llogb functions
determine a result in the long int type. 5

14.3 Max-min magnitude functions

IEC 60559 requires functions that determine which of two inputs has the maximum and minimum magnitude.

Suggested changes to C11:

In F.10.9.2, paragraph 3, change the sample implementation for fmax from:

{ return (isgreaterequal(x, y) || 10
 isnan(y)) ? x : y; }
to:

{
double r;
r = (isgreaterequal(x, y) || isnan(y)) ? x : y; 15
return canonicalize(r);

}

After 7.12.12.3, add:

7.12.12.4 The fmaxmag functions 20

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT1__
 #include <math.h>
 double fmaxmag(double x, double y);
 float fmaxmagf(float x, float y); 25
 long double fmaxmagl(long double x, long double y);

Description

[2] The fmaxmag functions determine the numeric value of their argument whose magnitude is the
maximum of the magnitudes of the arguments. 30

Returns

[3] The fmaxmag functions return the numeric value of their argument of maximum magnitude.

7.12.12.5 The fminmag functions

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT1__ 35
 #include <math.h>
 double fminmag(double x, double y);
 float fminmagf(float x, float y);
 long double fminmagl(long double x, long double y);
 40

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

Deleted: 00000

Deleted: 00000

ISO/IEC TS 18661 Working Group Draft – March 1, 2013 WG 14 N1676

30 © ISO/IEC 2013 – All rights reserved

Description

[2] The fminmag functions determine the numeric value of their argument whose magnitude is the
minimum of the magnitudes of the arguments.

Returns

[3] The fminmag functions return the numeric value of their argument of minimum magnitude. 5

In 7.12.12.4, attach a footnote to the wording:

The fmaxmag functions determine the numeric value of their argument whose magnitude is the
maximum of the magnitudes of the arguments.

where the footnote is:

*) Quiet NaN arguments are treated as missing data: if one argument is a quiet NaN and the other 10
numeric, then the fmaxmag functions choose the numeric value. See F.10.9.4.

In F.12.12.5#2, attach a footnote to the wording:

The fminmag functions determine the numeric value of their argument whose magnitude is the
minimum of the magnitudes of the arguments.

where the footnote is: 15

*) The fminmag functions are analogous to the fmaxmag functions in their treatment of quiet NaNs.

After F.10.9.3, add:

F.10.9.4 The fmaxmag functions

[1] If just one argument is a NaN, the fmaxmag functions return the other argument (if both
arguments are NaNs, the functions return a NaN). 20

[2] The returned value is exact and is independent of the current rounding direction mode.

[3] The body of the fmaxmag function might be

{
double r;
r = (isgreaterequal(fabs(x), fabs(y)) || isnan(y)) ? x : y; 25
return canonicalize(r);

}

F.10.9.5 The fminmag functions

[1] The fminmag functions are analogous to the fmaxmag functions (F.10.9.4). 30

[2] The returned value is exact and is independent of the current rounding direction mode.

14.4 The nextup and nextdown functions

IEC 60559 replaces the previously recommended two-argument nextAfter operation with one-argument
nextUp and nextDown operations. C11 supports the nextAfter operation with the nextafter and
nexttoward functions. The following suggested changes to C11 add functions for the new operations and 35
retain the nextafter and nexttoward functions already in C11.

WG 14 N1676 Working Group Draft – March 1, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 31

Suggested changes to C11:

After 7.12.11.4 add:

7.12.11.5 The nextup functions

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT1__ 5
#include <math.h>
double nextup(double x);
float nextupf(float x);
long double nextupl(long double x);
 10

Description

[2] The nextup functions determine the next representable value, in the type of the function, greater
than x. If x is the negative number of least magnitude in the type of x, nextup(x) is −0 if the type
has signed zeros and is 0 otherwise. If x is zero, nextup(x) is the positive number of least
magnitude in the type of x. nextup(HUGE_VAL) is HUGE_VAL. 15

Returns

[3] The nextup functions return the next representable value in the specified type greater than x.

7.12.11.6 The nextdown functions

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT1__ 20
 #include <math.h>
 double nextdown(double x);
 float nextdownf(float x);
 long double nextdownl(long double x);
 25
Description

[2] The nextdown functions determine the next representable value, in the type of the function, less
than x. If x is the positive number of least magnitude in the type of x, nextdown(x) is +0 if the type
has signed zeros and is 0 otherwise. If x is zero, nextdown(x) is the negative number of least
magnitude in the type of x. nextdown(-HUGE_VAL) is -HUGE_VAL. 30

Returns

[3] The nextdown functions return the next representable value in the specified type less than x.

After F.10.8.4, add:

F.10.8.5 The nextup functions

 [1] 35
— nextup(+∞) returns +∞.
— nextup(−∞) returns the largest-magnitude negative finite number in the type of the function.

F.10.8.6 The nextdown functions

[1] 40
— nextdown(+∞) returns the largest-magnitude positive finite number in the type of the function.

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

Deleted: 00000

Deleted: 00000

ISO/IEC TS 18661 Working Group Draft – March 1, 2013 WG 14 N1676

32 © ISO/IEC 2013 – All rights reserved

— nextdown(−∞) returns −∞.

14.5 Functions that round result to narrower type

IEC 60559 requires add, subtract, multiply, divide, fused multiply-add, and square root operations that round
once to a floating-point format independent of the format of the operands. The following suggested changes to 5
C11 add functions for these operations that round to formats narrower than the operand formats. The
operations that round to the same and wider formats are already available by casting operands of the built-in
operators (+, -, *, /) to the desired type and by calling the fma and sqrt functions of the desired type.

Suggested changes to C11:

After 7.12.13, add: 10

7.12.13a Functions that round result to narrower type

7.12.13a.1 Add and round to narrower type

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT1__
 #include <math.h> 15
 float fadd(double x, double y);
 float faddl(long double x, long double y);
 double daddl(long double x, long double y);

Description 20

[2] These functions compute the sum x + y, rounded to the type of the function. They compute the
sum (as if) to infinite precision and round once to the result format, according to the current rounding
mode. A range error may occur for finite arguments. A domain error may occur for infinite arguments.

Returns

[3] These functions return the sum x + y, rounded to the type of the function. 25

7.12.13a.2 Subtract and round to narrower type

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT1__
 #include <math.h>
 float fsub(double x, double y); 30
 float fsubl(long double x, long double y);
 double dsubl(long double x, long double y);

Description

[2] These functions compute the difference x − y, rounded to the type of the function. They compute 35
the difference (as if) to infinite precision and round once to the result format, according to the current
rounding mode. A range error may occur for finite arguments. A domain error may occur for infinite
arguments.

Returns

[3] These functions return the difference x − y, rounded to the type of the function. 40

7.12.13a.3 Multiply and round to narrower type

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

Deleted: 00000

Deleted: 00000

WG 14 N1676 Working Group Draft – March 1, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 33

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT1__
 #include <math.h>
 float fmul(double x, double y);
 float fmull(long double x, long double y); 5
 double dmull(long double x, long double y);

Description

[2] These functions compute the product x × y, rounded to the type of the function. They compute the
product (as if) to infinite precision and round once to the result format, according to the current 10
rounding mode. A range error may occur for finite arguments. A domain error occurs for one infinite
argument and one zero argument.

Returns

[3] These functions return the product of x × y, rounded to the type of the function.

7.12.13a.4 Divide and round to narrower type 15

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT1__
 #include <math.h>
 float fdiv(double x, double y);
 float fdivl(long double x, long double y); 20
 double ddivl(long double x, long double y);

Description

[2] These functions compute the quotient x ÷ y, rounded to the type of the function. They compute the
quotient (as if) to infinite precision and round once to the result format, according to the current 25
rounding mode. A range error may occur for finite arguments. A domain error occurs for either both
arguments infinite or both arguments zero. A pole error occurs for a finite x and a zero y.

Returns

[3] These functions return the quotient x ÷ y, rounded to the type of the function.

7.12.13a.5 Floating multiply-add rounded to narrower type 30

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT1__
 #include <math.h>
 float ffma(double x, double y, double z);
 float ffmal(long double x, long double y, long double z); 35
 double dfmal(long double x, long double y, long double z);

Description

[2] These functions compute (x × y) + z, rounded to the type of the function. They compute (x × y) +
z to infinite precision and round once to the result format, according to the current rounding mode. A 40
range error may occur for finite arguments. A domain error may occur for an infinite argument.

Returns

[3] These functions return (x × y) + z, rounded to the type of the function.

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

Deleted: 00000

Deleted: 00000

Deleted: 00000

ISO/IEC TS 18661 Working Group Draft – March 1, 2013 WG 14 N1676

34 © ISO/IEC 2013 – All rights reserved

7.12.13a.6 Square root rounded to narrower type

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT1__
 #include <math.h>
 float fsqrt(double x); 5
 float fsqrtl(long double x);
 double dsqrtl(long double x);

Description

[2] These functions compute the square root of x, rounded to the type of the function. They compute 10
the square root (as if) to infinite precision and round once to the result format, according to the current
rounding mode. A range error may occur for finite positive arguments. A domain error occurs if the
argument is less than zero.

Returns

[3] These functions return the square root of x, rounded to the type of the function. 15

After old F.10.10 add:

F.10.10a Functions that round result to narrower type

[1] The functions that round their result to narrower type (7.12.14) are fully specified in IEC 60559.
The returned value is dependent on the current rounding direction mode.

14.6 Comparison macros 20

IEC 60559 requires an extensive set of comparison operations. C11’s built-in equality and relational operators
and quiet comparison macros and their negations (!) support all these required operations, except for
compareSignalingEqual and compareSignalingNotEqual. The following suggested changes to C11 provide a
function-like macro for compareSignalingEqual. The negation of the macro provides
compareSignalingNotEqual. (See Table 1.) 25

Suggested changes to C11:

After 7.12.14.6, add:

7.12.14.7 The iseqsig macro

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT1__ 30
 #include <math.h>
 int iseqsig(floating-type x, floating-type y);

Description

[2] The iseqsig macro determines whether its arguments are equal. If an argument is a NaN, a 35
domain error occurs for the macro, as if a domain error occurred for a function (7.12.1).

Returns

[3] The iseqsig macro returns 1 if its arguments are equal and 0 otherwise.

After F.10.11, add:

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

Deleted: 00000

Deleted: 00000

WG 14 N1676 Working Group Draft – March 1, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 35

F.10.11.1 The iseqsig macro

[1] The equality operator == and the iseqsiq macro produce equivalent results, except that the
iseqsig macro raises the “invalid” floating-point exception if an argument is a NaN.

14.7 Inquiry macros

IEC 60559 requires several inquiry operations, all but three of which are already supported in C11 as function-5
like macros. The suggested changes to C11 below support the remaining three.

Suggested change to C11:

After 7.12.3.1, add:

7.12.3.1a The iscanonical macro

Synopsis 10

[1] #define __STDC_WANT_IEC_18661_EXT1__
 #include <math.h>
 int iscanonical(real-floating x);

Description 15

[2] The iscanonical macro determines whether its argument value is canonical (5.2.4.2.2). First,
an argument represented in a format wider than its semantic type is converted to its semantic type.
Then determination is based on the type of the argument.

Returns

[3] The iscanonical macro returns a nonzero value if and only if its argument is canonical. 20

At the end of 7.12.3.6 (The isnormal macro), add:

7.12.3.7 The issignaling macro

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT1__
 #include <math.h> 25
 int issignaling(real-floating x);

Description

[2] The issignaling macro determines whether its argument value is a signaling NaN, without
raising a floating-point exception. 30

Returns

[3] The issignaling macro returns a nonzero value if and only if its argument is a signaling NaN.

7.12.3.8 The issubnormal macro

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT1__ 35
 #include <math.h>
 int issubnormal(real-floating x);

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

Deleted: 00000

Deleted: 00000

Deleted: 00000

ISO/IEC TS 18661 Working Group Draft – March 1, 2013 WG 14 N1676

36 © ISO/IEC 2013 – All rights reserved

Description

[2] The issubnormal macro determines whether its argument value is subnormal. First, an
argument represented in a format wider than its semantic type is converted to its semantic type. Then
determination is based on the type of the argument. 5

Returns

[3] The issubnormal macro returns a nonzero value if and only if its argument is subnormal.

7.12.3.8 The iszero macro

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT1__ 10
 #include <math.h>
 int iszero(real-floating x);

Description

[2] The iszero macro determines whether its argument value is (positive, negative, or unsigned) 15
zero. First, an argument represented in a format wider than its semantic type is converted to its
semantic type. Then determination is based on the type of the argument.

Returns

[3] The iszero macro returns a nonzero value if and only if its argument is zero.

14.8 Total order functions 20

IEC 60559 requires a totalOrder operation, which it defines as follows:

“totalOrder(x, y) imposes a total ordering on canonical members of the format of x and y:

a) If x < y, totalOrder(x, y) is true.
b) If x > y, totalOrder(x, y) is false. 25
c) If x = y:

1) totalOrder(−0, +0) is true.
2) totalOrder(+0, −0) is false.
3) If x and y represent the same floating-point datum:

i) If x and y have negative sign, totalOrder(x, y) is true if and only if the exponent of x ≥ the 30
exponent of y
ii) otherwise totalOrder(x, y) is true if and only if the exponent of x ≤ the exponent of y.

d) If x and y are unordered numerically because x or y is NaN:
1) totalOrder(−NaN, y) is true where −NaN represents a NaN with negative sign bit and y is a
 floating-point number. 35
2) totalOrder(x, +NaN) is true where +NaN represents a NaN with positive sign bit and x is a
floating-point number.
3) If x and y are both NaNs, then totalOrder reflects a total ordering based on:

i) negative sign orders below positive sign
ii) signaling orders below quiet for +NaN, reverse for −NaN 40
iii) lesser payload, when regarded as an integer, orders below greater payload for +NaN,
reverse for −NaN.”

IEC 60559:2011 also requires a totalOrderMag operation which is the totalOrder of the absolute values of the
operands. The following suggested change to C11 provides these operations. 45

Suggested change to C11:

James W Thomas� 3/1/13 8:09 AM
Deleted: 00000

WG 14 N1676 Working Group Draft – March 1, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 37

After F.10.11, add:

F.10.12 The total order functions

[1] This annex specifies the total order functions required by IEC 60559.

F.10.12.1 The totalorder functions

Synopsis 5

[1] #define __STDC_WANT_IEC_18661_EXT1__
#include <math.h>

 int totalorder(double x, double y);
 int totalorderf(float x, float y);
 int totalorderl(long double x, long double y); 10

Description

[2] The totalorder functions determine whether the total order relationship, defined by IEC 60559,
is true for the ordered pair of its arguments x, y. These functions are fully specified in IEC 60559.
These functions are independent of the current rounding direction mode and raise no floating-point 15
exceptions, even if an argument is a signalling NaN.

Returns

[3] The totalorder functions return nonzero if and only if the total order relation is true for the
ordered pair of its arguments x, y.

F.10.12.2 The totalordermag functions 20

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT1__
 int totalordermag(double x, double y);
 int totalordermagf(float x, float y);
 int totalordermagl(long double x, long double y); 25

Description

[2] The totalordermag functions determine whether the total order relationship, defined by IEC
60559, is true for the ordered pair of the magnitudes of its arguments x, y. These functions are fully
specified in IEC 60559. These functions are independent of the current rounding direction mode and 30
raise no floating-point exceptions, even if an argument is a signalling NaN.

Returns

[3] The totalordermag functions return nonzero if and only if the total order relation is true for the
ordered pair of the magnitudes of it arguments x, y.

In F.10.12#1, attach a footnote to the wording: 35

This annex specifies the total order functions required by IEC 60559.

where the footnote is:

*) The total order functions are specified only in Annex F because they depend on the details of IEC
60559 formats.

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

Deleted: 00000

Deleted: 00000

ISO/IEC TS 18661 Working Group Draft – March 1, 2013 WG 14 N1676

38 © ISO/IEC 2013 – All rights reserved

14.9 The canonicalize functions

IEC 60559 requires an arithmetic convertFormat operation from each format to itself. This operation produces
a canonical encoding and, for a signaling NaN input, raises the “invalid” floating-point and delivers a quiet
NaN. C assignment (and conversion as if by assignment) to the same format may be implemented as a
convertFormat operation or as a copy operation. The suggested change to C11 below provides the IEC 60559 5
convertFormat operation.

Suggested change to C11:

As the last subclause of 7.12.11 (after 7.12.11.5-6 added above), add:

7.12.11.7 The canonicalize functions

Synopsis 10

[1] #define __STDC_WANT_IEC_18661_EXT1__
 #include <math.h>
 int canonicalize(double * cx, const double * x);
 int canonicalizef(float * cx, const float * x);
 int canonicalizel(long double * cx, const long double * x); 15

Description

[2] The canonicalize functions attempt to produce a canonical version of the floating-point
representation in the object pointed to by the argument x, as if to a temporary object of the specified
type, and store the canonical result in the object pointed to by the argument cx. If the input *x is a 20
signalling NaN, the canonicalize functions are intended to store a canonical quiet NaN. If a
canonical result is not produced the object pointed to by cx in unchanged.

Returns

[3] The functions return zero if a canonical result is stored in the object pointed to by cx. Otherwise
they return a nonzero value. 25

In 7.12.11.7#2, attach a footnote to the wording:

and store the canonical result in the object pointed to by the argument cx.

where the footnote is:

*) Arguments x and cx may point to the same object.

After F.10.8.6 (added above), add: 30

F.10.8.7 The canonicalize functions

[1] The canonicalize functions produce the canonical version of the representation in the object
pointed to by the argument x. If the imput *x is a signaling NaN, the "invalid" floating-point exception
is raised and a (canonical) quiet NaN (which should be the canonical version of that signaling NaN
made quiet) is produced. For quiet NaN, infinity, and finite inputs, the functions raise no floating-point 35
exceptions.

In F.10.8.7#1, attach a footnote to the wording:

The canonicalize functions produce

where the footnote is:

James W Thomas� 3/1/13 8:09 AM
Deleted: 00000

WG 14 N1676 Working Group Draft – March 1, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 39

*) As if x*1e0 were computed.

14.10 NaN functions

IEC 60559 defines the payload of a NaN to be a certain part of the NaN’s significand interpreted as an integer.
The payload is intended to provide implementation-defined diagnostic information about the NaN, such as
where or how the NaN was created. The following suggested changes to C11 provide functions to get and set 5
the NaN payloads defined in IEC 60559.

 Suggested change to C11:

After F.10.12 (added above), add:

F.10.13 Payload functions

F.10.13.1 The getpayload functions 10

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT1__
#include <math.h>
double getpayload(const double *x);
float getpayloadf(const float *x); 15
long double getpayloadl(const long double *x);

Description

[2] The getpayload functions extract the integer value of the payload of a NaN input and return the
integer as a floating-point value. The sign of the returned integer is positive. If *x is not a NaN, the 20
return result is unspecified. These functions raise no floating-point exceptions, even if *x is a
signaling NaN.

Returns

[3] The functions return a floating-point representation of the integer value of the payload of the NaN
input. 25

F.10.13.2 The setpayload functions

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT1__
 #include <math.h>
 int setpayload(double *res, double pl); 30
 int setpayloadf(float *res, float pl);
 int setpayloadl(long double *res, long double pl);

Description

[2] The setpayload functions create a quiet NaN with the payload specified by pl and a zero sign 35
bit and store that NaN into the object pointed to by *res. If pl is not a positive floating-point integer
representing a valid payload, *res is set to positive zero.

Returns

[3] If the functions stored the specified NaN, the functions return a zero value, otherwise a non-zero
value (and *res is set to zero). 40

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

Deleted: 00000

Deleted: 00000

ISO/IEC TS 18661 Working Group Draft – March 1, 2013 WG 14 N1676

40 © ISO/IEC 2013 – All rights reserved

F.10.13.3 The setpayloadsig functions

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT1__
 #include <math.h>
 int setpayloadsig(double *res, double pl); 5
 int setpayloadsigf(float *res, float pl);
 int setpayloadsigl(long double *res, long double pl);

Description

[2] The setpayloadsig functions create a signaling NaN with the payload specified by pl and a 10
zero sign bit and store that NaN into the object pointed to by *res. If pl is not a positive floating-
point integer representing a valid payload, *res is set to positive zero.

Returns

[3] If the functions stored the specified NaN, the functions return a zero value, otherwise a non-zero
value (and *res is set to zero). 15

15 The floating-point environment <fenv.h>

15.1 The fesetexcept function

IEC 60559 requires a raiseFlags operation that sets floating-point exception flags. Unlike the C
feraiseexcept function in <fenv.h>, the raiseFlags operation does not cause side effects (notably traps)
as could occur if the exceptions resulted from arithmetic operations. The following suggested change to C11 20
provides the raiseFlags operation.

Suggested change to C11:

After 7.6.2.3, add:

7.6.2.3a The fesetexcept function

Synopsis 25

[1] #define __STDC_WANT_IEC_18661_EXT1__
 #include <fenv.h>
 int fesetexcept(int excepts);

Description 30

[2] The fesetexcept function attempts to set the supported floating-point exception flags
represented by its argument. This function does not clear any floating-point exception flags. This
function changes the state of the floating-point exception flags, but does not cause any other side
effects that might be associated with raising floating-point exceptions.

Returns 35

[3] The fesetexcept functions returns zero if all the specified exceptions were successfully set or if
the excepts argument is zero. Otherwise, it returns a nonzero value.

In 7.6.2.3a#2, attach a footnote to the wording:

but does not cause any other side effects that might be associated with raising floating-point
exceptions. 40

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

Deleted: 00000

Deleted: 00000

WG 14 N1676 Working Group Draft – March 1, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 41

where the footnote is:

*) Enabled traps for floating-point exceptions are not taken.

15.2 The fetestexceptflag function

IEC 60559 requires a testSavedFlags operation to test saved representations of floating-point exception flags.
This differs from the C fetestexcept function in <fenv.h> which tests floating-point exception flags 5
directly. The following suggested change to C11 provides the testSavedFlags operation.

Suggested change to C11:

After old 7.6.2.4, add:

7.6.2.4a The fetestexceptflag function

Synopsis 10

[1] #define __STDC_WANT_IEC_18661_EXT1__
 #include <fenv.h>
 int fetestexceptflag(const fexcept_t * flagp, int excepts);

Description 15

[2] The fetestexceptflag determines which of a specified subset of the floating-point exception
flags are set in the object pointed to by flagp. The value of *flagp shall have been set by a
previous call to fegetexceptflag. The excepts argument specifies the floating-point status flags
to be queried.

Returns 20

[3] The fetestexcept function returns the value of the bitwise OR of the floating-point exception
macros included in excepts corresponding to the floating-point exceptions set in *flagp.

15.3 Control modes

IEC 60559 requires a saveModes operation that saves all the user-specifiable dynamic floating-point modes
supported by the implementation, including dynamic rounding direction and trap enablement modes. The 25
following suggested changes to C11 support this operation.

Suggested changes to C11:

After 7.6#5, add:

[5a]The type

 femode_t 30

represents the collection of dynamic floating-point control modes supported by the implementation,
including the dynamic rounding direction mode.

After old 7.6#8, add:

[8a] The macro

 FE_DFL_MODE 35

James W Thomas� 3/1/13 8:09 AM
Deleted: 00000

ISO/IEC TS 18661 Working Group Draft – March 1, 2013 WG 14 N1676

42 © ISO/IEC 2013 – All rights reserved

represents the default state for the collection of dynamic floating-point control modes supported by
the implementation - and has type “pointer to const-qualified femode_t”. Additional implementation-
defined states for the dynamic mode collection, with macro definitions beginning with FE_ and an
uppercase letter, and having type ‘‘pointer to const-qualified femode_t’’, may also be specified by
the implementation. 5

Rename 7.6.3 from:

7.6.3 Rounding

to:

7.6.3 Rounding and other control modes

Append to 7.6.3#1: 10

The fegetmode and fesetmode functions manage all the implementation’s dynamic floating-point
control modes collectively.

After 7.6.3 insert:

7.6.3.0 The fegetmode function

Synopsis 15

[1] #define __STDC_WANT_IEC_18661_EXT1__
#include <fenv.h>
int fegetmode(femode_t *modep);

Description 20

[2] The fegetmode function attempts to store all the dynamic floating-point control modes into the
object pointed to by modep.

Returns

[3] The fegetmode function returns zero if the modes were successfully stored. Otherwise, it returns
a nonzero value. 25

After 7.6.3.1, add:

7.6.3.1a The fesetmode function

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT1__
 #include <fenv.h> 30
 int fesetmode(const fenv_t *modep);

Description

[2] The fesetmode function attempts to establish the dynamic floating-point modes represented by
the object pointed to by modep. The argument modep shall point to an object set by a call to 35
fegetmode, or equal FE_DFL_MODE or a dynamic floating-point mode state macro defined by the
implementation.

Returns

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM

Deleted: 00000

Deleted: 00000

WG 14 N1676 Working Group Draft – March 1, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 43

[3] The fesetmode function returns zero if the modes were successfully established. Otherwise, it
returns a nonzero value.

16 Type-generic math <tgmath.h>

The following suggested changes to C11 enhance the specification for type-generic math macros to
accommodate functions and the constant rounding mode pragma in this Part of Technical Specification 5
18661.

Suggested changes to C11:

In 7.25#2, change:

For each such function, except modf, there is a corresponding type-generic macro.

to: 10

For each such function, except modf, setpayload, setpayloadsig, and canonicalize, there is
a corresponding type-generic macro.

In 7.25#3, replace:

[3] Use of the macro invokes a function whose generic parameters have the corresponding real type
determined as follows: 15

with:

[3] Except for the macros for functions that round result to a narrower type (7.12.14), use of the macro
invokes a function whose generic parameters have the corresponding real type determined as
follows:

In 7.25#5, replace: 20

For each unsuffixed function in <math.h> without a c-prefixed counterpart in <complex.h> (except
modf),

with:

For each unsuffixed function in <math.h> without a c-prefixed counterpart in <complex.h> (except
modf, setpayload, setpayloadsig, and canonicalize), 25

In 7.25#5, include in the list of type-generic macros: roundeven, nextup, nextdown, fminmag, fmaxmag,
llogb, fromfp, ufromfp, fromfpx, ufromfpx, totalorder, and totalordermag.

After 7.25#6, add:

[6a] The functions that round result to a narrower type have type-generic macros whose names are
obtained by omitting any f or l suffix from the function names. Thus, the macros are: 30

fadd fmul ffma
dadd dmul dfma
fsub fdiv fsqrt
dsub ddiv dsqrt
 35

[6b] All arguments are generic. If any argument is not real, use of the macro results in undefined
behavior. If any argument has type long double, or if the macro prefix is d, the function invoked
has the name of the macro with an l suffix. Otherwise, the function invoked has the name of the
macro (with no suffix).

James W Thomas� 3/1/13 8:09 AM

James W Thomas� 3/1/13 8:09 AM
Deleted: 1

Deleted: this

ISO/IEC TS 18661 Working Group Draft – March 1, 2013 WG 14 N1676

44 © ISO/IEC 2013 – All rights reserved

[6c] A type-generic macro corresponding to a function indicated in Table 2 is affected by constant
rounding modes (7.6.2). Note that the type-generic macro definition in the example in 6.5.1.1 does
not conform to this specification. A conforming macro could be implemented as follows:

#define cbrt(X) _Generic((X), \
 long double: cbrtl(X), \ 5
 default: _Roundwise_cbrt(X), \
 float: cbrtf(X) \
)

where _Roundwise_cbrt() is equivalent to cbrt() invoked without macro-replacement 10
suppression.

In 7.25#7, append to the table:

fsub(f, ld) fsubl(f, ld)
fdiv(d, n) fdiv(d, n), the function
dfma(f, d, ld) dfmal(f, d, ld) 15
dadd(f, f) daddl(f, f)
dsqrt(dc) undefined behavior

WG 14 N1676 Working Group Draft – March 1, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 45

Bibliography

[1] ISO/IEC 9899:2011, Information technology — Programming languages, their environments and
system software interfaces — Programming Language C

[2] ISO/IEC/IEEE 60559:2011, Information technology — Microprocessor Systems — Floating-point
arithmetic 5

[3] ISO/IEC TR 24732:2008, Information technology – Programming languages, their environments and
system software interfaces – Extension for the programming language C to support decimal floating-
point arithmetic

[4] IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems, second edition

[5] IEEE 754-2008, IEEE Standard for Floating-Point Arithmetic 10

[6] IEEE 754−1985, IEEE Standard for Binary Floating-Point Arithmetic

[7] IEEE 854−1987, IEEE Standard for Radix-Independent Floating-Point Arithmetic

