
A container library for C

Jacob Navia

Contents

1 Introduction 17
1.1 Design goals . 19

1.1.1 Error analysis . 19
1.1.2 Full feature set . 20
1.1.3 Abstraction . 21
1.1.4 Performance . 21
1.1.5 Compile time checking . 21

1.2 How the functions are specified in this document. 22
1.3 Which sections of this document are normative? 22

2 Overview 25
2.1 Containers . 25
2.2 The two types of interface . 27
2.3 The interface concept . 29
2.4 Error handling . 29

2.4.1 Return code . 30
2.5 Naming conventions . 31

2.5.1 Container Names . 31
2.5.2 Interface object name . 31

2.6 The different containers . 32
2.6.1 Single and double linked lists . 34

Single linked lists of byte or wide character strings 34
2.6.2 Flexible arrays (vector) . 34
2.6.3 ValArray: Arrays of numbers . 35
2.6.4 String collection . 35
2.6.5 Bit-string . 36
2.6.6 Dictionary . 36
2.6.7 Hash Table . 36
2.6.8 AVL trees . 37
2.6.9 Scapegoat trees . 37
2.6.10 Bloom Filter . 37
2.6.11 Queue . 37
2.6.12 Deque . 37
2.6.13 Buffers . 37

3

2.6.14 Priority Queues . 38
2.6.15 At a glance . 38

3 The common vocabulary: iGenericContainer 39
3.1 Creation of a container: Create . 39
3.2 Destruction of a container: Clear and Finalize 41

3.2.1 Other creation functions . 41
3.3 Adding an element to a container: Add and AddRange 42
3.4 Removing elements from a container . 43

3.4.1 Using an element as key . 43
3.4.2 Removing at a given position . 43
3.4.3 Using a container as a stack . 43
3.4.4 Batch removing . 44

3.5 Retrieving elements . 44
3.6 Using masks . 44
3.7 Sorting a sequential container: Sort . 45
3.8 Copying a container: Copy . 45
3.9 Saving and loading a container to or from disk: Save and Load 46
3.10 Inserting a container into another . 46

3.10.1 Sequential containers . 46
3.10.2 Associative containers . 46

3.11 Replace an element with another . 47
3.11.1 Sequential containers: ReplaceAt 47
3.11.2 Associative containers: Replace 47

3.12 Looping through all elements of a container 47
3.12.1 Using a simple loop to iterate a container 48
3.12.2 Using the Apply function. 48
3.12.3 Using iterators . 48

3.13 Setting and retrieving the state: GetFlags and SetFlags 50
3.14 Retrieving the number of elements stored: Size 51
3.15 Sizes . 51

3.15.1 Sizeof . 51
3.15.2 SizeofIterator . 51

3.16 Memory management . 51
3.16.1 Memory manager objects . 52
3.16.2 Pooled memory management . 52
3.16.3 Heap of same size objects . 53
3.16.4 Garbage collection . 53
3.16.5 Multi-threading . 54

3.17 At a glance . 54

4 The auxiliary interfaces 57
4.1 Masks . 57

4.1.1 The interface . 58

4.1.2 The API . 58
And . 58
Clear . 58
Copy . 59
CreateFromMask . 59
Create . 59
Finalize . 59
Not . 59
Or . 60
PopulationCount . 60
Set . 60
Size . 60
Sizeof . 60

4.2 Memory management . 61
4.2.1 The default memory manager . 62

Interface for modifying the current allocator 62
Change . 63
GetCurrent . 63

4.2.2 The Heap interface: iHeap . 63
Create . 64
InitHeap . 64
newObject . 64
FreeObject . 65
Clear . 65
Finalize . 65
Sizeof . 65

4.3 Pooled memory interface: iPool . 66
Create . 66
Alloc . 67
Calloc . 67
Clear . 67
Finalize . 67

4.4 Error handling Interface: iError . 67
RaiseError . 68
EmptyErrorFunction . 68
StrError . 68
SetErrorFunction . 68
NullPtrError . 68

4.4.1 Error codes . 69
4.5 The iterator interface . 70

4.5.1 The interface . 71
GetCurrent . 71
GetFirst . 71
GetNext . 72

GetPrevious . 72
GetLast . 73
Seek . 73
Replace . 74

4.6 The observer interface . 74
4.6.1 Caveats . 74
4.6.2 The interface . 75

ObserverFunction . 75
Subscribe . 76
Notify . 76
Unsubscribe . 77

4.6.3 Notifications messages . 77
4.7 Types used by the library . 79

4.7.1 CompareInfo . 79
4.7.2 CompareFunction . 79
4.7.3 Save function . 80
4.7.4 Read function . 80
4.7.5 Error function . 81
4.7.6 Destructor function . 81

5 The containers 83
5.1 The List interfaces: iList, iDlist . 83

5.1.1 General remarks . 87
Specializations . 88
Add . 89
Advance . 90
AddRange . 91
Append . 91
Apply . 92
Back . 94
Clear . 94
Contains . 94
Copy . 95
CopyElement . 95
Create . 96
CreateWithAllocator . 96
deleteIterator . 97
Equal . 97
Erase . 97
EraseAll . 98
EraseAt . 98
EraseRange . 99
Finalize . 99
FirstElement . 100

Front . 100
GetAllocator . 100
GetElementSize . 100
GetElement . 101
GetFlags / SetFlags . 101
GetRange . 102
IndexOf . 102
Init . 103
InitializeWith . 103
InitWithAllocator . 103
InsertAt . 104
InsertIn . 105
LastElement . 107
Load . 107
NewIterator . 107
NextElement . 108
PopFront . 108
PushFront . 108
RemoveRange . 109
ReplaceAt . 109
Reverse . 110
RotateRight . 110
RotateLeft . 111
Save . 111
Select . 111
SelectCopy . 112
SetCompareFunction . 114
SetDestructor . 114
SetElementData . 114
SetErrorFunction . 115
Size . 115
Sizeof . 115
SizeofIterator . 116
Sort . 116
SplitAfter . 117
UseHeap . 118

5.1.2 Specializations of linked lists . 119
5.2 Double linked lists: iDlist . 120

MoveBack . 122
PopBack . 123
PreviousElement . 123
PushBack . 123
Splice . 124

5.3 The Vector interface: iVector . 125

Special arrays using a modified error function 126
5.3.1 The interface . 126
5.3.2 The API . 128

Add . 128
AddRange . 129
Append . 129
Apply . 129
Back . 131
Clear . 131
CompareEqual . 131
CompareEqualScalar . 132
Contains . 132
Copy . 133
CopyElement . 133
CopyTo . 134
deleteIterator . 134
Create . 134
CreateWithAllocator . 134
Equal . 135
Erase . 135
EraseAll . 135
EraseAt . 136
Finalize . 136
Front . 137
GetCapacity . 137
GetElementSize . 137
GetData . 137
GetElement . 138
GetFlags / SetFlags . 138
GetRange . 138
IndexIn . 139
IndexOf . 139
InsertAt . 140
InsertIn . 140
Load . 143
NewIterator . 143
Mismatch . 143
PopBack . 144
RemoveRange . 144
ReplaceAt . 144
Reserve . 145
Resize . 145
Reverse . 146
RotateRight . 146

RotateLeft . 146
Save . 147
SearchWithKey . 147
Select . 147
SelectCopy . 148
SetCapacity . 148
SetCompareFunction . 148
SetDestructor . 149
SetErrorFunction . 149
Size . 149
Sizeof . 149
Sort . 150

5.4 The bit-string container: iBitString . 151
5.4.1 The interface . 152
5.4.2 API . 153

Add . 153
And . 154
AndAssign . 155
BitBlockCount . 156
CopyBits . 157
GetData . 157
GetRange . 157
BitLeftShift . 158
Not . 159
NotAssign . 159
InitializeWith . 160
Or . 161
OrAssign . 161
PopulationCount . 161
Print . 161
Reverse . 162
RemoveAt . 162
Set . 163
StringToBitString . 163
Xor . 164
XorAssign . 164

5.5 The string collection container: istrCollection, iWstrCollection 165
5.5.1 The interface . 165
5.5.2 API . 167

AddRange . 167
CastToArray . 167
CreateFromFile . 168
FindFirst . 168
FindNext . 168

FindTextPositions . 168
Front . 169
Init . 169
InitWithAllocator . 169
InsertIn . 170
Mismatch . 171
PopBack . 172
RemoveRange . 172
SetCompareFunction . 172
WriteToFile . 173

5.6 The dictionary container: iDictionary . 174
5.6.1 The dictionary interface . 175
5.6.2 The API . 177

Add . 177
Apply . 178
CastToArray . 179
Clear . 179
Contains . 179
Copy . 180
CopyElement . 180
Create . 181
deleteIterator . 181
Equal . 181
Erase . 181
Finalize . 182
GetAllocator . 182
GetElementSize . 182
GetElement . 183
GetFlags . 183
GetLoadFactor . 183
InsertIn . 183
Init . 184
InitializeWith . 184
InitWithAllocator . 184
Insert . 184
Load . 185
NewIterator . 185
SetDestructor . 186
SetHashFunction . 186
Size . 186
Save . 186
Sizeof . 187
SetErrorFunction . 187
Size . 187

5.7 The TreeMap interface: iTreeMap . 189
The comparison function must be consistent 189

5.7.1 The interface . 189
5.8 Hash Table: iHashTable . 191

5.8.1 The interface . 191
5.8.2 The API . 192

Add . 192
Apply . 192
Clear . 193
Copy . 194
Create . 194
deleteIterator . 194
Erase . 194
GetElement . 195
GetFlags . 195
Load . 195
Merge . 195
NewIterator . 196
Overlay . 196
Resize . 197
Replace . 197
Save . 197
SetErrorFunction . 198
Size . 198
Sizeof . 198

5.9 Queues: iQueue . 199
5.9.1 Interface . 199
5.9.2 The API . 199

Front . 199
Back . 200
GetData . 200

5.10 Deque: iDeque . 200
5.10.1 Interface . 201

Apply . 202
Back . 202
Clear . 202
Contains . 203
Copy . 203
Create . 203
Equal . 203
Front . 204
Erase . 204
Finalize . 204
GetFlags . 204

Load . 204
PopBack . 205
PopFront . 205
PushBack . 205
PushFront . 206
Save . 206

5.11 Priority queues . 208
5.11.1 Interface . 208
5.11.2 A complete example . 208
5.11.3 The API . 210

Add . 210
Clear . 210
Create . 210
Copy . 210
Create . 210
Equal . 211
Finalize . 211
Front . 211
Pop . 211
Push . 212
Size . 212
Sizeof . 212

5.12 Bloom filters . 213
5.12.1 The interface: iBloomFilter . 213
5.12.2 The API . 214

CalculateSpace . 214
Create . 214
Add . 214
Find . 215
Clear . 215
Finalize . 215

5.13 Value arrays . 216
5.13.1 Operations . 217
5.13.2 Slices and masks . 218
5.13.3 The interface . 218

Abs . 222
Accumulate . 223
Add . 223
AddRange . 223
Apply . 223
And . 224
BitLeftShift . 224
BitRightShift . 224
Clear . 224

Compare . 225
CompareScalar . 225
CompareEqual . 225
CompareEqualScalar . 226
Contains . 226
Copy . 227
CopyTo . 227
Create . 227
CreateSequence . 227
DivideBy . 228
DivideByScalar . 228
DivideScalarBy . 228
Equal . 228
Erase . 229
EraseAll . 229
EraseAt . 229
FCompare . 229
FillSequential . 231
Finalize . 231
ForEach . 232
Fprintf . 232
GetCapacity . 232
GetData . 232
GetElement . 233
GetElementSize . 233
GetRange . 233
GetSlice . 233
IndexIn . 234
IndexOf . 234
InitializeWith . 234
InsertAt . 235
Inverse . 235
Max . 235
Memset . 235
Min . 236
Mismatch . 236
MultiplyWith . 236
MultiplyWithScalar . 237
Not . 237
Or . 237
OrScalar . 237
PopBack . 238
Product . 238
Reverse . 238

ResetSlice . 238
RotateLeft . 239
RotateRight . 240
Save . 240
SetCompareFunction . 240
Select . 240
SelectCopy . 241
SetSlice . 241
Size . 242
Sizeof . 242
Sort . 242
SubtractFrom . 242
SubtractFromScalar . 243
SubtractScalarFrom . 243
SumTo . 243
SumToScalar . 243
Xor . 243
XorScalar . 244

5.14 Buffers . 245
5.14.1 Stream buffers . 246

The interface . 246
The API . 247
Clear . 247
Create . 247
CreateFromFile . 247
CreateWithAllocator . 248
Finalize . 248
GetData . 248
GetPosition . 248
Read . 249
ReadFromFile . 249
Resize . 249
SetPosition . 249
Size . 250
Write . 250
WriteToFile . 251

5.14.2 Circular buffers . 252
The interface: iCircularBuffer . 252
The API . 253
Add . 253
Clear . 253
CreateWithAllocator . 253
Create . 253
Finalize . 254

PeekFront . 254
PopFront . 254
Size . 255
Sizeof . 255

5.15 The generic interfaces . 256
5.15.1 Generic containers . 256
5.15.2 Sequential containers . 257
5.15.3 Associative containers . 258

6 Enhancing the library 259
6.1 Adding conversions between containers 260
6.2 Infinite arrays . 261

6.2.1 Zero extensible arrays . 264
6.2.2 Arrays extensible by insert . 264
6.2.3 Pitfalls . 264

7 Applications 265
7.1 Unique . 265

Task description . 265
Algorithm . 265
Solution using the CCL . 265
Algorithm . 266
Commentary . 266

7.2 Paste . 266
Task description . 266
Solution . 267
Commentary . 267

7.3 Mapcar . 268

8 The sample implementation 273
8.1 The different source files . 273

8.1.1 Building the software . 275
8.2 Partitioning . 275
8.3 Data structures . 276

8.3.1 The generic part . 276
8.3.2 Lists . 277
8.3.3 Source files . 278

Alignment . 278
8.3.4 Double linked lists . 280
8.3.5 Vector . 280
8.3.6 Dictionary . 281
8.3.7 String collection . 282
8.3.8 Masks . 283
8.3.9 Bit strings . 283

16 Contents

8.3.10 The iterator implementation . 283
8.3.11 The timestamp field . 285

8.4 The code . 285
8.4.1 List . 285
8.4.2 Queues . 321
8.4.3 The dictionary . 324

Hashing . 324
Creation . 326
Adding elements . 327
Implementing iterators . 328

8.4.4 The bloom filter . 330
8.4.5 Debugging malloc . 330
8.4.6 The observer interface . 333
8.4.7 ValArrays . 338

9 Building generic components 341
9.1 Pre processing a generic file . 341
9.2 Using the pre-processor . 346

The generic header file . 347
The implementation file . 348

10 API Overview 351

Index 357

1 Introduction

The objective of this proposal is to standardize the usage of common data structures
within the context of the C language. The existence of a common standard interface for
lists, hash tables, flexible arrays, and other containers has several advantages:

• User code remains portable across different projects. In C, we all use the FILE
abstraction, for instance. This abstraction allows software to be compatible across
a large spectrum of machines and operating systems. Imagine what would happen
if each project had to develop a file stream abstraction again and again. This is
the case when using lists, for instance. Today, we have in all significant projects
written in C a list module, and probably other ones like hash tables, etc.

• Avoid duplication of effort. Most of the list or hash tables modules can’t be
debugged completely and are the source of never ending problems.

• Lack of standards makes the merging of two projects very difficult since in most
cases the interfaces and data structures are slightly different. This leads to a
complete rewrite of one of the modules, or to ”adapter” software that will translate
from one list implementation to the other, adding yet another layer of complexity
to the merged project.

• The language becomes more expressive since it becomes possible to reason within
a high level environment. The lack of operations for handling advanced data
structures conditions programmers to use low level solutions like making an array
with a fixed maximum size instead of a list even if the programmer would agree
that a list would be a more adequate solution to the problem. Confronted to the
alternative of developing yet another list module or opting for a low level solution
many time constrained programmers will opt for the second solution.

• The portable specifications provide a common framework for library writers and
compiler/system designers to build compatible yet strongly specialized implemen-
tations.

• The language becomes easier to analyze mathematically. In their very interesting
paper ”Precise reasoning for programs using containers”, Dillig, Dillig and Aiken 1

enumerate three main points that make program analysis easier using containers:

1”Precise Reasoning for programs using containers” Isil Dillig, Thomas Dillig, and Alex Aitken,
available on line at http://www.stanford.edu/˜isil/popl2011.pdf or at POPL 2011 Proceedings of the

17

18 Chapter 1. Introduction

1. Understanding the contents of a container doesn’t require understanding the
container’s implementation

2. Verifying container implementations requires different techniques and degrees
of automation than verifying their clients. Hence, separating these two tasks
allows us to choose the verification techniques best suited for each purpose.

3. There are orders of magnitude more clients of a container than there are
container implementations. This fact makes it possible to annotate a handful
of library interfaces in order to analyze many programs using these containers.

• It is possible to abstract from the nature of any container (using the iterator

construct) what allows a series of algorithms to be written without having to bind
them to a precise data structure. Containers present a uniform interface to the
rest of the program.

The big innovation of C in the eighties was its standard library, that made in-
put/output portable across machines and implementations. The container library would
replicate again that idea, at a higher level.

The specifications presented here are completely scoped by the C99 specifications,
and can be implemented even in compilers that do not implement C99 and remained
within the C94 context. No language extensions are needed nor any are proposed.

The interfaces proposed try to present complete packages, i.e. interfaces with all
the necessary functions to allow the widest usage: Serialization, searching, and many
other functionalities are included in the proposed standard to allow for maximum code
portability. It can be argued that this makes for ”fat” containers, but if you read
carefully you will notice that many things can be left out in systems that run in low
memory or with feeble computing power.

This documentation is composed of several parts:

1. An introductory part where the general lines of the library are explained.

2. A specifications part where each function of the library is fully specified. This is
the proposal for the next C standard.

3. An ”examples” part that shows the uses of the library and allows you to have a
better idea of how the usage of the library looks like.

4. An implementation part where the code of the sample implementation is discussed.
This is designed as a guide for implementors to give them a basis to start with.

38th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages ACM New
York, NY, USA c©2011

1.1. Design goals 19

1.1 Design goals

1.1.1 Error analysis

It has been a tradition in C to place raw performance as the most important quality
of specifications. To follow this sacred cow, C specifications ignored any error analysis
arguing that any specification of failure modes would damage ”performance”. No matter
that raw machine performance increased by several orders of magnitude, the cost of a
check for NULL was always ”too expensive” to afford.

This kind of mental framework was described by one of the people in the discussion
group ”comp.lang.c++” as follows:2

In C++, the program is responsible for ensuring that all parameters to
the standard library functions are valid, not only the third parameter of
std::mismatch(). For example, also the first range for std:mismatch()

must be valid, one may not pass a start iterator from one container and end
iterator from another, for example. However, STL does not guarantee any
protection against such errors, this is just UB.

These specifications try to break away from that frame of thought. Each function speci-
fies a minimal subset of failure modes as a consequence of its error analysis. This allows
user code to:

• Detect and handle errors better. Error detection is simple: Almost all functions
return a negative error code when they detect an error condition. Error detection
can always test for the result of any API with:

if (SomeCclApi(arg1,arg2) < 0) {

// error handling here

}

Some functions like the Create function return a pointer. In those cases an error
provokes a NULL pointer result. The error checking in those cases should be:

if ((r=SomeCclApi(arg1,arg2)) == NULL) {

// error handling here

}

2We were discussing the specifications of the mismatach function of the C++ STL and why any
error analysis is absent. The C++ STL prescribes a bounded region for the first container, but just a
starting point for the second one. If the second is shorter than the specified range of the first undefined
behavior ensues and anything can happen. In many cases this ”anything” is different each time the
same error occurs. In our specific case mismatch would read from memory that doesn’t belong to the
container it started with. Depending on the contents of that memory a crash could happen, or worst,
a wrong result returned to the calling software, etc.

20 Chapter 1. Introduction

• Ensure that errors will always have the same consequences. One of the worst
consequences of undefined behavior is that the same error can have completely
different consequences depending on apparently random factors like previous con-
tents of memory or previous allocation pattern.

At the same time, the mandatory error checking consists mainly of checks that can
be implemented with a few integer comparisons. For instance a check for zero is a single
instruction in most processors. If implemented correctly the conditional jump after the
comparison with zero is not taken in the normal case and correctly predicted by the
processor. This means that the pipeline is not disturbed and the cost for the whole
operation is much less than a cycle.

Why is error analysis an essential part of any program specifications?
Because mistakes are a fact of life. Good programmers are good most of the time

only. Even very good programmers do make mistakes3. Software must be prepared to
cope with this fact in an orderly fashion because if failure modes are not specified they
have catastrophic consequences and lead to brittle software that crashes randomly.

Note that error analysis is not error handling. Error handling is taking an action after
an error, a task only the application can do. What the library can do is to establish a
framework where a user defined procedure receives enough information about the specific
problem at hand.

Error analysis means that for each function and each API:

• An analysis is performed of what are the consequences of any error in its inputs.
Error codes are used to pass detailed error information to the error procedure.

• During its execution, an analysis is done of each step that can fail.

• The outputs of the function are left in a consistent state, errors provoking the
undo of the previous steps in most cases, leaving the inputs as they were before
the function was called. This feature allows library functions to be restartable
after an error. For instance an out of memory condition can be corrected by
freeing memory and retrying.

The library provides hooks for the users that can control each step and provide functions
that can do the error handling, for instance logging the error and jumping to a pre-
established recovery point.

1.1.2 Full feature set

Another design goal is to offer to the user a full feature set, complete with serializing,
iterators, search, read-only containers and all the features needed in most situations.

3Donald Knuth, the author of the TeX typesetting program can be without doubt be qualified as a
good programmer (and an excellent computer scientist). But he, like anybody else, is not without flaws.
See: www.tug.org/texmf-dist/doc/generic/knuth/errata/errorlog.pdf. There are hundreds of entries in
that log.

1.1. Design goals 21

Other features are planned for later like multi-threading support. The objective here
is to avoid incompatible and non portable extensions because some essential feature is
missing.

1.1.3 Abstraction

The library is designed with the possibility of implementing abstraction like serial and
associative containers that allow software to treat several containers in a way that ab-
stract most of their features, improving code reuse by allowing to implement algorithms
for a class of objects. This is specially true in the iterators feature.

It can be argued that the C language lacks many of the abstractions constructs of
other languages like templates, inheritance, and many others. All that is true, but the
objective of this proposal is to show that those constructs are just an aid to developing
abstractions, an aid that is paid in added complexity for the resulting language, and
in a limitation of what is feasible within a given framework. Since C has no frame-
work, no preferred inheritance model, it is possible to create abstractions that are quite
unconstrained: there is no framework precisely.

1.1.4 Performance

Even with all the tests, the performance of the library has been maintained at a high
level compared to similar libraries in other languages. The performance should improve
if standardized because compiler writers could specialize their optimizations targeting
this code.

1.1.5 Compile time checking

The base implementation of the library uses void * everywhere since the library can’t
know what type of data the user is storing in it. This means that no compile-time
checking can be done on the type of arguments passed to a library function, what is
very error prone.

To mitigate this problem the library offers a ”templated” version of each container,
where the user must write a very small parameter file for a templated version that
specifies a container for a specific data type, allowing for compile time checking of
arguments and a simpler syntax.

Note that no new language features are needed for this to work since it uses the
preprocessor to specialize a file template of the desired container. Most of the containers
are provided in these two forms: a generic version using void pointers and a templated
version that builds a software layer between the generic version and the specialized
version allowing for compile time checking.

To speed up this process specialized versions of the list and vector containers are
provided for most of the basic types of the language: int, doubles, etc.

22 Chapter 1. Introduction

1.2 How the functions are specified in this document.

The specifications part of the proposal uses the same building blocks for each of the
functions proposed.
Name
The name of the function. Note that when using this name, the name of the container
interface should be always before since this name is a field of the interface structure:
iList.Add, iDictionary.Add, etc.
The name is followed by the prototype defined as a function pointer. For the function
Add of the container List we have

int (*Add)(List *list,const void *data);

int (*Add)(TYPEList *list,const TYPE data);

This means that Add is a function pointer in the interface iList. It would be used as:
iList.Add(list,data). The second line corresponds to the template form of the API.
This is explained further down (§2.2 page-27) and it is specified only when the signature
of the API diverges from the generic one. The TYPE marker means that a type name
should appear there: in the example it could be intList, doubleList, CustomerList, etc.
Description: The API is described: purpose, inputs and outputs. Note that unmodified
arguments are always marked as const.
Errors:
The minimal set of errors that can appear during the execution of the function is listed.
Each implementation is free to add implementation specific errors to this list. Note that
how the library behaves after an error is defined by the current error function in the
container (if any), then by the behavior of the error function in the iError interface.
Returns:The return value of the operation. Normally, negative values are error codes,
positive values means success, and zero means non fatal errors, more in the sense of a
warning.

1.3 Which sections of this document are normative?

This document presents the C container Library to the C standardization committee.
The following sections are normative:

• Chapter 4: The auxiliary interfaces. The required interfaces are:

– The mask interface

– The memory management interface

– The error handling interface

– The iterator interface

– The observer interface

The heap and pool interfaces are optional.

1.3. Which sections of this document are normative? 23

• Chapter 5: The containers:

Container Interface Required?

BitString iBitString !

BloomFilter iBloomFilter %

CircularBuffer iCircularBuffer !

Deque iDeque !

Dictionary iDictionary !

Dlist iDlist !

HashTable iHashTable %

List iList !

Queue iQueue !

PQueue iPriorityQueue !

StreamBuffer iStreamBuffer !

StringList iStringList !

strCollection istrCollection !

TreeMap iTreeMap !

Value array iValArrayXXX !

Vector iVector !

WstrCollection iWstrCollection %

The different ValArray containers should include several basic data types like int,
char or long. Floating point types float and double are required, but not the types
long long, long double and all complex types. The rationale is to avoid excluding
C implementations designed for very small processors or environments.

All text in footnotes, tables or drawings is not normative.
The order of the APIs within each interface is implementation defined. In general no

assumptions should exist about any specific layout of the interfaces or data structures in
the library. In the documentation the APIs are listed following the alphabetical order.

2 Overview

2.1 Containers

In the context of this library, a container is a data structure used to organize data within
a single logical object that allows for adding, searching and removing data. In most
containers the data is not further specified, but the library assumes that all elements
of a container have the same type. The data can be anything, images, numbers, text,
whatever. The only thing that the container knows is the size of the data, if we store a
series of objects of the same size, or its address, if we store objects of different sizes. In
the later case we store just a pointer in the container1.

A special kind of containers, ValArrays, contain the basic types of the C language
and the library treats them specially. There is one ValArray for each elementary type.
For character strings they are stored in ”string collections”, a term borrowed from the
C# language.

Each container has a way of iterating through all its elements by using an ”iterator”
auxiliary object, that returns each stored object in sequence. In sequential containers
you can also iterate using an index variable, what can be cheaper than using iterators
for arrays but very expensive in lists.

All objects stored by the library are copied into the library, and the library is re-
sponsible for the management of the associated storage. If you do not want this, just
store a pointer to the data and manage the data yourself.

A container has a set of functions for accessing the elements it stores, called its
interface. This object is a collection of function pointers that provide the functionality
of the container. The interfaces are stored in writable memory and the user can, at run
time, change the behavior of a class of containers by changing the function pointer. This
operation is called ”subclassing” in this document.

Subclassing allows the user to modify the behavior of a container, maybe adding
some functionality, without having to write all the container from scratch. The user of
the library can:

1Matthew Wilson uses a more restrictive definition of a container in his book ”Extended STL (Vol
1, page 16)” :

A container is a collection that owns its objects and provides operations by which those objects may
be accessed and modified and, optionally, added removed and rearranged.

By this definition, containers that have just pointers to their elements wouldn’t be containers at all.

25

26 Chapter 2. Overview

• Use the stored pointer to the original function to call the original functionality,
and add some functionality after that call.

• Add some functionality and call the stored pointer afterwards.

• Replace completely the functionality by its own without calling any of the former
functions.

Subclassing adds enormous flexibility to this design, since it makes possible to add
functionality in a transparent way.

Using the organization of the data as a classification criteria we have basically two
different kinds of containers

• 1. Sequential containers

• 2. Associative containers

• 3. Statistical Containers

A sequential container is organized in a linear order. We have a sequence starting at
index zero up to the number of elements stored. Data items can be retrieved by index,
and it makes sense to speak of a ”next” and a ”previous” element.

Sequential containers can be contiguous (arrays) or disjoint (lists). In the first case
access is very fast since it implies multiplying the index by the size of each element to
get to any position in the data. In the second case access the nth element can be a
lengthy operation since the chain of ”next” or ”previous” pointers must be followed for
each access to a given position.

An associative container stores an object divided in two parts: a key, that is used as
a token for the data, and the data itself. It associates key/value pairs. Speed of access
is fast, but not linear, and can degrade as new items are stored in it.

Statistical containers are containers that return the probability of an item being
found in them. See the bloom filter as an example.

In all cases, we have some basic properties of an abstract container that are common
to all of them.

• Functions to implement the life-cycle of the object: creation, maintenance and
destruction.

• Functions to add, replace and remove elements from the container.

• A function that returns the number of objects stored in the container.

• A function to report errors. This function (like all other function pointers) can be
changed by the user of the library. In the sample implementation it defaults to a
simple function that prints the error in the standard error stream.

• Each change in a container is recorded. This permits to validate pointers to a
container: if the container has changed after the creation of the pointer, the pointer
could be invalid.

2.2. The two types of interface 27

• All containers use a standard object to allocate and manage memory. The library
provides a default allocator that contains the standard C functions malloc, free,
realloc and calloc. Each container class can contain an allocator pointer, or each
container can contain an allocator. The provided sample implementation has a
per container allocator, but in many applications a per class allocator could be
enough, or even a single global allocator that would be used by the whole library.

Managing a sequence involves trade offs what performance is concerned. If the usage
will involve frequent insertion and deletion of objects you will prefer a container that
handles those operations in constant time: the time to add or delete an object doesn’t
increase with the number of elements in the container. Such a container will be unlikely
to provide also access to a given element in constant time. Access is likely to be much
slower, and what you gain in flexibility you loose in another dimension. It is the user of
the library, the programmer, that decides what container fits best the intended usage.

Since usage patterns change, however, the library tries to ensure that you can change
the container you are using with minimal effort. If at the beginning of an application
a list looked like a good solution but later an array, that provides constant time access
is better suited, you can change the type of container without changing every line that
uses it. The common vocabulary of the library makes this possible.

2.2 The two types of interface

The library proposes two types of access:

• A generic approach using void *. This interface allows you to pass a pointer to
the data and specify at creation time the size of the object you want to store in
the container. There is no checking at compile-time of the validity of the pointer
and the associated data. There is no checking at run time either since the software
has no information to check something.

• A templated generic approach where at compile time a templated file is specialized
for a concrete type by writing a parameter file where some macros are defined that
are used by the templated file as arguments. The user of the library is required to
write that file, compile it, and adding the resulting object files to a user-specific
library (or to the general containers library if he/she wishes) so that the linker
finds them when needed.

The functions to call, their names, etc, are the same in both approaches with one im-
portant exception: the templated approach needs an object instead of a void * to the
data as parameter, and returns an object instead of a void pointer to the data.

For instance, when writing for the generic interface you use:

double MyDouble;

List *myList;

myList = iList.Create(sizeof(double));

28 Chapter 2. Overview

// ...

iList.Add(myList,&myDouble);

For the templated interface you use:

double MyDouble;

doubleList *myList;

myList = idoubleList.Create();

// ...

idoubleList.Add(myList,myDouble);

Naming rules allow the user of the templated library to easily add the required names
to its program and use them. The naming rules are explained further down.

The drawback of the second approach is a bigger complexity of the compilation
process. When using a template container the user must:

• Give the parameters that the templated file needs. In most cases the minimum
requirements are that the data type is specified:

#undef DATA_TYPE

#define DATA_TYPE Customer

#include "listgen.h"

This will produce the definitions of the following types:

– The CustomerList container and its iCustomerList interface.

– The iCustomerListIterator: an iterator type ready to be used with any
CustomerList containers.

• Include the type specific header. For instance #include "Customerlist.h". All
client code that uses the derived container must include that header.

• Compile the instantiation of the template:

#undef DATA_TYPE

#define DATA_TYPE Customer

#include "listgen.c"

The resulting object file must be present at link time, either stand alone or within
a library.

2.3. The interface concept 29

2.3 The interface concept

Each container is defined by its interface, i.e. the table of functions it supports. For
each interface, its name is composed of a lower case ”i” followed by the container name:
iList, iVector, istrCollection, etc.

Each function of the interface receives always the container as its first argument.
Obviously, the big exception is the creation function, that receives various arguments
depending of which container or from what input, the container is to be created.

For each container interface a global object exists that allows direct access to the
function table without the need of creating a container to access it.

This interface allows for simple access to each container using a very similar vocab-
ulary:

iList.Add(list,object);

istrCollection.Add(strcol,object);

The objects stored in a container have always the same size. When storing objects of
different sizes just store a pointer to the objects, since pointers have always the same
size.

2.4 Error handling

This specification describes the basic error handling that each function of the library
must do. Other errors can appear in different implementations.

Error handling has three different phases:

1. Detection. All library functions detect blatantly wrong arguments for instance,
a NULL pointer when an object is expected, or arguments out of their valid range,
etc.

2. Reporting. When an error is detected the library calls the corresponding error
function that receives a character string with the name of the function where the
error was detected, an integer error code, and possibly other arguments. Error
codes are always negative constants.

3. Response. The library’s default response to an error is to print it in the stan-
dard error stream. This can be modified by the user at any time by calling the
SetErrorFunction API, replacing the default behavior with its own.

The response strategy can be changed at two levels 2:

• At the individual container level, by changing the error function called in most
cases when an error occurs for this specific container. The API SetErrorFunction
is specifically designed for this purpose.

2Some implementations can do additional levels. For instance an implementation can add a con-
tainer specific level by adding some error function to the interface of the container that would be called
before the global, library wide error function is called.

30 Chapter 2. Overview

• At the container library level by changing the default error function in the
iError interface.

At each error, the library calls the container instance specific error handling func-
tion. This function is initialized to the default error function of the library when the
container is created. When it is not possible to call the instance specific error function,
for instance when the instance parameter is NULL , the library calls the general error
handling function in the iError interface3.

The user of the library can either replace the default iError interface with a function
that handles the error with a jump to a previously set recovery point, or treat the error
locally using the return code.

2.4.1 Return code

All errors are negative constants, it suffices to test if the result is less than zero. In
general we have:

In the positive return code some implementations may encode additional information.
The sample implementation returns always 1 4. The zero return value means that
nothing was done: it isn’t an error but the container was empty for instance, or nothing
was written to a file, etc.

The treatment of each error is done in the object defined by the iError interface.

3There is no automatic cleanup of objects left by active functions in the stack. This can be a
problem or not, depending if you use a garbage collection or not. If you use a garbage collector, this
problem doesn’t even appear: the unused objects will be automatically collected. If you don’t, you
should test for the return code of each function.

4In general most return values could be a size_t, but it would be very difficult to differentiate a
huge unsigned number from a negative error code. Under some versions of UNIX there exists the type
rsize_t for a signed version of size_t but it is not in the C standard.

2.5. Naming conventions 31

2.5 Naming conventions

2.5.1 Container Names

The basic container names are:

AssociativeContainer BitString BloomFilter
CircularBuffer Dictionary Dlist

Deque HashTable List
Mask PQueue Queue

SequentialContainer strCollection StreamBuffer
TreeMap Vector WstrCollection

2.5.2 Interface object name

All APIs of the library begin with the composite name formed by the letter i, followed
by the element type name in the templated versions, then the container name. This
builds the interface name, i.e. the name of the function table object. This object is
indexed by the name of the specific API being called.

For calling the Add API of the List container you would write:

iList.Add. This uses the generic implementation with void *.

For calling the Add API of the Vector container built from double objects you would
write:

idoubleVector.Add. This uses the template implementation with a specific type, in
this case the double type.

The interface object idoubleVector has one field for each API it supports. The same
for the interface object iVector that is a generic interface (uses and returns void *

instead of specific types).

Other containers like the list container would have the equivalent API named as:

idoubleList.Add, or iList.Add.

The following drawing tries to make this clear:

32 Chapter 2. Overview

The different containers built from a basic container (say List) are named by con-
catenating the name of the type and the name of the container: intList, doubleList
etc.

2.6 The different containers

All data structures in this section are known and used for several decades. Lists are a
common feature of any data processing task since the sixties for instance. The library
provides for abstract containers, and some examples of concrete ones for the elementary
types. We have:

• Vectors. The general abstract vector container is implemented in the ”Vector”
container. This is a flexible array that allows for insertion/deletions, with no cost
for insertion at the end in most cases. Concrete implementations for the elementary
types are provided for bits (bit-strings), strings (null terminated), int/double/long
double numeric data in the form of templates.

Use this container when you need very cheap traversal and access times. Insertion
are deletion are more expensive than in lists. The memory overhead is minimal.

• Lists. Single linked lists (List) and double linked lists (Dlist) are provided. Lists
of strings and wide character strings are specified too. Memory overhead is one

2.6. The different containers 33

pointer for element in single linked lists, two pointers in double linked lists.

Use this container when you need very cheap insertion and deletion access times.
Traversal is more expensive than in vectors.

• Queue, Deque, Priority Queue.

Use this containers when retrieval order is important and determined by the con-
tainer.

• Trees (red/black trees, AVL trees)

Use this container when finding a given element is primordial. Insertion, deletions
and traversal times are more expensive.

• Dictionary. This is a simple implementation of a hash table with character keys.
It comes in two flavours5 :

1. Single byte character keys

2. Wide character keys

Use this container when speed of retrieval is of paramount importance but you
want to avoid the overhead of a tree.

• Hash Table. More complex implementation of a hash table with arbitrary (binary)
keys, and automatic hash table resizing.

Use this container when the key of your dictionary is not in the form of text.

• Buffers. Stream buffers (linear buffers that resize to accommodate more data) and
circular buffers are provided.

Use stream buffers when you need growable temporary data. Use circular buffers
when you need to retain the nth last elements of a stream.

5Hashtables are present in all major computer languages:

– C# features a hashtable class that ”Represents a collection of key/value pairs that are organized
based on the hash code of the key.” according to the documentation from Microsoft.

– Java has relatively recently added a HashTable class that ”... maps keys to values. Any non-null
object can be used as a key or as a value.”

– Fortran doesn’t include them in the language itself but there are librares that implement hash
tables in Fortran. For instance Herbert J. Bernstein implemented a hash table library in Fortran
2003.

– In Common Lisp hash tables are standard: make-hash-table and other functions implement
all the needed functionality.

They were absent from the C++ STL for unknown reasons. They have been now incoporated into the
latest C++ standard.

34 Chapter 2. Overview

2.6.1 Single and double linked lists

This containers consist of a header and a list of elements containing each a pointer
to the next element in the chain, and a pointer to the data item stored. The end of
the list is marked by a node that contains a NULL ”next” pointer. Double linked lists
contain an additional pointer to the previous element.

This is a very flexible container, allowing you to add and delete elements easily just
by rewriting some pointers. You can even split them in two sublists just by zeroing
somewhere the ”next” pointer.

The price you pay for this flexibility is that sequential access is expensive, the cost
of accessing the nth element increases linearly with n.

Storage overhead is one or two pointers per element stored in the list for single/double
linked lists..

The data is stored directly after the pointer, there is no pointer to the data. This is a
variable length structure with a fixed and a variable part. To avoid using a standard C99
feature that could be absent in older compilers, we use a semi-generic pointer indexed
either by one (for older compilers) or by nothing (standard C).

Single linked lists of byte or wide character strings

A specialization of the single linked list is provided for multibyte or wide character
strings. The rationale for this specialization is that zero terminated strings are variable
length records what would make them impossible to store into a standard list that needs
records of the same size.

2.6.2 Flexible arrays (vector)

This container is an array with added operations that allow the user to insert and delete
elements easily. It will resize itself if needed.

2.6. The different containers 35

The access time is essentially the same as with a normal array. Insertion and deletion
are possible but they are in general more expensive than with lists since the container
must copy the elements to make place for a new element or to delete an element. An
exception to this rule is the deletion of the last element that will be done in constant
time since it implies only decrementing the number of elements in the container.

The storage overhead for each element is zero since this container doesn’t require
any pointers per object stored.

This container uses a reserve storage to avoid allocating new memory for each ad-
dition operation. This allows the Add operation to be done in constant time in most
occasions.

Comparing vectors with plain arrays, there are following points to be made:

• With plain arrays, a program cannot determine the array’s capacity, which is to
say, its dimension when it was allocated. The program code must supply this
information independently, and must maintain that information always current.

• There isn’t any simple way to increase the size of our array, once it’s been allocated.
We often need to do that, rather than try to figure out in advance how large it
should be.

• When accessing the array there is no automatic way to check if the index is within
bounds. We have to program all array access specially if we want to make sure
there are no index errors.

2.6.3 ValArray: Arrays of numbers

This group is an specialization of flexible array. It features objects that contain numbers
in different formats designed to facilitate operations in numerical programming. There
are ValArrays for the types short, int, long, float, double, long double, size t and
long long. Each ValArray has the same basic operations (addition, subtraction, etc)
but some members have specialized operations: trigonometric operations are defined
only in floating point ValArrays, boolean operations only in the unsigned versions of the
int/short and the long long types.

ValArray functions come often in two flavors: The first uses two arrays where the
left argument is both source and destination, and a second form where a number is
applied to the whole array. For instance we have AddTo(leftArray,rightArray) and
AddToScalar(Array,number).

2.6.4 String collection

This container is designed to handle a collection of C strings. It is essentially an appli-
cation of the flexible array container with some extra functionality to handle strings. It
comes in two flavors, as strings in C: multi-byte and wide character strings.

36 Chapter 2. Overview

2.6.5 Bit-string

This container is designed to handle arbitrary sequences of bits. Some algorithms that
are easy to program with strings are much more complicated for bit-strings, like to one
that mimics ”strstr” (”bit-strstr”).

The bits are packed with 8 bits per character unit. The overhead per bit is the size
of the bit-string header only. No pointers are associated with each bit.

2.6.6 Dictionary

This is an associative container based on a hash table. It associates a text key
with some arbitrary data. This container is not ordered. Access time to each element
depends on how much elements are stored in it and on the efficacy of the hash function
to maintain elements in different slots. Storage overhead per element is one pointer each,
plus the size of the slot table. This is for a hash table with linked lists in each slot for
managing collisions. Other implementations exist of course.

2.6.7 Hash Table

This is a more sophisticated version of the dictionary hash table. It allows for keys of
binary data and it has automatic resizing in case the table gets too crowded.

2.6. The different containers 37

2.6.8 AVL trees

This data structure allows for fast searching for data. You can store millions of records
and find a given record with a few comparisons.

2.6.9 Scapegoat trees

This is another form of trees. They can be more efficient than AVL trees, but from a
container perspective they share the same characteristics.

2.6.10 Bloom Filter

This is a probabilistic data structure used to quickly check if an element is not in a larger
set of elements. It returns false positives with a given probability set when the container
is built. Elements can be added to it but they can’t be removed from the container. It
stores no data, just a key.

2.6.11 Queue

Queues are designed to operate in a FIFO context (first-in first-out), where elements
are inserted into one end of the container and extracted from the other. This container
can be implemented as an adaptor using a single linked list as its base container. The
sample implementation uses this strategy to show how adapters can look like. Other
implementations can implement this container directly presenting the same interface.

2.6.12 Deque

This is a linear container that allows for cheap insertions/deletions at both ends.

2.6.13 Buffers

Buffers are containers used to hold data temporarily, either to be transmitted or stored
into some medium, or to be filtered and used later by other parts of the application.
The library provides two types of buffers:

• Stream buffers. They are a linear sequence of bytes, like a file. They resize
automatically if they need to, and they have a cursor that points to the position
where the next item will be stored.

• Circular buffers. They store the last n items of a stream. They can contain any
item as in the vector container, or they can contain character strings, as in the
string collection.

38 Chapter 2. Overview

2.6.14 Priority Queues

This container stores data associated with an integer ”priority”. The meaning of this in-
teger is not further specified and defined by the application. The Pop operation retrieves
the data associated with the lowest priority.

2.6.15 At a glance

Container Interface Description

BitString iBitString Growable array of bits
BloomFilter iBloomFilter Statistical container
CircularBuffer iCircularBuffer Circular buffer
Deque iDeque Double ended queue
Dictionary iDictionary Hash table with character keys
Dlist iDlist Double linked list
HashTable iHashTable Hash tables with arbitrary binary keys
List iList Single linked list
Queue iQueue Queue
PQueue iPriorityQueue Priority queue.
StreamBuffer iStreamBuffer Stream buffer
StringList iStringList Single linked list of strings
strCollection istrCollection Flexible string arrays.
TreeMap iTreeMap Scapegoat trees
Value array iValArrayXXX Growable array of numbers
Vector iVector Growable array of arbitrary objects
WstrCollection iWstrCollection Flexible array of wide character strings

3 The common vocabulary: iGenericContainer

The library uses always the same words to represent similar actions in all containers. In
addition, each container can use specific words to name actions that are specific to it.
In this section only the common actions will be documented, to give an overview of the
common vocabulary available.

At the end of this documentation you will find a complete table that lists each action
supported by the library and marks which container supports it.

3.1 Creation of a container: Create

Containers are created with a call to their ”Create” function. The first argument is the
size of the objects that will be stored in the container. The second is optional and is a
hint to the number of elements that will be stored in the container. Note that if you
want to store objects of different sizes you just store a pointer to those objects instead
of the objects themselves. The creation functions can have several arguments, the first
being always the size of the elements that the container will hold. The prototype can
be:

Container * iContainer.Create(size_t elementsize,...);

The creation function needs to allocate memory to hold the container. This memory
will be allocated using the current memory manager that is always an implicit argument
to all creation functions. The rationale behind this design decision is that you don’t
change your memory allocation strategy at each call to a container creation function.
This simplifies the interface at the expense of making the change of allocation strategy
more expensive.

There is an abstract class of objects called ”Generic container” that has all functions
that are common to all containers. This is an abstraction, and as such, it can’t have
any concrete examples: there is no creation function for a generic container. You can
only create a concrete container, a list, a vector, etc.

Once created, and if the created container supports the generic interface, you can
make a cast and treat the concrete container as an abstract member of a mythical
”generic” container. This can save you a lot of redundant code since your code is
independent of the type of container and will run with any object (even future objects)
that support the generic container interface.

39

40 Chapter 3. The common vocabulary: iGenericContainer

3.2. Destruction of a container: Clear and Finalize 41

As everything, there is no free lunch. Precisely because of its generality the generic
interface is missing a lot of functionality that you will find in the concrete containers
interfaces.

3.2 Destruction of a container: Clear and Finalize

All containers support two cleanup functions:

1. Clear: remove all elements. The header structure remains untouched. This can be
used to free the memory when the container was created with the Init function.

2. Finalize: Remove all elements and the memory used by the container object using
the allocator for this container. The container should NOT have been created
using the Init function.

The syntax is:

1. int iContainer.Clear(Container *);

2. int iContainer.Finalize(Container *);

The result of those functions is less than zero when something goes wrong, greater than
zero otherwise.

3.2.1 Other creation functions

1. An implicit argument to all the creation functions is the current allocator, that is
used to retrieve space for the container being built. To avoid changing the current
allocator, what in multi-threaded environment would need acquiring a lock to that
global variable, some containers support a creation function that receives an extra
argument: a custom allocator.

Container * iContainer.CreateWithAllocator(size_t elementsize,

const ContainerAllocator *allocator, ...);

2. Sometimes it can be useful for some containers (specially lists) to create the header
structure using an already existing space, for instance in the space for local vari-
ables. For this an ’Init’ function can exist, that initializes a container within an
existing space. Since normally the detailed structure (and the size of course) of
each container header is implementation dependent, you use the Sizeof function
with an argument of NULL to get the size of the header. This can be used within
a C99 compiler environment to allocate the space for that variable. 1 The decla-
ration of the container header in C99 would be:

1This incredibly useful feature has been made now optional by the C99 committee, even if it was
mandatory when the C99 standard was published.

42 Chapter 3. The common vocabulary: iGenericContainer

int function(void)

{

char listSpace[iList.Sizeof(NULL)];

iList.Init(listSpace);

}

If C99 is not available, the best way is to just print the size of the container you are
interested in, and then use that value that should stay fixed for a given version.
This can be automated and you can find in the Appendix 1, a small program
that generates a series of #defines with the values of the sizes of the containers
described in this documentation 2.

3. Initializing with existing data All containers support the InitializeWith func-
tion. It will create a container using a table of elements to store. Its arguments
are the size of the objects to be stored, the number of those objects, and a pointer
to the table. The table should be a contiguous memory area.

/* For sequential containers and TreeMap */

Container * iContainer.InitializeWith(size_t elementsize,

size_t n, void *data);

/* For Dictionary */

Container * iContainer.InitializeWith(size_t elementsize,

size_t n, char ** Keys,void *data;

3.3 Adding an element to a container: Add and AddRange

This operation adds the given element to a container. In sequential containers it is added
at the end, in associative containers it is added at an unspecified position.

int iContainer.Add(Container *,const void *element);

The result of this operation is a positive integer if success, or an error code less than
zero if the operation fails.
Invariants: The input data is not modified in any way, it is copied into the container.

Sequential containers support also the AddRange API:

int iContainer.AddRange(Container *,size_t n,const void *elements[]);

This API allows you to pass a table of elements into a sequential container and add it
with a single call.

2Other frameworks use a similar method. For instance Apple Foundation classes has several classes
that take an ”allocator” argument, for instance the CFBundleCreate and other functions that create
objects.

3.4. Removing elements from a container 43

3.4 Removing elements from a container

3.4.1 Using an element as key

The functions Erase and EraseAll remove the given element from the container. The
result is an integer greater or equal to zero or an error code less than zero if the element
couldn’t be added 3 .

The EraseAll function is not needed for associative containers since each element in
those data structures is unique.

int iContainer.Erase(Container *,const void *element);

int iContainer.EraseAll(Container *,const void *element);

3.4.2 Removing at a given position

The Erase/EraseAt functions need to search for the given element before erasing it. For
sequential containers you can use the ”EraseAt” function, that will remove an element
at a given position.

int iContainer.EraseAt(Container *,size_t idx);

For associative containers you use a different argument set:

int iContainer.Erase(Container *,const char *Key);

3.4.3 Using a container as a stack

Elements can be removed from the front or the back in sequential containers using it
like a stack:

int iContainer.PopBack(Container *d,void *outbuf);

int iContainer.PopFront(Container *d,void *outbuf);

These functions copy the contents of the last or the first element into the given buffer.
If the buffer is NULL, nothing is copied, but the container is modified: the first or the
last element is removed.

3In previous versions these functions returned some useful information in case of success, for instance
the number of elements left. The problem is that an int can’t span all the possible values of a size t

data type but it is needed to return negative error codes. If the result type would be a size t the
negative error codes would be transformed in other values, etc. After some iterations the present
solution was used: a positive number is equal to success, without specifying what the positive number
is, or what information (if any) should be coded in it. The sample implementation always returns 1.

44 Chapter 3. The common vocabulary: iGenericContainer

3.4.4 Batch removing

Several elements can be removed at once from a container using the RemoveRange func-
tion. This function is implemented in sequential containers only.

int iContainer.RemoveRange(Container *c,size_t start, size_t end);

This function removes the elements whose index is greater or equal than start and less
than end. If start equals end nothing is removed and the result is zero. If end is greater
than the length of the container it will be adjusted to 1 element past the end. If no
elements are removed the result is zero, positive when one or more elements are removed.
The result is a negative error code when an error occurs.

3.5 Retrieving elements

The GetElement function retrieves an element from a container. It comes in two different
flavors, one for sequential containers, and another for associative ones.

const void *iContainer.GetElement(const Container *,size_t index);

const void *iContainer.GetElement(const Container *,const void *Key);

These functions return a pointer to the requested element or NULL if the element can’t
be retrieved. The resulting pointer points directly to the data stored in the container.
This could be used to bypass all the flags that control the access to the container. For
read-only containers, use the CopyElement function that returns a copy of the requested
data into a buffer.

The function GetRange retrieves a slice of a container returning a container of the
same type with a copy of the elements storeds in the given range:

Container *iContainer.GetRange(const Container *src,

size_t start, size_t end);

The pointer returned can be invalidated by some operations done to the container.
For instance if you reverse the order of the elements in a container, a pointer to the
element zero will point to something else than when you obtained it. If a container
needs reallocating its data space because you added an element, all the pointers that
point to data elements of the container can be invalidated. In general it is a bad idea
to keep pointers to elements in a container that is being modified
Invariants: The given container is not modified in any way.

3.6 Using masks

A mask is a sequence of boolean elements that contains zeroes or some value different
from zero. They are used to select elements from a sequential container: for each element

3.7. Sorting a sequential container: Sort 45

of the mask different from zero the corresponding value is selected, for all elements that
contain a zero, that value is eliminated.

The selection operation can be destructive, reusing a container by eliminating from
it all elements not selected by the mask, or can be a copy operation where the copy
contains only the selected elements.

In the case of a destructive operation, the destructor functions are called for each
element destroyed.

int (*Select)(Container *,const mask *);

Container *(*SelectCopy)(const Container *,const mask *);

The functions CompareEqual and CompareEqualScalar produce a mask using two
containers as input. Those masks can be used with the selection functions. It is possible
of course, to create masks from completely different sources, either directly or by copying.
See the iMask interface for further details.

Mask *(*CompareEqual)(const Container *,const Mask *);

Mask *(*CompareEqualScalar)(const Container *, const Mask *);

The CompareEqual function compares two sequential containers of the same type
and length, producing a mask containing a value different from zero at each element
position where the pair of elements from each container is equal, zero otherwise.

The CompareEqualScalar function compares each element of the given sequential
container with a single elemnt, producing a mask with a value different from zero4 for
each element that is equal to the given element.

3.7 Sorting a sequential container: Sort

The ”Sort” function will sort a container in place. To keep the old, unsorted contents,
make a copy of the container first.

int iContainer.Sort(Container *);

3.8 Copying a container: Copy

The ”Copy” function will make a fresh copy of a container. Some fields of the header
are copied: the error and compare functions, the flags, and others. Memory will be
allocated withe the source container allocator.

newContainer * iContainer.Copy(const Container *);

Invariants: The input container is not modified.

4Usually this value is 1 of course

46 Chapter 3. The common vocabulary: iGenericContainer

3.9 Saving and loading a container to or from disk: Save and Load

The functions ”Save” and ”Load” will save / load the contents, state, and characteristics
of a container into / from disk. They need an open file stream, open in binary mode,
and in the correct direction: saving needs a stream open in the write direction, loading
needs a stream open in the read direction.

int Save(const Container *c,FILE *stream, SaveFunction fn,void *arg);

Container *Load(FILE *stream,ReadGunction fn,void *arg);

Both Save and Load provide default functions to save and load an element but they do
a shallow save: pointers aren’t followed to save the data they point to 5.

3.10 Inserting a container into another

3.10.1 Sequential containers

int (*InsertIn)(Container *destination,

size_t position,

Container *source);

int (*Append)(SequentialContainer * SC1,SequentialContainer * SC2);

The InsertIn function will insert into the ”destination” container the contents of the
source container at the given position. The source is not modified in any way, and
a copy of its data will be used. Both containers must be of the same type and store
elements of the same type. The library only tests the element size of each one.

The Append function is similar to InsertIn: the elements of the second container are
appended at the end of the first one. The big difference is that the second container is
destroyed. It is absorbed into the first: its elements are not copied but inserted. This
means that a requirement is that the allocator be the same in both containers.

3.10.2 Associative containers

int (*InsertIn)(Container *destination, Container *source);

This function will insert into the destination container the source container using the
source container keys. Otherwise the same conditions apply as to the sequential con-
tainers: the containers must be of the same type and store elements of the same type.

5In general it is a bad idea to save elements containing pointers without a custom save/load function.
The pointers restored are with almost certainty wrong when restored in another environment

3.11. Replace an element with another 47

3.11 Replace an element with another

3.11.1 Sequential containers: ReplaceAt

int (*ReplaceAt)(Container *dst,size_t position,void *newData);

Replaces the element at the given position with the new data.

3.11.2 Associative containers: Replace

int (*Replace)(Dictionary *Dict, const char *Key,void *Value);

Replaces the element with the given key. If the element is absent nothing is done.

3.12 Looping through all elements of a container

The user has three methods for looping through all elements:

1. Using a simple loop construct

2. Using the Apply function

3. Using an iterator

One the most familiar design patterns is the ITERATOR pattern, which ‘provides a
way to access the elements of an aggregate object sequentially without exposing its
underlying representation.

Traditionally, this is achieved by identifying an ITERATOR interface that presents
operations to initialize an iteration, to access the current element, to advance to the
next element, and to test for completion; collection objects are expected to implement
this interface, usually indirectly via an auxiliary object.

This is exactly the case in the iterator proposal here. Essential to the pattern is
the idea that elements are accessed sequentially, but independently of their position in
the collection; for example, labeling each element of a tree with its index in left-to-right
order fits the pattern, but labeling each element with its depth does not. This traditional
version of the pattern is sometimes called an EXTERNAL ITERATOR.

An alternative INTERNAL ITERATOR approach assigns responsibility for manag-
ing the traversal to the collection instead of the client: the client needs only to provide
an operation, which the collection applies to each of its elements. The latter approach is
simpler to use, but less flexible; for example, it is not possible for the iteration to affect
the order in which elements are accessed, nor to terminate the iteration early. This is
the algorithm followed by the Apply function.

48 Chapter 3. The common vocabulary: iGenericContainer

3.12.1 Using a simple loop to iterate a container

You can iterate any sequential container with a simple loop. You use the ”Size” func-
tion to limit the loop. At each loop step you get the corresponding element with the
”GetElement” function, present in this form in all containers.

// "Container" is a pointer to some container

for (size_t i=0; i<iContainer.Size(Container); i++) {

someType *element = iContainer.GetElement(Container,i);

// Use "element" here.

}

For associative containers you retrieve first a strCollection containing all keys using the
GetKeys function, present in all associative containers. Then, you retrieve each element
by looping through the string collection that you have obtained in a similar manner to
the sequential containers.

3.12.2 Using the Apply function.

The Apply function will iterate through all elements calling a given function for each
one.1 Its prototype is:

void iContainer.Apply(Container, //pointer to some container

int(*Applyfn)(void *elem,void *arg),

void *arg);

This function receives three arguments:

1. A pointer to the container. 6.

2. A function pointer that should point to a function that receives two arguments:
the element of the container, and an extra argument where it can receive (and
write to) global information about the search. This extra argument is

3. The third one passed to the Apply function. Apply will pass this argument to the
given function together with a pointer to the element retrieved from the container.

3.12.3 Using iterators

Iterators are objects returned by each container that allow you to iterate (obviously)
through all elements of a container. You use iterators like this:

6Note that the container is not declared as const and could possibly be modified either directly
or indirectly by the function being applied to it. Some modifications like modifying the number of
elements could lead to undefined behavior since it is not required that the Apply loop tests at each
iteration if the container has been modified

3.12. Looping through all elements of a container 49

Iterator *it = iContainer.NewIterator(someContainer);

Mytype *Myobject;

for (myobject = it->GetFirst(it);

myobject!= NULL;

myobject = it->GetNext(it)) {

// Work with "myobject" here

}

iContainer.DeleteIterator(it); // dispose the iterator object

Iterators provide a container-independent way of iterating that will work with any con-
tainer, both sequential or associative. In associative containers the specific sequence is
implementation defined, and in sequential containers is the natural sequence.

The main objective for iterators is to break a dependence between an algorithm and
the type of container it is working with. Since all containers support iterators, you can
write your code independently (to a great extent) from which specific iterator you are
using.

Invariants: The input container could be modified in some implementations. A list of
existing iterators is possible, to allow invalidating them in case of modifications to the
container for example.

Iterators always support at least the following functions:

void *iterator->GetFirst(iterator);

void *iterator->GetNext(iterator);

void *iterator->GetCurrent(iterator);

All containers support the ”NewIterator” and ”deleteIterator” methods:

iterator *iContainer.NewIterator(Container);

int iContainer.deleteIterator(iterator);

Iterators must be destroyed since they are allocated using the containers allocator.

Sequential containers can support additional functions:

void *iterator->GetLast(iterator);

void *iterator->GetPrevious(iterator);

void *iterator->Seek(iterator i, size_t position);

This interface allows users to write fully general algorithms that will work with any
container, independently of its internal structure. Obviously the performance can differ
from container to container depending on usage.

50 Chapter 3. The common vocabulary: iGenericContainer

All iterators will become invalid if the underlying container changes in any way,
except through the iterator itself.7 Each container can conceptually be seen as a sequence
of generations, or states. Beginning with the fresh constructed state, the container
evolves until it reaches the destroyed state after the execution of the Finalize function.
This sequence of states interacts with an iterator as follows: An iterator applies only to
a single container state. Any modification of the container state, directly or indirectly
moves the state and invalidates the iterator.

An implementation may catch some of the movements of the container in the state
space and report an error when an iterator is used that belongs to a different container
state. But not all access can be catched. If the user has pointers to an iterator’s data
and modifies this data without using the container API an implementation may not
catch this error.

3.13 Setting and retrieving the state: GetFlags and SetFlags

Each container has a set of flags that can be read and written to change the container’s
behavior. The only flag that is defined by all containers is the read-only flag. Implemen-
tations can extend this to offer different services like copy-on-write, or other applications.

The read-only flag means that no direct pointers to an element or to the whole data
are returned, no functions that modify the container are allowed to proceed and that
the Clear() and Finalize() APIs will not work. You must unset this flag to allow for
destruction of the object. 8

Using the state space concept introduced above, this flag freezes the state of a con-
tainer disallowing any further evolution. The only API that can modify the state is the
SetFlags API that can reset the state to a read/write state again.

7This is completely different to the C++ language. In C++ you may have an invalid iterator or not
if you change the underlying container, depending on the operation and the specific container involved.
This interface was discarded for the following reasons:

1. There are many rules to remember without underlying principles. You have to know the specifics
of each container to know if the iterators are invalidated or not. This breaks the independence
of the algorithm code from the underlying container.

2. Any error leads directly to catastrophic consequences instead of being caught and signaled in an
orderly fashion. Worst, errors do not produce always the same consequences, depending on what
were the contents of the invalid memory you are using, on the memory allocation pattern, etc.
In short, any error leads to very difficult maintenance problems.

3. Any modifications of the container type lead to a review of all code that uses that container since
the rules change from container to container. Iterators that worked could be invalid now. This
another source of errors.

8Contrary to C++ const directive this is done at run time and an explicit check of this flag is
needed. This has disadvantages (one instruction and a conditional jump are needed) but it has also
advantages: you can set it when you pass some container to another module, and unset it when you
need to update the container. This solution is more flexible than the static solution at the cost of a
very small runtime cost.

3.14. Retrieving the number of elements stored: Size 51

3.14 Retrieving the number of elements stored: Size

All containers support querying the number of elements stored. The prototype is:

size_t iContainer.Size(const Container *);

There is no error return. If a NULL pointer is given to those functions the result is zero.

3.15 Sizes

3.15.1 Sizeof

This computes the total size used by the container in bytes, including the header struc-
ture and the data stored in the container. Any other overhead must be accounted for.

size_t iContainer.Sizeof(const Container *);

If its argument is NULL , Sizeof returns the size of the container header. This can
be used to allocate space for a container as a local variable for instance.

3.15.2 SizeofIterator

Computes the size of the iterator for the given container. The objective here is to allow
the declaration of the iterator as a local variable to avoid having to free the iterator at
the exit of the function.

int Fn(void)

{

char buf[iList.SizeofIterator(NULL)];

Iterator *it = (Iterator *)buf;

iList.InitIterator(it);

// Use iterator "it" here

// ...

// No need to call deleteIterator at exit

}

3.16 Memory management

All containers have a pointer to their allocator object. An allocator object is a simple
interface that provides 4 functions:

1. malloc: A function that receives a size t and returns a void * pointing to a
memory block of the requested size, or NULL if no more memory is available. Note
that this function receives the number of bytes to allocate, not the number of
items.9

9In C++ the allocator receives the number of items to allocate.

52 Chapter 3. The common vocabulary: iGenericContainer

2. realloc: A function that will resize a previously allocated block.

3. free: A function that will release the memory allocated previously with mal-
loc/realloc.

4. calloc: a function that will allocate n objects of m size and clear the memory block
to zero before returning it.

At the start of the library runtime a default allocator object exists that uses the four
functions of the standard C library. Other allocator objects can be used, and the user can
change the global allocator at any time. Each container retrieves the default allocator
object when created, and stores it in the container descriptor. Any further change to
the default allocator will not affect existing containers that have already an allocator.
When changing the allocator you should do that before creating the container.

Some containers are created without any heap management by default. You can
introduce heap management by calling the UseHeap function, that will install a new
heap in the container. Other containers are always created with a heap, and you should
pass them an allocator object for object creation.

3.16.1 Memory manager objects

The library provides two memory manager objects:

1. The default memory manager, that receives the standard C library functions; mal-
loc, free, realloc and calloc.

2. The debug memory manager that implements the same functions with added func-
tionality designed to:

• Catch the ”double free” problem.

• Catch the overflow of a memory block

• Catch freeing a block that wasn’t allocated

3.16.2 Pooled memory management

The problem with the traditional C memory management is that it requires that the
programmer cares about each piece of RAM that is allocated by the program and follows
the lifetime of each piece to ensure that it gets returned to the system for reuse. In
today’s software world, this is just impractical.

A better strategy is to use a pool of memory where related memory allocations can
b e done from a common pool. When the module finishes, all the allocated pool is freed
just by destroying the whole pool. This is much easier to manage, and in many cases
more efficient. The proposed interface has the following functionalities:

1. Creation. The creation function receives a memory allocator to use for this pool.

3.16. Memory management 53

2. Alloc. This function receives a pool and a size and returns a memory block, or
NULL if there is no more memory.

3. Clear. This erases all objects allocated in the pool without returning the memory
to the system.

4. Finalize. This releases all memory and destroys all objects.

Note that there is no realloc, and that the ”Clear” function is optional. Not all pools
support it. The rationale for these decisions being that realloc would need to store the
size of each block, what in a pool maintained by a single stack like pointer would be
very expensive.

3.16.3 Heap of same size objects

Many containers are used to store sets of objects of the same size. The library provides
a specialized heap management software for this application. It stores vectors of objects
of the same size. The interface provided is as follows:

• Create. This function receives as an argument a memory manager object that will
be used to allocate memory.

• NewObject: returns an object to the application

• FreeObject: Adds an object to the list of available objects

• Size: Returns the size of the heap in bytes

• Clear: reclaims memory used by the free list

• Finalize: Reclaims all memory used by the heap and the heap object

3.16.4 Garbage collection

Automatic garbage collection is offered by some compiler systems as an alternative
to traditional memory management. This solution is not compatible with real time
requirements, and is not practical in machines with very low memory configurations.

In other cases however, it can be a real simplification since the programmer is relieved
from the huge task of taking care of each piece of memory and to cater its disposal.
A simple memory model is proposed: you program as if the amount of memory was
infinite and never worry about freeing the memory you use. Periodically the collector
starts collecting unused memory chunks and adds them to the pool of available memory
or releases it to the underlying operating system.

This model is not the solution to all memory management problems. It can be
a solution to some situations, specially when developing in workstation environments
where memory is freely available. The bugs that can appear are also very difficult to
solve. One of the most difficult is when you keep by mistake some reference to a large

54 Chapter 3. The common vocabulary: iGenericContainer

piece of memory making the recycling of the memory impossible. In that case you have
to search in all the code of the application for the reference that keeps the memory block
marked as used, and that can be very difficult in large applications.

3.16.5 Multi-threading

In environments where multi-threading or other parallel programming constructs are
possible, the implementation must provide for sequential semantics, i.e. each operation
should perform as described in this documentation with the additional caveat that any
operation that modifies a container must be atomic, i.e. it can’t be interrupted leaving
the container in an unstable or incoherent state. It is up to the implementation to
ensure that if an atomic operation is interrupted, the inconsistent container state will
be invisible to other processes or threads accessing the container.

3.17 At a glance

For a more detailed description see §10 on page 351

Operation Description
Add Adds a single element at the end of the container
AddRange Adds a sequence of elements
Append Adds a container after a first one
Apply Calls a function with each element of the container in sequence.
Clear Erases all elements
Contains Searches for an element in a container
Copy Copies a container
Create Creates a container that will use the current allocator.
CreateWithAllocator Creates a container that will use a given allocator.
deleteIterator Disposes of the storage used by the iterator object
Equal Compares two containers of the same type
Erase Removes an element from the container
EraseAt Erases an element at a given position
Finalize Destroys all storage used
GetElement Retrieves one element from a container
GetFlags Returns the flags
GetAllocator Retrieves the allocator used by the container
GetRange Retrieves several elements
IndexOf Retrieves the position of an element
InsertAt Inserts an element at a given position
InsertIn Inserts a container into another
Load Retrieves a container from disk
NewIterator Returns an iterator object
PopFront Retrieves the first element and removes it
PopBack Retrieves the last element and removes it
PushFront Stores an element at the start of a container
PushBack Stores an element at the end
RemoveRange Erases a range of elements
Replace Replaces one element (Associative containers)

3.17. At a glance 55

ReplaceAt Replaces one element (Sequential containers)
Save Stores the container to disk
SetCompareFunction Sets or retrieves the function used for comparisons
SetErrorFunction Sets or retrieves the function used to report errors
SetDestructor Sets or retrieves the function called when an element is destroyed
Select Selects elements using a mask
SelectCopy Select elements to copy using a mask.
SetFlags Sets the flags
Size Returns the number of elements stored in the container
Sizeof Returns the number of bytes used
SizeofIterator Returns the size of the iterator object for a container
Sort Sorts the contents

Iterator vocabulary
GetFirst Retrieves a pointer to the first element
GetNext Retrieves a pointer to the next element
GetPrevious Retrives a pointer to the previous element if the container supports

bidirectional seek.
GetCurrent Retrieves a pointer to the current element
GetLast Retrieves a pointer to the last element
Replace Replaces the current element with a different element. If the given

pointer to the replacement is NULL it will delete the current element.
Seek Sequential containers only. Positions the cursor at a given position.

4 The auxiliary interfaces

These interfaces are used by all the containers in the rest of the library. They provide
basically the following functions:

• Memory management with the Allocator object.

• Observer and circulation of notifications with iObserver.

• Error handling with the iError interface.

• Masks used to select items

4.1 Masks

A mask is a sequence that contains boolean data used for selection of items in a sequential
container. It is not specified if a mask is a bit string (i.e. a strictly boolean array) or an
array of chars or other integers used to hold the binary data. In all cases a value of the
mask at a given position means select if it is different than zero, or do not select if it is
zero.

57

58 Chapter 4. The auxiliary interfaces

The interface offered by the mask object is very small. Masks can’t be resized but
they have an allocator to be able to reclaim the memory they use when created. This
allocator will be initialized to the current allocator when the mask is created.

4.1.1 The interface

typedef struct _Mask Mask;

typedef struct tagMaskInterface {

int (*And)(Mask *src1,Mask *src2);

int (*Clear)(Mask *m);

Mask *(*Copy)(Mask *src);

Mask *(*Create)(size_t length);

Mask *(*CreateFromMask)(size_t length,char *data);

int (*Finalize)(Mask *m);

int (*Or)(Mask *src1,Mask *src2);

size_t (*PopulationCount)(const Mask *m);

int (*Set)(Mask *m,size_t idx,int val);

size_t (*Size)(Mask *);

} iMask;

4.1.2 The API

And

int (*And)(Mask *src1,Mask *src2);

Description: Stores into src1 the result of a logical AND operation between each
element of src1 with the corresponding element of src2.
Errors:
CONTAINER ERROR BADARG Any mask pointer is NULL .
CONTAINER ERROR INCOMPATIBLE The masks are of different length.
Returns:A positive number if the operation was performed, a negative error code if an
error occurs.

Clear

int (*Clear)(Mask *m);

Description: Sets all elements of the mask to zero.
Errors:
CONTAINER ERROR BADARG The mask pointer is NULL .
Returns:A positive number if the mask was cleared, a negative error code if an error
occurs.

4.1. Masks 59

Copy

Mask *(*Copy)(Mask *src);

Description: Allocates a new mask and copies the contents of the given one into it.
Errors:
CONTAINER ERROR BADARG The mask pointer is NULL .
Returns:A pointer to the new mask or NULL if an error occurs.

CreateFromMask

Mask *(*CreateFromMask)(size_t length,char *data);

Description: Creates a new mask with the specified length and copies the given data
into the mask. Each character in the input data is transformed into the mask internal
representation. The storage is obtained using the CurrentAllocator pointer.
Errors:
CONTAINER ERROR BADARG The data pointer is NULL

CONTAINER ERROR NOMEMORY No memory is available to perform the allocation.
Returns:A pointer to a new mask or NULL if an error occurs.

Create

Mask *(*Create)(size_t length);

Description: Creates a new mask with the specified length. The storage is obtained
using the CurrentAllocator pointer. The data is initialized to zero.
Errors:
CONTAINER ERROR NOMEMORY No memory is available to perform the allocation.
Returns:A pointer to a new mask or NULL if an error occurs.

Finalize

int (*Finalize)(Mask *m);

Description: The memory used by the mask is reclaimed.
Errors:
CONTAINER ERROR BADARG The mask pointer is NULL .
Returns:A positive number if the memory was reclaimed, or a negative error code.

Not

int (*Not)(Mask *src);

Description: Stores into src the result of a logical NOT operation: each bit is inverted.
Errors:
CONTAINER ERROR BADARG The mask pointer is NULL .
Returns:A positive number if the operation was performed, a negative error code if an
error occurs.

60 Chapter 4. The auxiliary interfaces

Or

int (*Or)(Mask *src1,Mask *src2);

Description: Stores into src1 the result of a logical OR operation between each element
of src1 with the corresponding element of src2.

Errors:

CONTAINER ERROR BADARG Any mask pointer is NULL .

CONTAINER ERROR INCOMPATIBLE The masks are of different length.

Returns:A positive number if the operation was performed, a negative error code if an
error occurs.

PopulationCount

size_t (*PopulationCount)(const Mask *m);

Description: Counts the number of entries different from zero in the given mask,
returning the sum.

Errors:

CONTAINER ERROR BADARG The mask pointer is NULL .

Returns:A positive number or zero.

Set

int (*Set)(Mask *m,size_t idx,int val);

Description: Sets the given position to the given value if the value fits in the internal
representation of the mask. If not, an implementation defined conversion occurs.

Errors:

CONTAINER ERROR BADARG The mask pointer is NULL .

CONTAINER ERROR INDEX The index given is out of bounds.

Returns:A positive number if the value was set or a negative error code.

Size

size_t (*Size)(Mask *);

Description: The number of elements in the mask is returned.

Errors:

CONTAINER ERROR BADARG The mask pointer is NULL .

Returns:The number of elements. If the mask pointer is NULL , the result is zero.

Sizeof

size_t (*Sizeof)(Mask *);

4.2. Memory management 61

Description: The number of bytes used by the given mask. If the argument is NULL

the number of bytes of the header structure is returned.

Errors:

None.

Returns:The number of bytes.

4.2 Memory management

Several interfaces implement different memory allocation strategies. This should give
flexibility to the implementations, allowing it to use several memory allocation strategies
within the same container.

The library starts with the default memory manager, that contains pointers to the
default C memory management functions: malloc, free, realloc and calloc. Another
memory manager is the debug memory manager that should implement more checking
and maybe offer hooks to the debugger. The sample implementation shows how to
implement several simple checks, but other implementations can extend this simple
interface providing much more sophisticated controls1.

1An open issue is whether the interface of the memory allocator should be extended with functions
like GetSize for instance, that would return the size of a given memory block, or other query functions
like isMallocBlock that would allow to verify if a memory block belongs to the pool. Some proposals
were discussed in the discussion group comp.std.c but nothing official has emerged from the committee
meetings

62 Chapter 4. The auxiliary interfaces

4.2.1 The default memory manager

The C language provides several functions to manage memory. The default Allocator
object is built from the standard C memory allocation functions.

typedef struct tagAllocator {

void *(*malloc)(size_t);

void (*free)(void *);

void *(*realloc)(void *,size_t);

void *(*calloc)(size_t,size_t);

} ContainerAllocator;

extern ContainerAllocator * CurrentAllocator;

At startup, the CurrentAllocator points to an object constructed with the functions of
the C standard library. This is a required interface. The user can change at any time
the current allocator by making the CurrentAllocator point to a different object. Note
that this change does not change the allocators of the containers already created but
the allocators of the new containers allocated after the change is made.

This is the established procedure to build custom memory allocators to provide for
special alignment requirements, improve speed, allocate objects from the stack instead
of the heap, and many other usages.

All containers have an Allocator object, either explicitely when created with the
CreateWithAllocator API or implicitely since all creation functions use the object
pointed to by the CurrentAllocator global variable to obtain memory.

The library can also include a debug version on top of the standard C functions,
offering the same interface. Changing the CurrentAllocator to point to that object
allows to switch to the debug version. The debug version of the sample implementation
offers:

• Detection of free() of a memory block not allocated by malloc().

• Detection of writing past the end of the block in some cases.

• Detection of freeing a memory block twice.

extern ContainerAllocator iDebugMalloc;

This interface is optional. The sample implementation documents a possible implemen-
tation, see §8.4.5 on page 330 .

Interface for modifying the current allocator

typedef struct tagAllocatorInterface {

ContainerAllocator *(*Change)(ContainerAllocator *newAllocator);

ContainerAllocator *(*GetCurrent)(void);

} AllocatorInterface;

extern AllocatorInterface iAllocator;

4.2. Memory management 63

Change

ContainerAllocator *(*Change)(ContainerAllocator *newAllocator);

Description: Changes the value pointed by the CurrentAllocator pointer to the
given one. This is an atomic operation. If the given allocator pointer is NULL nothing
is changed.
Errors:
None
Returns:The old value stored in the CurrentALlocator pointer.

GetCurrent

ContainerAllocator *(*GetCurrent)(void);

Description: Returns the value pointed to by the CurrentAllocator pointer. This
operation is atomic.
Returns:The value stored in the ,CurrentAllocator, pointer 2 .

4.2.2 The Heap interface: iHeap

Some containers can benefit from a cacheing memory manager that manages a stock of
objects of the same size. This is not required and not all implementations may provide
it. If they do, the interface is:

int (*UseHeap)(Container *c);

ContainerHeap *(*GetHeap)(Container *c);

In the sample implementation, many complex data structures are implemented using a
heap. This allows automatically to have an iterator, since for looping all elements of the
container it suffices to iterate the underlying heap. The standard interface for the heap
is:

typedef struct tagContainerHeapInterface {

void (*Clear)(ContainerHeap *heap);

ContainerHeap *(*Create)(size_t ElementSize,

const ContainerAllocator *m);

void (*Finalize)(ContainerHeap *heap);

int (*FreeObject)(ContainerHeap *heap,void *element);

ContainerHeap *(*InitHeap)(void *heap,size_t nbElements,

const ContainerAllocator *allocator);

Iterator *(*NewIterator)(ContainerHeap *);

void *(*NewObject)(ContainerHeap *heap);

2This API exists to provide a portable entry point for implementations that support threads of
execution or parallel environments. Implementations where those features do not exist can recommend
user to directly modify the value of the CurrentAllocator pointer for efficiency reasons.

64 Chapter 4. The auxiliary interfaces

size_t (*Sizeof)(ContainerHeap *heap);

int (*deleteIterator)(Iterator *it);

} ContainerHeapInterface;

Create

ContainerHeap *iHeap.Create(size_t elementSize, Allocator *m);

Description: Creates a new heap object that will use the given memory manager to
allocate memory. All elements will have the given size. If the memory manager object
pointer is NULL , the object pointed by CurrentAllocator will be used.
Returns:a pointer to the new heap object or NULL , if an error occurred.
Errors:
CONTAINER ERROR BADARG The element size is bigger than what the heap implemen-
tation can support..
CONTAINER ERROR NOMEMORY Not enough memory is available to complete the op-
eration.

InitHeap

ContainerHeap * (*InitHeap)(void *heap,size_t ElementSize,

ContainerAllocator *m);

Description: Initializes the given buffer to a heap header object designed to hold
objects of ElementSize bytes. The heap will use the given memory manager. If the
memory manager parameter is NULL the default memory manager is used.

This function supposes that the heap parameter points to a contiguous memory space
at least enough to hold a ContainerHeap object. The size of this object can be obtainer
by using the iHeap.Size API with a NULL parameter.
Returns:A pointer to the new ContainerHeap object or NULL if there is an error. Note
that the pointer returned can be different from the passed in pointer due to alignment
requirements.

newObject

void *iHeap.newObject(ContainerHeap *heap);

Description: The heap returns a pointer to a new object or NULL if no more memory
is left.
Errors:
CONTAINER ERROR NOMEMORY Not enough memory is available to complete the op-
eration.
Returns:A pointer to an object or NULL if there is not enough memory to complete the
operation.

4.2. Memory management 65

FreeObject

size_t iHeap.FreeObject(ContainerHeap *heap,void *element);

Description: Adds the given object to the list of free objects, allowing for recycling
of memory without new allocations. The element pointer can be NULL .
Errors:

CONTAINER ERROR BADARG The heap pointer is NULL .
Returns:The number of objects in the free list.

Clear

void iHeap.Clear(ContainerHeap *heap);

Description: Releases all memory used by the free list and resets the heap object to
its state as it was when created.
Errors:

CONTAINER ERROR BADARG The heap pointer is NULL .

Finalize

void iHeap.Finalize(ContainerHeap *heap);

Description: Destroys all memory used by the indicated heap and frees the heap object
itself.
Errors:
CONTAINER ERROR BADARG The heap pointer is NULL .

Sizeof

size_t iHeap.Sizeof(ContainerHeap *heap);

Description: Returns the number of bytes used by the given heap, including the size
of the free list. If the argument "heap" is NULL , the result is the size of the heap header
structure (i.e. sizeof(ContainerHeap).
Errors:
None.
Example:

void SomeFunction(void)

{

char buffer[iHeap.Sizeof(NULL)];

ContainerHeap *ch;

ch = iHeap.InitHeap(buffer,200,NULL);

66 Chapter 4. The auxiliary interfaces

// ...

iHeap.Clear(ch);

}

This example uses the variable length arrays that have been introduced in the C language
by the latest standard (C99). The Sizeof function returns the size of the header object
that is used to specify the size of the buffer. The buffer is passed to the InitHeap

function using a number of objects of 200 and the default memory allocator.

4.3 Pooled memory interface: iPool

Many containers could benefit from a memory pool. A memory pool groups all
allocations done in a specific context and can be released in a single call. This allows
the programmer to avoid having to manage each single piece of memory like the basic
interface.

typedef struct _tagPoolAllocatorInterface {

Pool *(*Create)(ContainerAllocator *m);

void *(*Alloc)(Pool *pool,size_t size);

void *(*Calloc)(Pool *pool,size_t size);

void (*Clear)(Pool *);

void (*Finalize)(Pool *);

} PoolAllocatorInterface;

Note that there is no realloc function. Pooled memory is often implemented without
storing the size of the block to cut overhead. Since a realloc function could be expensive,
implementations are not required to provide it.

Create

Pool *iPool.Create(ContainerAllocator *m);

Description: Creates a new pool object that will use the given memory manager. If
m is null, the object pointed by the CurrentAllocator will be used.
Errors:
CONTAINER ERROR NOMEMORY Not enough memory to complete the operation.
Returns:A pointer to the new object or NULL if the operation couldn’t be completed.

4.4. Error handling Interface: iError 67

Alloc

void *iPool.Alloc(Pool *pool,size_t size);

Description: Allocates size bytes from the pool pool. If there isn’t enough memory to
resize the pool the result is NULL .
Errors:
CONTAINER ERROR NOMEMORY Not enough memory to complete the operation.
Returns:A pointer to the allocated memory or NULL if error.

Calloc

void *iPool.Calloc(Pool *pool,size_t n,size_t size);

Description: Allocates n objects of size ”size” in a single block. All memory is initial-
ized to zero. If there is no memory left it returns NULL ;
Errors:
CONTAINER ERROR NOMEMORY Not enough memory to complete the operation.
Returns:A pointer to the allocated memory or NULL if error.

Clear

void iPool.Clear(Pool *);

Description: Reclaims all memory used by the pool and leaves the object as it was
when created.
Errors:
CONTAINER ERROR BADARG The pool pointer is NULL .

Finalize

void iPool.Finalize(Pool *);

Description: Reclaims all memory used by the pool and destroys the pool object itself.
Errors:
CONTAINER ERROR BADARG The pool pointer is NULL .

4.4 Error handling Interface: iError

The ”iError” interface provides a default strategy for handling errors. The ”RaiseError”
function will be used as the default error function within the creation function for all
containers that support a per container instance error function.

typedef (*ErrorFunction)(const char *,int,...);

typedef struct {

void (*RaiseError)(const char *fname,int code,...);

void (*EmptyErrorFunction)(const char *fname,int code,...);

68 Chapter 4. The auxiliary interfaces

const char *(*StrError)(int errorCode);

ErrorFunction (*SetErrorFunction)(ErrorFunction);

int (*NullPtrError)(const char *);

} ErrorInterface;

RaiseError

void iError.RaiseError(const char *fname,int errcode,...);

Description: The parameter ”fname” should be the name of the function where the
error occurs. The ”errcode” parameter is a negative error code. The actual value of the
code is defined for the cases mentioned in the section 4.4.1. Other negative values can
be defined by the implementation.

Other parameters can be passed depending on the error. The sample implementation
never passes anything else but the name of the function where the error occurs and the
error code.

The behavior of the default error function is implementation specific. In the sample
code this function will just print the error message in the standard error stream. Other
implementations could end the program, log the error into a error stream, or do nothing.
Returns:No return value

EmptyErrorFunction

void iError.EmptyErrorFunction(const char *fname,int errcode,...);

Description: This function can be used to ignore all errors within the library. It does
nothing.

StrError

const char *iError.StrError(int errorCode);

Description: Converts the given error code in a character string. If the error code
doesn’t correspond to any error defined by the implementation a character string with
an implementation defined value is returned.

SetErrorFunction

ErrorFunction iError.SetErrorFunction(ErrorFunction);

Description: Changes the value of the default error function. If its argument is NULL

, nothing is done, and the call is interpreted as a query of the current value.
Returns:The old value of the default error function.

NullPtrError

int (*NullPtrError)(const char *msg);

4.4. Error handling Interface: iError 69

Description: This is a utility function equivalent to:

int NullPtrError(const char *fname)

{

iError.RaiseError(fname,CONTAINER_ERROR_BADARG);

return CONTAINER_ERROR_BADARG;

}

4.4.1 Error codes

The error codes defined by this specification are:

• CONTAINER ERROR BADARG One of the parameters passed to a function is in-
valid. This is the same as the EDOM error code used by the function errno. If an
implementation uses the errno mechanism it can set at each occurrence of this
error also errno to EDOM.

• CONTAINER ERROR NOMEMORY There is not enough memory to complete the
operation3.

• CONTAINER ERROR INDEX The index is out of bounds. If an implementation
uses the errno mechanism it can set errno to ERANGE. The library passes extra
parameters when this error is invoked: the container pointer, and a size_t

containing the the out of bounds index.

• CONTAINER ERROR READONLY The object is read-only and the operation would
modify it 4.

• CONTAINER ERROR INTERNAL Unspecified error provoked by a problem in the
implementation.

• CONTAINER ERROR OBJECT CHANGED A change in the underlying object has
invalidated an iterator. If an implementation uses errno it can set errno to
EILSEQ5.

• CONTAINER ERROR FILE READ Input error in a stream6.

• CONTAINER ERROR FILE WRITE Output error in a stream.

• CONTAINER ERROR CONTAINER FULL Implementations can limit the maximum
number of elements a container can hold. This error indicates that the limit is
reached. 7.

3This corresponds to ENOMEM in the POSIX1 standard.
4The most similar error code using the POSIX standard would be EPERM here.
5In the C99 standard this error is reserved for a wrong sequence of wide character bytes. Here it

would be used for a wrong sequence of operations what somehow changes the meaning of the error code.
It is used since the standard has only three error codes.

6The POSIX error number would be here EIO: error in input/output
7The corresponding POSIX error number would be EFBIG: file too big

70 Chapter 4. The auxiliary interfaces

• CONTAINER ERROR BADPOINTER The debug implementation of free() has dis-
covered an incorrect pointer attempting to be freed8.

• CONTAINER ERROR BUFFEROVERFLOW The debug implementation of free()

discovered a buffer overflow.

• CONTAINER ERROR WRONGFILE You are trying to read a container from a stream
that has no such container saved 9.

• CONTAINER ERROR DIVISION BY ZERO The library has detected an attempt to
divide by zero10.

• CONTAINER ERROR OVERFLOW An overflow was detected in an arithmetic oper-
ation. Implementations are encouraged to detect overflow in all operations that
can generate one and report it through this error.

• CONTAINER ERROR BADMASK The mask given to a Select or SelectCopy op-
eration is of a different length than the length of the associated container. The
library passes two pointers to the error function: The first to the container and
the second to the mask.

• CONTAINER ERROR NOENT The library wants to open a file that doesn’t exist or
is not readable. A pointer to the name of the file is passed to the error function
11.

Other errors can be defined by each implementation.

4.5 The iterator interface

8In POSIX this would be EFAULT.
9The corresponding POSIX error would EBADF: bad file

10POSIX: EDOM, domain error
11This would be the ENOENT error under POSIX

4.5. The iterator interface 71

The iterator object exposes at least the functions ”GetFirst”, for initializing the
loop, and ”GetNext”, for getting the next element in the sequence. The functions
”NewIterator” and ”deleteIterator” are specific to each container interface even if they
all have the same syntax.

4.5.1 The interface

typedef struct _Iterator {

void *(*GetNext)(Iterator *);

void *(*GetPrevious)(Iterator *);

void *(*GetFirst)(Iterator *);

void *(*GetCurrent)(Iterator *);

void *(*GetLast)(Iterator *);

void *(*Seek)(Iterator *it,size_t pos);

int (*Replace)(Iterator *it, void *data, int drection);

} Iterator;

GetCurrent

void *(*GetCurrent)(Iterator *);

Description: Returns the element at the cursor position.

Errors:

CONTAINER ERROR BADARG The iterator pointer is NULL .

Returns:A pointer to the current element or NULL , if the container is empty or an
error occurs. If the container is read-only, a pointer to a copy of the element is returned.
This pointer is valid only until the next iterator function is called.

GetFirst

void *(*GetFirst)(Iterator *);

Description: This function initializes the given iterator to the first element in the
container. For sequential operators this is the element with index zero. In associative
operators which element is the first is implementation defined and can change if elements
are added or removed from the container.

If the container is empty the result is NULL .

Errors:

CONTAINER ERROR BADARG The iterator pointer is NULL .

Returns:A pointer to the first element or NULL , if the container is empty or an error
occurs. If the container is read-only, a pointer to a copy of the element is returned. This
pointer is valid only until the next iterator function is called.

Example:

72 Chapter 4. The auxiliary interfaces

Iterator *myIterator;

List *myList;

myType *obj; // "myList" stores objects of type "myType"

myIterator = iList.NewIterator(myList); // Request iterator

for (obj = myIterator->GetFirst(myIterator);

obj != NULL;

obj = myIterator->GetNext(myIterator)) {

//Use obj here

}

iList.deleteIterator(myIterator); // Reclaim memory

GetNext

void *(*GetNext)(Iterator *);

Description: Positions de cursor at the next element and returns a pointer to its
contents. If the iterator is at the end of the container the result is NULL and the iterator
remains at the last position, a subsequent call to GetCurrent returns the last element.

If the container is read-only, a pointer to a copy of the object is returned. This
pointer is valid only until the next iterator function is called.
Errors:

CONTAINER ERROR BADARG The iterator pointer is NULL .
CONTAINER ERROR OBJECT CHANGED The container has been modified and the iter-
ator is invalid. Further calls always return NULL .
Returns:A pointer to the next element or NULL , if the cursor reaches the last element.
If the container is read-only, a pointer to a copy of the element is returned, valid until
the next element is retrieved

GetPrevious

void *(*GetPrevious)(Iterator *);

Description: Positions de cursor at the previous element and returns a pointer to its
contents. If the pointer is at the beginning of the container the result is NULL and the
iterator remains at the beginning, a subsequent call to GetCurrent will return the first
element of the container.

This function is meaningful only in sequential containers. Its existence in associative
containers is implementation defined. Even in sequential containers, it can be very
expensive to find a previous element, for instance in single linked lists. In those cases it
can always return NULL .
Errors:

CONTAINER ERROR BADARG The iterator pointer is NULL .
CONTAINER ERROR OBJECT CHANGED The container has been modified and the iter-
ator is invalid. Further calls always return NULL .

4.5. The iterator interface 73

Returns:A pointer to the previous element or NULL , if the cursor reached the first
element already. If the container is read-only, a pointer to a copy of the element is
returned.
Example:

Iterator *myIterator;

List *myList;

myType *obj; // "myList" stores objects of type "myType"

myIterator = iList.NewIterator(myList); // Request iterator

for (obj = myIterator->GetLast(myIterator);

obj != NULL;

obj = myIterator->GetPrevious(myIterator)) {

//Use obj here

}

iList.deleteIterator(myIterator); // Reclaim memory

GetLast

void *(*GetLast)(Iterator *);

Description: Positions the cursor at the last element and returns a pointer to it.
Returns NULL if the container is empty. If the container is read-only, a pointer to a copy
of the element is returned.

This function is meaningful only in sequential containers. Its existence in associative
containers is implementation defined. Even in sequential containers, it can be very
expensive to find the last element, for instance in single linked lists. In those cases it
can always return NULL .
Errors:
CONTAINER ERROR BADARG The iterator pointer is NULL .
CONTAINER ERROR OBJECT CHANGED The container has been modified and the iter-
ator is invalid. Further calls always return NULL .

Seek

void *(*Seek)(Iterator *it,size_t pos);

Description: Positions the given iterator at the indicated position and then returns
a pointer to the element’s data at that position. If the position is bigger than the last
element of the container, the last element position will be used.

This function is supported in sequential containers only.
Errors:
CONTAINER ERROR BADARG The iterator pointer is NULL .
CONTAINER ERROR OBJECT CHANGED The container has been modified and the iter-
ator is invalid. Further calls always return NULL .
Returns:A pointer to the data of the given element or NULL if an error occurs.

74 Chapter 4. The auxiliary interfaces

Replace

int (*Replace)(Iterator *it,void *data, int direction);

Description: Replaces the current object pointed by the given iterator with the new
data. If the data argument is NULL the element is erased from the container. If the
direction parameter is different from zero, in sequential containers the iterator will
point to the next element, otherwise it will point to the previous element. In associative
containers this parameter is ignored and the iterator is always set to the next element,
if any.
Errors:
CONTAINER ERROR BADARG The iterator pointer is NULL .
CONTAINER ERROR OBJECT CHANGED The container has been modified and the iter-
ator is invalid. Further calls always return NULL .
CONTAINER ERROR READONLY The container is read only.
Returns:A positive value if the element was changed or erased, zero if the container
was empty, or a negative error code if an error occurred.

4.6 The observer interface

In its general form, the observer design pattern can be defined as a one-to-many de-
pendency between objects so that when one object changes state, all its dependents are
notified and updated automatically.

When a container changes its state, specifically when elements are added or removed,
it is sometimes necessary to update relationships that can be very complex. The ob-
server interface is designed to simplify this operation by allowing the container to emit
notifications to other objects that have previously manifested interest in receiving them
by subscribing to them. In general notifications are sent only when one of the defined
operations for a container occur, mostly operations that change the number of elements.

This interface then, establishes a relationship between two software entities:

1. The container, that is responsible for sending the notifications when appropriate

2. The receiver, that is an unspecified object represented by its callback function
that is called when a change occurs that matches the notifications specified in the
subscription.

Since this relationship needs both objects, it will be finished when either object goes
out of scope or breaks the relationship for whatever reason. Both objects can unsubscribe
(terminate) their relationship.

4.6.1 Caveats

• It is in general a bad idea to modify the object being observed during a notifi-
cation since this could trigger other notification messages. Implementations are

4.6. The observer interface 75

not required to avoid this situation that is the responsability of the programmer.
Contrary to the iterator interface no error is issued when a possible infinite loop is
started. Implementations may catch the error by limiting the number of recursive
invocations of this interface but they are not required to do so.

• Since all messages sent by the containers have different type of information in the
same two arguments that each message is associated with, there is no possible
compile time control of the usage of the received pointers or numbers. The ob-
server function must correctly discriminate between the different messages it can
receive12.

4.6.2 The interface

typedef void (*ObserverFunction)(const void *ObservedObject,

unsigned Operation,

void *ExtraInfo[]);

typedef struct tagObserverInterface {

int (*Subscribe)(void *ObservedObject,

ObserverFunction callback, unsigned Operations);

int (*Notify)(const void *ObservedObject,unsigned operation,

void *ExtraInfo1,void *ExtraInfo2);

size_t (*Unsubscribe)(void *ObservedObject,

ObserverFunction callback);

} ObserverInterface;

extern ObserverInterface iObserver;

ObserverFunction

typedef void (*ObserverFunction)(void *ObservedObject,

unsigned Operation, void *ExtraInfo[]);

Description: This function will be called by the interface when a notification is received
for an observed object. The call happens after all arguments have been processed, the
actual work of the function is finished (when adding an object) or not yet done (when
destroying an object). The container is in a consistent state. For the callbacks that are

12An alternative design would have been to specify not one type of observer function but to define
a different function type for each possible message the containers could send. We would have then
a SubscribeAdd SubscribeErase SubscribeReplace functions, combined with NotifyAdd, NotifyErase,
NotifyReplace functions. That design would have been easier to control at compile time. It was rejected
because of the increased complexity of the interface and the necessity for the user to define a lot of
functions just to know when something as simple as ”Was this container modified?” happened.

Obviously implementations can add that type of interface if they wish. In future revisions of this
specifications this question will be posed again, with more actual use data to make more informed
decisions.

76 Chapter 4. The auxiliary interfaces

called when an object is deleted from a container the call happens before any call to
free() and before any call to a destructor (if any) is done. For the calls that add an
object the callback is called after the container has been modified.

Arguments:

1. ObservedObject: Specifies the object that sends the notification, i.e. the con-
tainer that has the subscription. It is assumed that this container conforms to the
iGeneric interface.

2. Operation: The operation that provoked the notification. Since it is possible
to subscribe to several operations with only one callback function, this argument
allows the callback to discriminate between the operation notifications.

3. ExtraInfo: This argument is specific to each operation and conveys further infor-
mation13 for each operation.

None of the arguments will be ever NULL or zero.

Subscribe

int (*Subscribe)(void *ObservedObject, ObserverFunction callback,

unsigned Operations);

Description: This function establishes the relationship between the observed object
(argument 1) and the observer, represented by its callback (argument 2). The third
argument establishes which operations are to be observed. This operation performs an
allocation to register the relationship in the observer interface tables, therefore it can
fail with an out of memory condition.
Errors:
CONTAINER ERROR BADARG The observed object pointer is NULL , the callback func-
tion pointer is NULL , or the operations argument is zero.
CONTAINER ERROR NOMEMORY There is not enough memory to proceed.
Returns:An integer greater than zero if the relationship was established, a negative
error code otherwise.

Notify

int (*Notify)(void *ObservedObject,unsigned Operation,

void *ExtraInfo1,void *ExtraInfo2);

Description: This function will be used by the container to send a message to the re-
ceiver callback. The arguments correspond roughly to the arguments the callback func-
tion will receive. ”Notify” will call all the objects that are observing ObservedObject

and that have subscribed to one of the operations specified in the Operation argument.
This implies a search through the observer interface table, and possibly several calls,

13See the full list and the description of all notifications at the end of this section

4.6. The observer interface 77

making this function quite expensive. The time needed is roughly proportional to the
number of registered callbacks and the complexity of the callbacks themselves.
Errors:
CONTAINER ERROR BADARG The ObservedObject pointer is NULL or the Operation
argument is zero.
Returns:A positive number with the number of objects that received the notifications,
zero if there was no match for the combination of observed object and operations spec-
ified, or a negative error code.

Unsubscribe

size_t (*Unsubscribe)(void *ObservedObject, ObserverFunction callback);

Description: This function breaks the relationship between the observed object and
the observer. There are several combinations of both arguments:

• The ObservedObject argument is NULL . This means that the callback object
wants to break its relationship to all objects it is observing. The observer interface
will remove all relationships that contain this callback from its tables.

• The callback argument is NULL . This means that the given ObservedObject

is going out of scope and wants to break all relationships to all its observers.
The interface removes from its tables all relationships that have this object as
the observed object. This happens normally immediately after the notification
FINALIZE is sent.

• If both callback and ObservedObject are non NULL , only the matching rela-
tionships will be removed from the tables.

4.6.3 Notifications messages

Operation Argument 1 Argument 2
Add Pointer to the new object NULL or slice specs if any
AddRange A size t with the number

of objects added
Pointer to a table of n el-
ements that were added

Append A pointer to the object be-
ing appended. It is of the
same type as the object
emitting the notification

NULL

Clear Pointer to the container be-
ing cleared

NULL

Copy Pointer to the copy of the
container

NULL

78 Chapter 4. The auxiliary interfaces

Table 4.1 – Continued

Operation Argument 1 Argument 2
Erase Pointer to the object being

deleted. The object is still
valid

NULL

EraseAt Pointer to object being
deleted

Position (as size t)

Finalize NULL NULL

Insert Pointer to the new object
being inserted

A size t with the posi-
tion of the object being
inserted if applicable

InsertIn Pointer to the object being
inserted, that has the same
type as the object sending
the notification

NULL

Pop Pointer to the object being
popped

NULL

Push Pointer to the object being
pushed

NULL

ReplaceAt Pointer to the old value Pointer to the new value

Here is a complete example that demonstrates some of the above functions.
Example:

include "containers.h"

static void fn(void *ObservedObject, unsigned operation,

void *extraInfo[])

{

printf("Object is %p, operation is %d\n",ObservedObject,operation);

}

int main(void)

{

ValArrayInt * vInt = iValArrayInt.CreateSequence(24,0,1);

printf("Original array: \n");

iValArrayInt.Fprintf(vInt,stdout,"%d ");

iObserver.Subscribe(vInt,fn,CCL_ADD|CCL_FINALIZE);

printf("Adding an integer\n");

iValArrayInt.Add(vInt,4096);

iValArrayInt.Fprintf(vInt,stdout,"%d ");

iValArrayInt.Finalize(vInt);

}

OUTPUT:

Original array:

4.7. Types used by the library 79

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Adding an integer

Object is 0x100100080, operation is 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 4096

Object is 0x100100080, operation is 16

We setup our observer function calling the Subscribe API. We request to be notified
when there is an addition and when the object finalizes. Our callback function does
nothing but print some of its arguments. We see that we get called when the requested
operations are performed.

4.7 Types used by the library

Here is a complete list of all the auxiliary data types defined by the library.

4.7.1 CompareInfo

typedef struct tagCompareInfo {

void *ExtraArgs;

const void *ContainerLeft;

const void *ContainerRight;

} CompareInfo;

This structure will be passed to the comparison functions. The ExtraArgs pointer will
receive the pointer that was passed to the calling function. If both elements being com-
pared are members of a single container, the ContainerRight member will be NULL and
ContainerLeft will hold a pointer to the container where both elements belong. Other-
wise ContainerLeft will hold a pointer to the container that holds the first argument,
and ContainerRight to the one that holds the second.

4.7.2 CompareFunction

typedef int (*CompareFunction)(const void *elem1,

const void *elem2,

CompareInfo *ExtraArgs);

This type defines the function used to compare two elements. The result should be less
than zero if elem1 is less than elem2, zero if they are equal, and bigger than zero if elem1
is bigger than element 2.

The default comparison function is memcmp. This function will compare all the ob-
ject’s area, including eventually padding bytes added by compilers for alignment reasons.
To minimize this problem always zero the objects before assigning the values. For in-
stance:

80 Chapter 4. The auxiliary interfaces

struct Data {

int Age; // Here the compiler can introduce padding bytes

double Weight;

};

int fn(void)

{

struct Data m;

memset(&m,0,sizeof(m));

m.Age = 23;

m.Weight = 76;

iVector.Add(DataCollection,&m);

}

By zeroing the structure before making the assignments, we have a known value in the
padding bytes. If we make comparisons with memcmp, they will work correctly.

Obviously the best way to avoid this problem is to avoid any default comparison
function by defining one.

4.7.3 Save function

typedef int (*SaveFunction)(const void *element,

void *ExtraArg,

FILE *OutputStream);

This function should save the given element into the given stream. The ExtraArg

argument receives any argument passed to the Save function. The result should be
bigger than zero if the operation completed successfully, zero or less than zero otherwise.

What the save function does is unknown to the rest of the library, basically the only
requirement is that its output should be understood by the read function, when called
to read each element. The size of the written data can be bigger (or smaller) than the
size of each stored element, according to the specific requirements of the application
data. This allows to write save functions tha would write a complete data set, including
embedded objects into the stream. For instance a save function can save the contents
pointed by a character pointer instead of the pointer value that would be meaningless
when read again.

The default save function provided by the implementation just writes the contents
of each element into the stream. Embedded pointers aren’t followed.

4.7.4 Read function

typedef int (*ReadFunction)(void *element,

void *ExtraArg,

FILE *InputStream);

4.7. Types used by the library 81

This function should read into the given element from the given stream. The ExtraArg

argument is passed to the container read function and allows to pass an argument to
the user defined save function. The amount of data read is unknown to the rest of the
software and the only requirement is that it should reverse the work of the save function.

The default read function provided by the implementation should read the contents
of one element from the stream and add it to the result container.

The result is bigger than zero if the operation completed successfully, zero or less
than zero otherwise.

4.7.5 Error function

typedef void *(*ErrorFunction)(const char *functionName,int code,...);

This function type is used to handle errors in each container. The first argument is the
name of the function where the error occurred, the second is a negative error code. No
checks are performed on the function name argument, and other information or messages
could be included in the message.

Note that this function is roughly compatible with the prototype of snprintf, and
could be used with a format string, a buffer size, and a series of arguments corresponding
to the arguments the format requires. The only problem is the conversion between int

and size_t.
The result value of the default error function is always NULL . This result will be in

most cases ignored, except in the vector container where it can be used to return special
values in the case of the INDEX error.

When iVector interface detects an index error, it will pass in the extra arguments
the array pointer and a size_t containing the out of bounds index.

4.7.6 Destructor function

typedef int (*DestructorFunction)(void *object);

This function is called when an object is being destroyed. An object is destroyed when:

• An Erase call is done.

• A Replace call is done.

• The Clear call is done.

• The Select call is done with some element of the mask to zero.

• The Resize function is called with an argument less than the size of the container.

This function should free any memory used by pointers within the object without
freeing the object memory itself. In most cases the memory used by the library is not
allocated with malloc. Its result type is less than zero when an error occurred or greater
than zero when it finished successfully. It is implementation defined what happens if a
destructor encounters an error.

5 The containers

5.1 The List interfaces: iList, iDlist

The list container appears in two flavors:

• single linked lists: the iList type

• double linked lists the iDlist type

The space overhead of single linked lists is smaller at the expense of more difficult access
to the elements. It is up to the application programmer to decide which container fits
best in his/her application 1.

It is often more efficient to get the next element from a list starting with the previous
element instead of searching the whole list starting from the beginning. For this, the list
and the Dlist containers provide:

• FirstElement Start of the list

• LastElement End of the list

• NextElement Returns a pointer to the next element

• PreviousElement Only in double linked lists. Returns a pointer to the previous
element.

• ElementData Extracts a pointer to the element data

• SetElementData Modifies one element of the list.

• Advance Returns the data of an element and advances the given pointer in one
operation.

• MoveBack Returns the data of an element and moves back the pointer one element.
This operation is available only in double linked lists.

These operations can’t be done in a read-only list.
The exact layout of the ListElement structure is undefined and private to each

implementation. This is the reason for providing the ElementData function: it hides the
exact position and layout of the data from user code, that remains independent from
implementation details.

The interfaces of both containers are very similar. Double linked lists support all
functions in single linked ones, and add a few more. To avoid unnecessary repetition we

1The single linked list container corresponds to the C++ STL forward list.

83

84 Chapter 5. The containers

document here all the single linked list interface, then only the functions that the Dlist
interface adds to it.

typedef struct tagListInterface {

int (*Add)(List *L,const void *newval);

int (*AddRange)(List *L, size_t n,const void *data);

void *(*Advance)(ListElement **pListElement);

int (*Append)(List *l1,List *l2);

int (*Apply)(List *L,int(Applyfn)(void *,void *),void *arg);

void *(*Back)(const List *l);

int (*Clear)(List *L);

int (*Contains)(const List *L,const void *element);

List *(*Copy)(const List *L);

int (*CopyElement)(const List *list,size_t idx,void *OutBuffer);

List *(*Create)(size_t element_size);

List *(*CreateWithAllocator)(size_t elementsize,

const ContainerAllocator *mm);

void *(*ElementData)(ListElement *le);

int (*Equal)(const List *l1,const List *l2);

int (*Erase)(List *L,const void *);

int (*EraseAll)(List *l,const void *);

int (*EraseAt)(List *L,size_t idx);

int (*EraseRange)(List *L,size_t start,size_t end);

int (*Finalize)(List *L);

ListElement *(*FirstElement)(List *l);

void *(*Front)(const List *l);

const ContainerAllocator *(*GetAllocator)(const List *list);

void *(*GetElement)(const List *L,size_t idx);

size_t (*GetElementSize)(const List *l);

unsigned (*GetFlags)(const List *L);

ContainerHeap *(*GetHeap)(const List *l);

List *(*GetRange)(const List *l,size_t start,size_t end);

int (*IndexOf)(const List *L,const void *SearchedElement,

void *ExtraArgs,size_t *result);

List *(*Init)(List *aList,size_t element_size);

int (*InitIterator)(List *L,void *buf);

List *(*InitWithAllocator)(List *aList,size_t element_size,

const ContainerAllocator *mm);

List *(*InitializeWith)(size_t elementSize,size_t n,

const void *data);

int (*InsertAt)(List *L,size_t idx,const void *newval);

int (*InsertIn)(List *l, size_t idx,List *newData);

ListElement *(*LastElement)(List *l);

List *(*Load)(FILE *stream, ReadFunction loadFn,void *arg);

5.1. The List interfaces: iList, iDlist 85

Iterator *(*NewIterator)(List *L);

ListElement *(*NextElement)(ListElement *le);

int (*PopFront)(List *L,void *result);

int (*PushFront)(List *L,const void *str);

int (*RemoveRange)(List *l,size_t start, size_t end);

int (*ReplaceAt)(List *L,size_t idx,const void *newval);

int (*Reverse)(List *l);

int (*RotateLeft)(List *l, size_t n);

int (*RotateRight)(List *l,size_t n);

int (*Save)(const List *L,FILE *stream, SaveFunction saveFn,

void *arg);

int (*Select)(List *src,const Mask *m);

List *(*SelectCopy)(const List *src,const Mask *m);

CompareFunction (*SetCompareFunction)(List *l,CompareFunction fn);

DestructorFunction (*SetDestructor)(List *v,DestructorFunction fn);

int (*SetElementData)(List *l, ListElement *le,void *data);

ErrorFunction (*SetErrorFunction)(List *L,ErrorFunction);

unsigned (*SetFlags)(List *L,unsigned flags);

size_t (*Size)(const List *L);

size_t (*Sizeof)(const List *l);

size_t (*SizeofIterator)(const List *);

ListElement *(*Skip)(ListElement *l,size_t n);

int (*Sort)(List *l);

List *(*SplitAfter)(List *l, ListElement *pt);

int (*UseHeap)(List *L, const ContainerAllocator *m);

int (*deleteIterator)(Iterator *);

} ListInterface;

86 Chapter 5. The containers

5.1. The List interfaces: iList, iDlist 87

5.1.1 General remarks

Lists are containers that store each element in a sequence, unidirectionally (single linked
lists) or bidirectionally (double linked lists). The advantage of linked lists is their flexi-
bility. You can easily and with a very low cost remove or add elements by manipulating
the links between the elements. Single linked lists have less overhead than their double
linked counterparts (one pointer less in each node), but they tend to use a lot of com-
puter power when inserting elements near the end of the list: you have to follow all links
from the beginning until you find the right one.

The list nodes themselves do not move around, only their links are changed. This
can be important if you maintain pointers to those elements. Obviously, if you delete a
node, its contents (that do not move) could be recycled to contain something else than
what you expect.

The iList interface consists (as all other interfaces) of a table of function pointers.
The interface describes the behavior of the List container.

The stack operations push and pop are provided with PushFront and PopFront be-
cause they have a very low cost, insertion at the start of a single linked list is very fast.
PushBack is the equivalent of the Add operation, but PopBack would have a very high
cost since it would need going through all the list.

The list container features in some implementations a per list error function. This is
the function that will be called for any errors, except in cases where no list object exists:
the creation function, or the error of getting a NULL pointer instead of a list pointer.
In those cases the general iError interface is used, and iError.RaiseError is called. The
default value of the list error function is the function iError.RaiseError at the moment
the list is created.

Other implementations of this interface may specialize list for a certain category of
uses: lists of a few elements would try to reduce overhead by eliminating a per list
error function and replace it with the standard error function in iError, for instance,
eliminating their fields in the header. If the read-only flag support is dropped, the whole
”Flags” field can be eliminated. In such an implementation, the SetFlags primitive
would always return an error code.

The sample implementation of the list container supports the following state flags:

#define CONTAINER_READONLY 1

If this flag is set, no modifications to the container are allowed, and the Clear and
Finalize functions will not work. Only copies of the data are handed out, no direct
pointers to the data are available.

#define CONTAINER_SORTED_FRONT 2

#define CONTAINER_SORTED_BACK 4

If this flag is set, the container is maintained always in sorted order, with the biggest
element at the index zero for CONTAINER_SORTED_FRONT or with the biggest element at
the end if CONTAINER_SORTED_BACK is set. It is an error if both flags are set, and the
results in that case are implementation defined.

88 Chapter 5. The containers

Specializations

All ”specialized” containers share the same interface with the following exceptions:

• The functions where a void * to the element data is passed or where a void *

is the result of the operation are replaced with the actual data type of the spe-
cialization. For instance the GetElement API instead of returning a void pointer
returns a pointer to the specific data type: an integer for intList, a double for
doubleList etc.

• The creation and initialization functions that construct a new container receive
one argument less than its generic counterparts since the size of each element is
fixed.
To make things clear and to save work from the library user some specializations are
delivered with the sample implementation to show how a file templated container
looks like.

In the right side of the drawing we see the generic list container using generic pointers
(void *) and the stringlist container. Strings are special because in C their length is
the result of a function call instead of being fixed like other data types.

In the left side, we see three specialized containers for some numeric data types.
Those containers are generated using two types of source files:

• Parameter files: They define the data type and some other parameters like the
comparison expression.

• Templated files: They implement the specialized container. The pre-processor does
the editing work on the templated file to yield several different type definitions.

5.1. The List interfaces: iList, iDlist 89

Using this interface has the advantage of ensuring compile time checking of the
arguments to the API, what is not possible using generic pointers.

Add

int (*Add)(List *l,const void *data);

int (*Add)(TYPEList *l, TYPE data);

Description: Adds the given element to the container. In its generic form it is assumed
that ”data” points to a contiguous memory area of at least ElementSize bytes. Inits
specialized form the data is passed by value. Returns a value greater than zero if the
addition of the element to the list completed successfully, a negative error code otherwise.
Errors:
CONTAINER ERROR BADARG The list or the data pointers are NULL .
CONTAINER ERROR READONLY The list is read-only. No modifications allowed.
CONTAINER ERROR NOMEMORY Not enough memory to complete the operation.
Invariants: The input data is not modified.
Returns:A positive number if the element was added or a negative error code otherwise.
Example:

/* This example shows how to:

(1) Create a linked list of "double" data

(2) Fill it using the "Add" function

(3) Print it using the GetElement function */

#include <containers.h>

static void PrintList(List *AL)

{

size_t i;

for (i=0; i<iList.Size(AL);i++) {

printf("%g ",*(double *)iList.GetElement(AL,i));

}

printf("\n");

}

static void FillList(List * AL,size_t siz)

{

size_t i;

for (i=0; i<siz;i++) {

double d = i;

iList.Add(AL,&d);

}

}

int main(void)

90 Chapter 5. The containers

{

List *AL = iList.Create(sizeof(double));

FillList(AL,10);

PrintList(AL);

return 0;

}

OUTPUT:

0 1 2 3 4 5 6 7 8 9

Using the templated container implementation:

#include <containers.h>

#include <doublelist.h>

static void PrintList(doubleList *AL)

{

size_t i;

for (i=0; i<idoubleList.Size(AL);i++) {

printf("%g ",idoubleList.GetElement(AL,i));

}

printf("\n");

}

static void FillList(doubleList * AL,size_t siz)

{

size_t i;

for (i=0; i<siz;i++) {

idoubleList.Add(AL,(double)i);

}

}

int main(void)

{

doubleList *AL = idoubleList.Create();

FillList(AL,10);

PrintList(AL);

return 0;

}

OUTPUT:

0 1 2 3 4 5 6 7 8 9

Advance

void *(*Advance)(ListElement **ppElement);

TYPE *(*Advance)(TYPEListElement **ppElement);

5.1. The List interfaces: iList, iDlist 91

Description: Given the address of a pointer to an element, it returns a pointer to
the data stored into that element and writes the address of the next element into its
argument ppElement. If ppElement isNULL it returnsNULL . If *ppElement isNULL it
also returnsNULL , and obviously there is no advancing done.
Returns:A pointer to the data stored in the given element orNULL if the data can’t be
retrieved.

AddRange

int (*AddRange)(List * AL,size_t n, void *data);

int (*AddRange)(TYPEList * AL,size_t n, TYPE *data);

Description: Adds the n given elements to the end of the container. It is the same
operations as the PushBack operation. It is assumed that ”data” points to a contiguous
memory area of at least n*ElementSize bytes. If n is zero no error is issued even if the
array pointer or the data pointer are NULL .
Errors:
CONTAINER ERROR BADARG The list or the data pointers are NULL , and n is not zero.
CONTAINER ERROR READONLY The list is read-only. No modifications allowed.
CONTAINER ERROR NOMEMORY Not enough memory to complete the operation.
Returns:A positive number if the operation completed, negative error code otherwise.

Append

int (*Append)(List *list1,List *list2);

Description: Appends the contents of list2 to list1 and destroys list2.
Errors:
CONTAINER ERROR BADARG Either list1 or list2 are NULL .
CONTAINER ERROR READONLY One or both lists are read only.
CONTAINER ERROR INCOMPATIBLE The size of the elements in the lists differ, or the
lists allocators are different 2.
Returns:A positive value if the operation succeeded, or a negative error code otherwise.
Example:

#include <containers.h>

static void PrintList(List *AL)

{

size_t i;

for (i=0; i<iList.Size(AL);i++) {

printf("%g ",*(double *)iList.GetElement(AL,i));

2Since the allocator’s free() function will be used by the finalize function to free the memory used
by the list, it is imperative that both lists share the same allocator.

Some implementations could make a copy of the second list using the first list allocator, then append,
then release all the storage but that would change significantly the execution time. It is better to return
an error in this case.

92 Chapter 5. The containers

}

printf("\n");

}

static void FillList(List * AL,size_t siz)

{

size_t i;

for (i=0; i<siz;i++) { double d = i; iList.Add(AL,&d);}

}

int main(void)

{

List *L1 = iList.Create(sizeof(double));

List *L2 = iList.Create(sizeof(double));

FillList(L1,10);

FillList(L2,10);

iList.Append(L1,L2);

PrintList(L1);

return 0;

}

OUTPUT:

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Apply

int (*Apply)(List l,int (Applyfn)(void *,void *),void *arg);

int (*Apply)(List l,int (Applyfn)(TYPE ,void *),void *arg);

Description: Will call the given function for each element of the list. The first argument
of the callback function receives an element of the list. The second argument of the
callback is the arg argument that the Apply function receives and passes to the callback.
This way some context can be passed to the callback, and from one element to the next.
Note that the result of the callback is not used. This allows all kinds of result types to
be accepted after a suitable cast. If the list is read-only, a copy of the element will be
passed to the callback function.
Errors:
CONTAINER ERROR BADARG Either list or Applyfn are NULL .
CONTAINER ERROR NOMEMORY : The list is read-only and there is no more memory to
allocate the buffer to copy each element.
Notes:
The list container of C++ has no direct equivalent, but in the algorithm part of the
STL there is a ”for each” construct, that does essentially the same. Java and C# offer
a similar ”ForEach” functionality.
Example:

5.1. The List interfaces: iList, iDlist 93

#include <containers.h>

static int Callback(void *pElement,void *pResult)

{

double *p = pElement;

double *result = pResult;

*result += *p;

return 1;

}

void main(void)

{

double sum = 0;

List *list = iList.Create(sizeof(double));

double d = 2;

iList.Add(list,&d);

d = 3;

iList.Add(list,&d);

iList.Apply(list,Callback,&sum);

// Here sum should be 5.

printf("%g\n",sum);

}

/* Template file example */

#include <containers.h>

#include "doublelist.h"

static int Callback(double Element,void *pResult)

{

double *result = pResult;

*result += Element;

return 1;

}

void main(void)

{

double sum = 0;

doubleList *list = idoubleList.Create();

iList.Add(list,2);

iList.Add(list,3);

iList.Apply(list,Callback,&sum);

// Here sum should be 5.

printf("%g\n",sum);

}

94 Chapter 5. The containers

The above example shows a function callback as used by ”Apply”. It receives two
pointers, one to the current element and another to an extra argument that in this case
contains a pointer to the sum. For each call to the callback, the function adds the
contents of the element to the sum.

The main function creates a list, adds two elements with the values 2 and 3, and
then calls ”Apply” to get their sum using the callback.

Back

const void *(*Back)(const List *list);

const TYPE (*Back)(const TYPEList *l);

Description: Returns the last element of the given list or NULL if the list is empty.
Errors:
CONTAINER ERROR BADARG The list pointer is NULL .
CONTAINER ERROR READONLY The list is read only.
Invariants: The input list is not modified.
Returns:The last element or NULL if the list is empty or an error occurs.

Clear

int (*Clear)(List *l);

Description: Erases all stored data and releases the memory associated with it. The
list header will not be destroyed, and its contents will be the same as when the list was
initially created. It is an error to use this function when there are still active iterators
for the container.3

Errors:
CONTAINER ERROR BADARG The list pointer is NULL .
CONTAINER ERROR READONLY The list is read only.
Returns:The result is greater than zero if successful, or an error code if an error occurs.
Example:

List *l;

int m = iList.Clear(l);

Contains

int (*Contains)(List *list,void *data);

int (*Contains)(TYPEList *l, TYPE data);

Description: Returns one if the given data is stored in the list, zero otherwise. The
”data” argument is supposed to point to an element at least ElementSize bytes. The list’s
comparison function is used for determining if two elements are equal. This comparison
function defaults to memcmp.

3Java, C++ and C# have a similar ”Clear” functionality.

5.1. The List interfaces: iList, iDlist 95

Errors:
CONTAINER ERROR BADARG Either list or data are NULL .
Notes:
C++ has std::find that does essentially the same . Java and C# have a ”Contains”
method.
Example:

List *list;

int r = iList.Contains(list,&data);

Copy

List *(*Copy)(const List *L);

Description: A shallow copy of the given list is performed. Only ElementSize bytes
will be copied for each element. If the element contains pointers, only the pointers are
copied, not the objects they point to. The new memory will be allocated using the given
list’s allocator.
Errors:
CONTAINER ERROR NOMEMORY There is not enough memory to complete the opera-
tion.
CONTAINER ERROR BADARG The given list pointer is NULL .
Invariants: The input list is not modified.
Notes:
C++ has no direct equivalent but the assignment operator should work, Java and C#
support a copy method.
Example:

List *newList,*OldList;

newList = iList.Copy(OldList);

if (newList == NULL) { /* Error handling */ }

CopyElement

int (*CopyElement)(const List *list,size_t idx,void *outBuffer);

int (*CopyElement)(const TYPEList *list,size_t idx,TYPE *outBuffer);

Description: Copies the element data at the given position into the given buffer,
assuming that at least ElementSize bytes of storage are available at the position pointed
by the output buffer. The main usage of this function is to access data in a read only
container for later modification.
Errors:
CONTAINER ERROR BADARG The given list pointer or the output buffer are NULL .
CONTAINER ERROR INDEX The given position is out of bounds.
Invariants: The input list is not modified.

96 Chapter 5. The containers

Returns:A positive value if the operation succeeded, or a negative error code if it failed.
Notes:
Neither C# nor Java provide this functionality because the treatment of pointers in
those languages makes the need for such a construct unnecessary.
Example:

List *list; double d;

if (iList.CopyElement(list,3,&d) > 0)

printf("The value at position 3 is %g\n",d);

Create

List *(*Create)(size_t element_size);

TYPEList *(*Create)(void); // Template version

Description: The creation function returns an empty List container, initialized with
all the default values. The current memory manager is used to allocate the space needed
for the List header. The list is supposed to contain elements of the same size. If the
elements you want to store are of different size, use a pointer to them, and create the
list with sizeof(void *) as the size parameter.
Returns:A pointer to a newly created List or NULL if an error occurs.
Errors:
CONTAINER ERROR NOMEMORY There is not enough memory to complete the opera-
tion.
CONTAINER ERROR BADARG The given element size is zero or greater than what the
implementation allows for maximum object size.

Errors provoke the call of the current default error function of the library since this
is the creation function and there isn’t a container specific error function yet.
Example:

List *ListOfDoubles = iList.Create(sizeof(double));

doubleList *ListOfDoubles = idoubleList.Create();

CreateWithAllocator

List *(*CreateWithAllocator)(size_t elem_size,

ContainerAllocator *allocator);

// Template file version

TYPEList *(*CreateWithAllocator)(ContainerAllocator *allocator);

Description: The creation function returns an empty List container, initialized with
all the default values. The given memory manager is used to allocate the space needed
for the List header. The list is supposed to contain elements of the same size. If the
elements you want to store are of different size, use a pointer to them, and create the
list with sizeof(void *) as the size parameter.

5.1. The List interfaces: iList, iDlist 97

Returns:A pointer to a newly created List or NULL if an error occurs.
Errors:

CONTAINER ERROR NOMEMORY There is not enough memory to complete the opera-
tion.
CONTAINER ERROR BADARG The given element size is zero or greater than what the
implementation allows for maximum object size, or the given allocator pointer is NULL .

Errors provoke the call of the current default error function of the library since this
is the creation function and there isn’t a container specific error function yet.
Example:

ContainerAllocator *myAllocator;

List *ListOfDoubles =

iList.CreateWithAllocator(sizeof(double),myAllocator);

doubleList *ListOfDoubles =

idoubleList.CreateWithAllocator(myAllocator);

deleteIterator

int deleteIterator(Iterator *it);

Description: Reclaims the memory used by the given iterator object
Errors:

CONTAINER ERROR BADARG The iterator pointer is NULL .
Returns:A positive value if successful or a negative error code.

Equal

int (*Equal)(const List *list1,const List *list2);

Description: Compares the given lists using the list comparison function of either
list1 or list2 that must compare equal. If the list differ in their length, flags, or any
other characteristic they compare unequal. If any of their elements differ, they compare
unequal. If both list1 and list2 are NULL they compare equal. If both list1 and list2 are
empty they compare equal.
Errors:
None
Invariants: The two lists are not modified.
Returns:The result is one if the lists are equal, zero otherwise.

Erase

int (*Erase)(List *list,void *const data);

Description: Removes from the list the element that matches the given data, that is
assumed to be a pointer to an element.

98 Chapter 5. The containers

Returns:A negative error code if an error occurred, or a positive value that indicates
that a match was found and the element was removed. If the element is not in the list
the result is CONTAINER ERROR NOTFOUND .
Errors:
CONTAINER ERROR BADARG One or both arguments are NULL .
Example:

double d = 2.3;

List *list;

int r = iList.Erase(list,&d);

if (r > 0)

printf("2.3 erased\n");

else if (r == CONTAINER_ERROR_NOTFOUND)

printf("No element with value 2.3 present\n");

else

printf("2.3 not erased. Error is \%s\n",iError.StrError(r));

EraseAll

int (*EraseAll)(List *list,const void *data);

Description: Removes from the list all elements that match the given data, that is
assumed to be a pointer to an element.
Returns:A negative error code if an error occurred, or a positive value that indicates
that a match was found and the element was removed. If the element is not in the list
the result is CONTAINER ERROR NOTFOUND .
Errors:
CONTAINER ERROR BADARG One or both arguments are NULL .

EraseAt

int (*EraseAt)(List *list,size_t idx);

Description: Removes from the list the element at the given position.
Returns:A negative error code if an error occurred or a positive value that indicates
that the element was removed.
Errors:
CONTAINER ERROR BADARG The given list pointer is NULL .
CONTAINER ERROR INDEX The given position is out of bounds.
Example:

List *list;

int r = iList.EraseAt(list,2);

if (r > 0)

printf("Element at position 2 erased\n");

else

5.1. The List interfaces: iList, iDlist 99

printf("Error code %d\n",r);

EraseRange

int (*EraseRange)(List *L,size_t start,size_t end);

Description: Removes from the list the given range, starting with the start index,
until the element before the end index. If end is greater than the length of the list, it
will be ’rounded’ to the length of the list.
Errors:
CONTAINER ERROR BADARG The given list pointer is NULL .
Returns:A positive number indicates success, zero means nothing was erased, and a
negative number an error.
Example:

#include <containers.h>

static void print_list(List *li)

{

int i;

for (i=0; i<iList.Size(li); i++)

printf(" %d",*(int *)iList.GetElement(li,i));

printf("\n");

}

int main(void)

{

List *li = iList.Create(sizeof(int));

int i;

for (i=0; i<10;i++) {

iList.Add(li,&i);

}

print_list(li);

iList.EraseRange(li,3,8);

print_list(li);

}

OUTPUT:

0 1 2 3 4 5 6 7 8 9

0 1 2 8 9

Finalize

int (*Finalize)(List *list);

Description: Reclaims all memory used by the list, including the list header object
itself.
Errors:

100 Chapter 5. The containers

CONTAINER ERROR BADARG The given list pointer is NULL .
CONTAINER ERROR READONLY The list is read-only. No modifications allowed.
Returns:A positive value means the operation completed. A negative error code indi-
cates failure.
Example:

List *list;

int r = iList.Finalize(list);

if (r < 0) { /* error handling */ }

FirstElement

ListElement *(*FirstElement)(List *list);

Description: Finds the first element of the list and returns a pointer to it. This is a
pointer to the element, not to the data stored at that element. It is an error to attempt
to use this function with a read-only list.
Errors:

CONTAINER ERROR BADARG The list pointer isNULL .
CONTAINER ERROR READONLY The list is read only.
Returns:A pointer to the element orNULL if the list is empty or an error occurs.

Front

const void *(*Front)(const List *l);

TYPE *(*Front)(const TYPEList *l);

Description: Returns a pointer to the first element of the given list or NULL if the list
is empty.
Errors:

CONTAINER ERROR BADARG The list pointer is NULL .
CONTAINER ERROR READONLY The list is read only.
Invariants: The input list is not modified. The resulting pointer is read-only.
Returns:The first element or NULL if the list is empty or an error occurs.

GetAllocator

ContainerAllocator *(*GetAllocator)(const List *l);

Description: Returns the list’s allocator object. If the list pointer is NULL it returns
NULL .

GetElementSize

size_t (*GetElementSize)(const List *l);

5.1. The List interfaces: iList, iDlist 101

Description: Retrieves the size of the elements stored in the given list. Note that this
value can be different than the value given to the creation function because of alignment
requirements.
Errors:
CONTAINER ERROR BADARG The given list pointer is NULL .
Invariants: The input list is not modified.
Returns:The element size.
Example:

List *l;

size_t siz = iList.GetElementSize(l);

GetElement

const void *(*GetElement)(const List *list,size_t idx);

const TYPE *(*GetElement)(const TYPEList *list,size_t idx);

Description: Returns a read only pointer to the element at the given index, or NULL

if the operation failed. This function will return NULL if the list is read only.
Use the CopyElement function to get a read/write copy of an element of the list.

Errors:
CONTAINER ERROR BADARG The given list pointer is NULL .
CONTAINER ERROR INDEX The given position is out of bounds.
CONTAINER ERROR READONLY The list is read only.
Invariants: The input list is not modified. The resulting pointer is read-only.
Example:

List *list;

doubleList *dlist;

// ...

double d = *(double *)iList.GetElement(list,3);

double d = idoubleList.GetElement(dlist,3);

GetFlags / SetFlags

unsigned (*GetFlags)(const List *l);

unsigned (*SetFlags)(List *l,unsigned newFlags);

Description: GetFlags returns the state of the container flags, SetFlags sets the flags
to a new value and returns the old value.
Errors:
CONTAINER ERROR BADARG The given list pointer is NULL .
Invariants: The input list is not modified.
Returns:The flags or zero if there was an error.

102 Chapter 5. The containers

GetRange

List *(*GetRange)(const List *list,size_t start,size_t end);

TYPE *(*GetRange)(const TYPEList *l,size_t start,size_t end);

Description: Selects a series of consecutive elements starting at position start and
ending at position end. Both the elements at start and end are included in the result.
If start is greater than end start and end are interchanged. If end is bigger than the
number of elements in list, only elements up to the number of elements will be used. If
both start and end are out of range an error is issued and NULL is returned. The selected
elements are copied into a new list.
Invariants: The original list remains unchanged.
Errors:
CONTAINER ERROR BADARG The given list pointer is NULL

CONTAINER ERROR INDEX Both start and end are out of range.
Returns:A pointer to a new list containing the selected elements or NULL if an error
occurs.
Example:

List *list;

List *range = iList.GetRange(list,2,5);

if (range == NULL) { /* Error handling */ }

IndexOf

int (*IndexOf)(const List *l,const void *ElementToFind,

void *args,size_t *result);

int (*IndexOf)(const TYPEList *l,const TYPE ElementToFind,

void *args,size_t *result);

Description: Searches for an element in the list. If found its zero based index is
returned in the passed pointer ”result”.

Otherwise the result of the search is CONTAINER ERROR NOTFOUND and the passed
pointer will remain unmodified. The args argument will be passed to the comparison
function that is called by IndexOf.
Errors:
CONTAINER ERROR BADARG The given list pointer or element are NULL .
Invariants: The input list and the data to be searched are not modified.
Returns:A positive value if element is found or a negative value if not found or an error
occurs.
Example:

List *list;

double data;

size_t idx;

5.1. The List interfaces: iList, iDlist 103

int r = iList.IndexOf(list,&data,&idx);

if (r == CONTAINER_ERROR_NOTFOUND)

printf("Not found\n");

else if (r < 0)

printf("Error\n");

else printf("Found at position %ld\n",idx);

Init

List *(*Init)(List *aList,size_t element_size);

TYPEList *(*Init)(TYPEList *aList);

Description: Initializes the memory pointed by the aList argument. The new list
will use the allocator pointed by the current memory allocator. It is assumed that the
memory pointed by aList contains at least the size of the header object. This size can
be obtained by calling the Sizeof function with a NULL argument.
Errors:
CONTAINER ERROR BADARG The given list pointer is NULL .
Example:

// This example uses C99

void Example(void)

{

char aList[iList.Sizeof(NULL)];

List *list = iList.Init((List *)aList);

doubleList *l = idoubleList.Init((TYPEList *)aList);

}

InitializeWith

List *(*InitializeWith)(size_t elementSize, size_t n,const void *Data);

// Template file version

TYPEList *(*InitializeWith)(size_t n,const TYPE *Data);

Description: Construct a new list from the given data. It is assumed that Data points
to a memory area that contains at least n items of elementSize bytes each.
Errors:
CONTAINER ERROR BADARG The Data argument is NULL .
Invariants: The input data is not modified.
Returns:The new list or NULL if an error occurs

InitWithAllocator

List *(*InitWithAllocator)(List *aList,

size_t element_size,

104 Chapter 5. The containers

const ContainerAllocator *allocator);

TYPEList *(*InitWithAllocator)(TYPEList *aList,

const ContainerAllocator *allocator);

Description: Initializes the memory pointed by the aList argument. The new list
will use the given allocator. It is assumed that the memory pointed by aList contains
at least the size of the header object. This size can be obtained by calling the Sizeof
function with a NULL argument.
Errors:
CONTAINER ERROR BADARG The given list pointer is NULL .
Invariants: The given allocator is not modified.

InsertAt

int (*InsertAt)(List *L,size_t idx,const void *newData);

int (*InsertAt)(TYPEList *L,size_t idx,const TYPE newData);

Description: Inserts the new element. The new element will have the given index, that
can go from zero to the list count inclusive, i.e. one more than the number of elements
in the list. In single linked lists the cost for this operation is proportional to idx.
Errors:
CONTAINER ERROR BADARG The given list pointer or the element given are NULL .
CONTAINER ERROR READONLY The list is read only.
CONTAINER ERROR INDEX The given position is out of bounds.
CONTAINER ERROR NOMEMORY There is not enough memory to complete the opera-
tion.
Invariants: The data is not modified.
Returns:A positive value if the operation succeeded, or a negative error code if the
operation failed.
Example:

1 #include "containers.h"

2 static int PrintInt(void *pdata,void *extraArgs)

3 {

4 int i = *(int *)pdata;

5 fprintf(extraArgs,"%d ",i);

6 }

7 int main(void)

8 {

9 List *L;

10 int data;

11

12 L = iList.Create(sizeof(int));

13 data = 0;

14 iList.Add(L,&data);

5.1. The List interfaces: iList, iDlist 105

15 iList.PushFront(L,&data);

16 data = 2;

17 iList.InsertAt(L,1,&data);

18 data = 5;

19 iList.Add(L,&data);

20 data = 6;

21 iList.Add(L,&data);

22 iList.Apply(L,PrintInt,stdout);

23 iList.Finalize(L);

24 }

OUTPUT: 0 2 0 5 6

1 #include "containers.h"

2 #include "intlist.h"

3 static int PrintInt(int data,void *extraArgs)

4 {

5 fprintf(extraArgs,"%d ",data);

6 }

7 int main(void)

8 {

9 intList *L;

10 int data;

11

12 L = iintList.Create();

13 iintList.Add(L,0);

14 iintList.PushFront(L,0);

15 iintList.InsertAt(L,1,2);

16 iintList.Add(L,5);

17 iintList.Add(L,6);

22 iintList.Apply(L,PrintInt,stdout);

23 iintList.Finalize(L);

24 }

OUTPUT: 0 2 0 5 6

We create a list of integers at line 12. We add zero to it, then again a zero at the first
position. Our list now is just 0 0. We insert at the position 1 the value 2 in line 17.
Then we add some data at the end. To print the list we use Apply with a function that
receives the file where the data should be printed in the ExtraArgs parameter.

InsertIn

int (*InsertIn)(List *Destination, size_t position, List *source);

106 Chapter 5. The containers

Description: Inserts the list given in its third argument at the given position in the
list pointed to by its first argument. The data is copied, and the source argument is not
modified in any way. Both lists must have elements of the same type. The library only
tests the size of each one.
Errors:

CONTAINER ERROR BADARG The source or the destination lists are NULL .
CONTAINER ERROR READONLY The destination list is read only.
CONTAINER ERROR INDEX The given position is out of bounds.
CONTAINER ERROR NOMEMORY There is not enough memory to complete the opera-
tion.
CONTAINER ERROR INCOMPATIBLE The lists store elements of different size.
Returns:A positive value if the operation succeeded, or a negative error code if the
operation failed.
Example:

#include <containers.h>

/* Prints the contents of a list */

static void PrintList(List *AL)

{

size_t i;

printf("Count %ld\n",(long)iList.Size(AL));

for (i=0; i<iList.Size(AL);i++) {

printf("%g ",*(double *)iList.GetElement(AL,i));

}

printf("\n");

}

/* Fills a list with 10 numbers. The 10 is hardwired... */

static void FillList(List * AL,int start)

{

size_t i;

for (i=0; i<10;i++) {

double d = i+start;

iList.Add(AL,&d);

}

}

/* Creates two lists: one with the numbers from 0 to 9, another

with numbers 100 to 109, then inserts the second into the

first at position 5 */

int main(void)

{

List *AL = iList.Create(sizeof(double));

List *AL1 =iList.Create(sizeof(double));

FillList(AL,0);

5.1. The List interfaces: iList, iDlist 107

FillList(AL1,100);

iList.InsertIn(AL,5,AL1);

PrintList(AL);

return 0;

}

OUTPUT:

Count 20

0 1 2 3 4 100 101 102 103 104 105 106 107 108 109 5 6 7 8 9

LastElement

ListElement *(*LastElement)(List *l);

Description: Returns a pointer to the last element stored in the given list orNULL if
the list is empty or an error occurs. It is an error to call this function in a read-only list.
Errors:
CONTAINER ERROR BADARG The list pointer isNULL .
CONTAINER ERROR READONLY The list is read only.
Returns:The last element orNULL

Load

List *(*Load)(FILE *stream,ReadFunction readFn,void *arg);

Description: Reads a list previously saved with the Save function from the stream
pointed to by stream. If readFn is not NULL , it will be used to read each element. The
arg argument will be passed to the read function. If the read function is NULL , this
argument is ignored and a default read function is used.
Errors:
CONTAINER ERROR BADARG The given stream pointer is NULL .
CONTAINER ERROR NOMEMORY There is not enough memory to complete the opera-
tion.
Returns:A new list or NULL if the operation could not be completed. Note that the
function pointers in the list are NOT saved, nor any special allocator that was in the
original list. Those values will be the values by default. To rebuild the original state
the user should replace the pointers again with the new list.

NewIterator

Iterator *(*NewIterator)(List *list);

Description: Allocates and initializes a new iterator object to iterate this list.
Errors:
CONTAINER ERROR NOMEMORY No more memory is available.
Returns:A pointer to a new iterator or NULL if there is no more memory left.
Example:

108 Chapter 5. The containers

List *list;

Iterator *it = iList.NewIterator(list);

double *d;

for (d=it->GetFirst(it); d != NULL; d = it->GetNext(it)) {

double val = *d;

// Work with the value here

}

iList.deleteIterator(it);

NextElement

DlistElement *(*NextElement)(DlistElement *le);

Description: Returns a pointer to the next element in the list. If the input list isNULL

it returnsNULL .
Errors:
None.
Returns:The next element orNULL .

PopFront

int (*PopFront)(List *L,void *result);

Description: Pops the element at position zero copying it to the result pointer. If the
”result” pointer is NULL , the first element is removed without any copying. The library
supposes that result points to at least ElementSize bytes of contiguous storage.
Errors:

CONTAINER ERROR BADARG The list or the result pointer are NULL .
CONTAINER ERROR READONLY The list is read only.
Returns:A positive value if an element was popped, zero if the list was empty, or a
negative error code if an error occurred.
Example:

double d;

int r = iList.PopFront(L,&d);

if (r==0)

printf("List empty\n");

else if (r < 0) {

printf("Error %d\n",r);

else printf("OK, popped value %g\n",d);

PushFront

int (*PushFront)(List *L,void *element);

5.1. The List interfaces: iList, iDlist 109

Description: Inserts the given element at position zero.
Errors:
CONTAINER ERROR BADARG The list or the element pointer are NULL .
CONTAINER ERROR READONLY The list is read only.
CONTAINER ERROR NOMEMORY There is not enough memory to complete the opera-
tion.
Returns:A positive value if the operation completed, or a negative error code otherwise.
Example:

double d = 2.3;

if (iList.PushFront(list,&d) < 0)

printf("Error\n");

RemoveRange

int (*RemoveRange)(List *l,size_t start,size_t end);

Description: Removes all elements having an index equal or greater than start and
less than end . If end is greater than the number of elements in the collection it will
be adjusted to one more than the number of elements. If start is bigger than end the
range is still valid and starts with the value of end and ends with the value of start .
Errors:
CONTAINER ERROR BADARG The list pointer is NULL .
Returns:Zero if no elements were removed. Otherwise returns a positive number for
success, a negative error code in case of an error.

ReplaceAt

int (*ReplaceAt)(List *list,size_t idx,const void *newData);

Description: Replaces the list element at position idx with the new data starting at
the position pointed to by ”newData” and extending ElementSize bytes.
Errors:
CONTAINER ERROR BADARG The list or the new element pointer are NULL .
CONTAINER ERROR READONLY The list is read only.
CONTAINER ERROR INDEX The given position is out of bounds.
Invariants: The input data is not modified.
Returns:A negative error code if an error occurs, or a positive value if the operation
succeeded.
Example:

List *list;

double d = 6.7;

int r = iList.ReplaceAt(list,2,&d);

if (r < 0) { /* Error handling */ }

110 Chapter 5. The containers

Reverse

int (*Reverse)(List *list);

Description: Reverses the order of the given list: the head becomes the tail and the
tail becomes the head. The original order is lost.
Errors:
CONTAINER ERROR BADARG The list pointer is NULL .
CONTAINER ERROR READONLY The list is read only.
Returns:A negative error code if an error occurs, or a positive value if the operation
succeeded.
Example:

#include <containers.h>

static void print_list(List *li)

{

int i;

for (i=0; i<iList.Size(li); i++)

printf(" %d",*(int *)iList.GetElement(li,i));

printf("\n");

}

int main(void)

{

List *li = iList.Create(sizeof(int));

int i;

for (i=0; i<10;i++) {

iList.Add(li,&i);

}

print_list(li);

iList.Reverse(li);

print_list(li);

}

OUTPUT

0 1 2 3 4 5 6 7 8 9

9 8 7 6 5 4 3 2 1 0

RotateRight

int (*RotateRight)(List *src,size_t n);

Description: Rotates right the list by the indicated amount. The last n elements will
be written to the start of the array, and the rest will be shifted right.
Errors:
CONTAINER ERROR BADARG The list pointer is NULL .
CONTAINER ERROR READONLY The list is read only.

5.1. The List interfaces: iList, iDlist 111

Returns:A positive number if something was moved, zero otherwise (the input was zero
or a modulo of the array size).

RotateLeft

int (*RotateLeft)(List *src,size_t n);

Description: Rotates left the list by the indicated amount. The first n elements will be
written to the end of the list, and the rest will be shifted left to fill the empty n places.
Errors:
CONTAINER ERROR BADARG The list pointer is NULL .
CONTAINER ERROR READONLY The list is read only.
Returns:A positive number if something was moved, zero otherwise (the input was zero
or a modulo of the array size), or an error code less than zero if an error occurs.

Save

int (*Save)(const List *l, FILE *stream,SaveFunction SaveFn, void *arg);

Description: The contents of the given list are saved into the given stream. If the save
function pointer is not NULL , it will be used to save the contents of each element and
will receive the arg argument passed to Save. Otherwise a default save function will be
used and arg will be ignored.
Errors:
CONTAINER ERROR BADARG The list pointer or the stream pointer are NULL . EOF A
disk input/output error occurred.
Returns:A positive value if the operation completed, a negative value or EOF otherwise.

Select

int (*Select)(List *l,Mask *m);

Description: Uses the given mask to select elements from the given list. The list is
modified: all elements that have a corresponding value of zero in the mask are erased
from the list. The length of the mask should be equal to the length of the list. If there
is a destructor set up for the list, it is called for all the elements that are eliminated.
Invariants: The mask is not modified.
Errors:
CONTAINER ERROR BADARG The list or the mask are NULL .
CONTAINER ERROR READONLY The list is read only.
CONTAINER ERROR INCOMPATIBLE The mask and the list have different lengths.
Returns:A positive value for success, a negative error code otherwise.
Example:

#include "containers.h"

static void printList(List *v)

{

112 Chapter 5. The containers

int i,*pi;

for (i=0; i<iList.Size(v);i++) {

pi = iList.GetElement(v,i);

printf("%2d ",*pi);

}

printf("\n");

}

int main(void)

{

List * vInt = iList.Create(sizeof(int));

int i;

Mask *m;

for (i=1;i<=24;i++)

iList.Add(vInt,&i);

m = iMask.Create(24);

printf("Original list: \n");

printList(vInt);

for (i=0;i<24;i++) {

iMask.Set(m,i,i&1);

printf("%2d ",i&1);

}

printf("\nSelect of the list:\n");

iList.Select(vInt,m);

printList(vInt);

iList.Finalize(vInt);

iMask.Finalize(m);

}

OUTPUT:

Original list:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Select of the list:

2 4 6 8 10 12 14 16 18 20 22 24

SelectCopy

List *(*SelectCopy)(const List *l,const Mask *m);

5.1. The List interfaces: iList, iDlist 113

Description: Uses the given mask to select elements from the given list. The list is not
modified: all elements that have a corresponding value different of zero in the mask are
copied to the new list. The length of the mask should be equal to the length of the list.
Invariants: Neither the input list nor the mask are modified.
Errors:

CONTAINER ERROR BADARG The list or the mask are NULL .
CONTAINER ERROR INCOMPATIBLE The mask and the list have different lengths.
CONTAINER ERROR NOMEMORY Insufficient ressources to create the result list.
Returns:A pointer to a new list or NULL if there was an error.
Example:

#include "containers.h"

static void printList(List *v)

{

int i,*pi;

for (i=0; i<iList.Size(v);i++) {

pi = iList.GetElement(v,i);

printf("%2d ",*pi);

}

printf("\n");

}

int main(void)

{

List * vInt = iList.Create(sizeof(int));

List *copy;

int i;

Mask *m;

for (i=1;i<=24;i++)

iList.Add(vInt,&i);

m = iMask.Create(24);

printf("Original list: \n");

printList(vInt);

for (i=0;i<24;i++) {

iMask.Set(m,i,!(i&1));

printf("%2d ",!(i&1));

}

printf("\nSelect of the list:\n");

copy = iList.SelectCopy(vInt,m);

printList(copy);

114 Chapter 5. The containers

iList.Finalize(vInt);

iList.Finalize(copy);

iMask.Finalize(m);

}

OUTPUT

Original list:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Select of the list:

1 3 5 7 9 11 13 15 17 19 21 23

SetCompareFunction

CompareFunction (*SetCompareFunction)(List l,CompareFunction f);

Description: if the f argument is non NULL , it sets the list comparison function to f.
Errors:
CONTAINER ERROR BADARG The list pointer is NULL .
CONTAINER ERROR READONLY The list is read only and the function argument is not
NULL .
Returns:The old value of the comparison function.
Example:

ErrorFunction fn,newfn;

List *list;

fn = iList.SetCompareFunction(list,newfn);

SetDestructor

DestructorFunction SetDestructor(List *l,DestructorFunction fn);

Description: Sets the destructor function to its given argument. If the function argu-
ment is NULL nothing is changed and the call is interpreted as a query since the return
value is the current value of the destructor function. If the list argument is NULL , the
result is NULL .
Returns:The old value of the destructor.

SetElementData

int (*SetElementData)(List *l, ListElement *le,void *data);

Description: Copies ElementSize bytes from its parameter data into the given list
element. The list is modified even if all pointers into it could remain valid. Any iterators
into the list will stop working.

5.1. The List interfaces: iList, iDlist 115

Errors:
CONTAINER ERROR BADARG Any argument isNULL .
Returns:The old value of the error function, or NULL if there is an error.

SetErrorFunction

ErrorFunction (*SetErrorFunction)(List *L,ErrorFunction);

Description: Replaces the current error function for the given list with the new error
function if the ErrorFunction parameter is different from NULL . If the List parameter
is NULL the function returns the value of the current default error function.
Errors:
CONTAINER ERROR BADARG The list pointer is NULL .
CONTAINER ERROR READONLY The list is read only and the function argument is not
NULL .
Returns:The old value of the error function, or NULL if there is an error.

Size

size_t (*Size)(const List *l);

Description: Returns the number of elements stored in the list.
Errors:
If the given list pointer is NULL , it returns SIZE MAX.
Example:

List *li;

size_t bytes = iList.Size(li);

Sizeof

size_t (*Sizeof)(const List *list);

Description: Returns the total size in bytes of the list, including the header, and all
data stored in the list. If list is NULL , the result is the size of the List structure.
Returns:The number of bytes used by the list or the size of the empty List container
if the argument is NULL .
Example:

#include "containers.h"

int main(void)

{

List *l = iList.Create(sizeof(int));

int i;

for (i=0; i<10; i++)

116 Chapter 5. The containers

iList.Add(l,&i);

// Queries for size of the list and for size of the list header

printf("Size of list: %lu, sizeof list header %lu\n",

iList.Sizeof(l),iList.Sizeof(NULL));

// Prints the size of the data (int) and the size of a pointer

printf("Sizeof int %lu, sizeof void * %lu\n",

sizeof(int),sizeof(void *));

iList.Finalize(l);

}

OUTPUT (64 bit system)

Size of list: 208, sizeof list header 88

Sizeof int 4, sizeof void * 8

208− 88 is 120. There are 10 elements, so each element is 12 bytes: 8 for a pointer
and 4 for an integer4.

SizeofIterator

size_t (*SizeofIterator)(const List *list);

Description: Returns the total size in bytes of the list iterator.
Returns:The number of bytes used by the list iterator.
Example:

List *list;

size_t siz = iList.Sizeof(list);

Sort

int (*Sort)(List *list);

Description: Sorts the given list using the list comparison function. The order of the
original list is destroyed. You should copy it if you want to preserve it.
Returns:A positive number if sorting succeeded, a negative error code if not.
Example:

List *list;

if (iList.Sort(list) < 0) { /* Error handling */ }

4The sample implementation does not use a pointer to the data but the data is stored directly after
the pointer to the next element. This saves space but it is not possible to reuse the list elements to store
other types of data since they could be of different size: the element size of other lists storing other
types of data would be different. In an implementation where each list element stored two pointers:
one to the next element and another to the data, it would be possible to reuse them for any kind of
list, saving allocations. In those systems, this program would yield different results.

5.1. The List interfaces: iList, iDlist 117

SplitAfter

List *(*SplitAfter)(List *list, ListElement *point);

Description: Splits the source lost at the given element. This element must be an
element of the source list. Checking that this is actually the case is very expensive and
probably will be skipped in most implementations. An error here will have very serious
consequences for the integrity of the system.

SplitAfter builds a new list with all the elements after the given element that
becomes the last element of the source list.
Errors:
CONTAINER ERROR BADARG The list pointer or the element are NULL .
CONTAINER ERROR READONLY The source list is read only.
CONTAINER ERROR NOMEMORY There aren’t enough ressources to create a new list.
Returns:
A pointer to the newly created list or NULL if an error occurs or the given list element
is the last element of the list.
Example:

#include "containers.h"

/* This example creates a list of 16 double precision numbers

and splits it after element 4. It prints the lists before and after

the split, then exits

*/

static void Fprintf(List *v) // Prints a list of doubles

{

int i;

double *pi;

for (i=0; i<iList.Size(v);i++) {

pi = iList.GetElement(v,i);

printf("%g ",*pi);

}

printf("\n");

}

int main(void)

{

List *l,*newList;

ListElement *le;

int i;

double d;

l = iList.Create(sizeof(double));

d = 1;

118 Chapter 5. The containers

for (i=0; i<16;i++) {

iList.Add(l,&d);

d += 1;

}

printf("Original list:\n");

Fprintf(l);

le = iList.FirstElement(l);

for (i=0; i<4;i++)

le = iList.NextElement(le);

printf("Element %g is at the split\n",*(double *)iList.ElementData(le));

newList = iList.SplitAfter(l,le);

printf("New list:\n");

Fprintf(newList);

printf("Source list\n");

Fprintf(l);

iList.Finalize(l);

iList.Finalize(newList);

}

OUTPUT:

Original list:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Element 5 is at the split

New list:

6 7 8 9 10 11 12 13 14 15 16

Source list

1 2 3 4 5

UseHeap

int (*UseHeap)(List *list,ContainerAllocator *m);

Description: Adds a heap manager to the given list, that should be empty. The heap
manager will manage the free list and the allocation of new objects. Use this function
when the list will hold a great number of elements. This function is optional and may
not be present in all implementations. If m is NULL , the current memory manager object
will be used for allocating and reclaiming memory. Otherwise m should be a memory
manager object.

Errors:

CONTAINER ERROR BADARG The list pointer is NULL .

CONTAINER ERROR NOT EMPTY The list is not empty or has already a heap.

Portability: This function is optional and may not be present in all implementations.

5.1. The List interfaces: iList, iDlist 119

5.1.2 Specializations of linked lists

The sample implementation proposes a stringlist container that can hold a list of
strings. Its interface functions and all its vocabulary are identical to the linked list one.
This is a recommended extension but may not be present in all implementations of the
library.

It comes in two flavors:

• Single byte character strings. The name of the interface is iStringList.

• Wide character strings. The name of the interface is iWStringList.

In this specialization the function GetElementSize returns always zero since it has no
meaning in a list composed of strings of different length.5

The function Sizeof that is very fast in normal lists (the element size is known),
it is very expensive in string lists since all the list needs to be scanned to add up the
contents of each string.6

Another difference is that the function Save and the function Load do not use the
user function argument since they are specialized to load and save character strings.
The function argument can have any value. It has been maintained for compatibility
with the rest of the software.

5An alternative would have been to return the average string length, but that solution would have
needed a result type different from a size t (a floating point number would be needed), making this
interface different from all other containers where this function returns a size t. A size t of zero was
choosen as a compromise solution. It would also have been possible to eliminate this function but that
would have needed also an interface change.

In all specializations it is needed to make compromises since the specialization is different from its
original interface. One way to solve this is to try to keep the interface identical at the cost of some
redundant or unnecessary functions. In this case the only function affected is GetElementSize but in
other specializations the differences could be more profound and other solutions could be better.

6Again, implementations could improve this by storing a byte count that is increased when a string
is added and decreased when a string is eliminated, but that introduces more complexity and would
penalize all users of the string list, even those that never use Sizeof at all.

120 Chapter 5. The containers

5.2 Double linked lists: iDlist

Differences with the list vocabulary are marked in bold.

5.2. Double linked lists: iDlist 121

Double linked lists have a pair of pointers pointing to the next and to the previous
element in the list. It is easy then, to move in either direction through the list. The price
to pay is a higher overhead for each element. This container shares most of its interface
with the single linked list container. Here we document the functions that aren’t already
described for the list container.

typedef struct tagDlistInterface {

int (*Add)(Dlist *dl,const void *newval);

int (*AddRange)(Dlist *l,size_t n,const void *data);

void *(*Advance)(DlistElement **pDlistElement);

int (*Append)(Dlist *l1,Dlist *l2);

int (*Apply)(Dlist *L,int(Applyfn)(void *elem,void *extraArg),

void *extraArg);

void *(*Back)(const Dlist *l);

int (*Clear)(Dlist *dl);

int (*Contains)(const Dlist *dl,const void *element);

Dlist *(*Copy)(const Dlist *dl);

int (*CopyElement)(const Dlist *l,size_t idx,void *outbuf);

Dlist *(*Create)(size_t elementsize);

Dlist *(*CreateWithAllocator)(size_t,const ContainerAllocator *);

void *(*ElementData)(DlistElement *le);

int (*Equal)(const Dlist *l1,const Dlist *l2);

int (*Erase)(Dlist *AL,const void *);

int (*EraseAll)(Dlist *AL,const void *);

int (*EraseAt)(Dlist *AL,size_t idx);

int (*Finalize)(Dlist *AL);

DlistElement *(*FirstElement)(Dlist *l);

void *(*Front)(const Dlist *l);

const ContainerAllocator *(*GetAllocator)(const Dlist *l);

void *(*GetElement)(const Dlist *AL,size_t idx);

size_t (*GetElementSize)(const Dlist *dl);

unsigned (*GetFlags)(const Dlist *AL);

Dlist *(*GetRange)(Dlist *l,size_t start,size_t end);

int (*IndexOf)(const Dlist *AL,const void *SearchedElement,

void *args,size_t *result);

Dlist *(*Init)(Dlist *dlist,size_t elementsize);

int (*InitIterator)(Dlist *,void *buf);

Dlist *(*InitWithAllocator)(Dlist *L,size_t element_size,

const ContainerAllocator *mm);

Dlist *(*InitializeWith)(size_t elementSize, size_t n,

const void *data);

int (*InsertAt)(Dlist *AL,size_t idx,const void *newval);

int (*InsertIn)(Dlist *l, size_t idx,Dlist *newData);

DlistElement *(*LastElement)(Dlist *l);

122 Chapter 5. The containers

Dlist *(*Load)(FILE *stream, ReadFunction loadFn,void *arg);

void *(*MoveBack)(DlistElement **pDlistElement);

Iterator *(*NewIterator)(Dlist *);

DlistElement *(*NextElement)(DlistElement *le);

int (*PopBack)(Dlist *AL,void *result);

int (*PopFront)(Dlist *AL,void *result);

DlistElement *(*PreviousElement)(DlistElement *le);

int (*PushBack)(Dlist *AL,const void *str);

int (*PushFront)(Dlist *AL,const void *str);

int (*RemoveRange)(Dlist *l,size_t start, size_t end);

int (*ReplaceAt)(Dlist *AL,size_t idx,const void *newval);

int (*Reverse)(Dlist *l);

int (*RotateLeft)(Dlist *l, size_t n);

int (*RotateRight)(Dlist *l,size_t n);

int (*Save)(const Dlist *L,FILE *stream, SaveFunction saveFn,

void *arg);

int (*Select)(Dlist *src,const Mask *m);

Dlist *(*SelectCopy)(const Dlist *src,const Mask *m);

CompareFunction (*SetCompareFunction)(Dlist *l,CompareFunction fn);

DestructorFunction (*SetDestructor)(Dlist *v,

DestructorFunction fn);

int (*SetElementData)(Dlist *l, DlistElement *le,void *data);

ErrorFunction (*SetErrorFunction)(Dlist *L,ErrorFunction);

unsigned (*SetFlags)(Dlist *AL,unsigned flags);

size_t (*Size)(const Dlist *dl);

size_t (*Sizeof)(const Dlist *dl);

size_t (*SizeofIterator)(const Dlist *);

DlistElement *(*Skip)(DlistElement *l,size_t n);

int (*Sort)(Dlist *l);

Dlist *(*Splice)(Dlist *list,void *pos,Dlist *toInsert,

int direction);

Dlist *(*SplitAfter)(Dlist *l, DlistElement *pt);

int (*UseHeap)(Dlist *L,const ContainerAllocator *m);

int (*deleteIterator)(Iterator *);

} DlistInterface;

MoveBack

void *(*MoveBack)(ListElement **ppElement);

Description: Given the address of a pointer to an element, it returns a pointer to the
data stored into that element and writes the address of the previous element into its
argument ppElement. If ppElement isNULL it returnsNULL . If *ppElement isNULL it
also returnsNULL .

5.2. Double linked lists: iDlist 123

Returns:A pointer to the data stored in the given element orNULL if the data can’t be
retrieved.

PopBack

int (*PopBack)(List *L,void *result);

Description: Pops the element at the last position copying it to the result pointer. If
the ”result” pointer is NULL , the last element is removed without any copying. Other-
wise, the library supposes that result points to at least ElementSize bytes of contiguous
storage.
Errors:
CONTAINER ERROR BADARG The list or the result pointer are NULL .
CONTAINER ERROR READONLY The list is read only.
Returns:A positive value if an element was popped, zero if the list was empty, or a
negative error code if an error occurred.
Example:

double d;

int r = iList.PopBack(L,&d);

if (r==0)

printf("List empty\n");

else if (r < 0) {

printf("Error %d\n",r);

else printf("OK, popped value %g\n",d);

PreviousElement

DlistElement *(*PreviousElement)(DlistElement *le);

Description: Returns a pointer to the previous element in the list. If the input list
isNULL it returnsNULL .
Errors:
None.
Returns:The previous element orNULL .

PushBack

int (*PushBack)(List *L,void *element);

Description: Inserts the given element at the last position of the list.
Errors:
CONTAINER ERROR BADARG The list or the element pointer are NULL .
CONTAINER ERROR READONLY The list is read only.
CONTAINER ERROR NOMEMORY There is not enough memory to complete the opera-
tion.

124 Chapter 5. The containers

Returns:A positive value if the operation completed, or a negative error code otherwise.
Example:

double d = 2.3;

if (iList.PushBack(list,&d) < 0)

printf("Error\n");

Splice

Synopsis:

Dlist *(*Splice)(Dlist *list, void *Pos, Dlist *toInsert,int direction);

Description: Inserts a list (parameter ”toInsert”) into another one (parameter ”list”)
at the given position that should be an element of ”list”. The direction argument means
to insert before the position if zero, after the position if not zero.
Errors:
CONTAINER ERROR BADARG The list, the list to be inserted or the element pointer are
NULL .
CONTAINER ERROR READONLY The list is read only.

5.3. The Vector interface: iVector 125

5.3 The Vector interface: iVector

126 Chapter 5. The containers

Vector vocabulary.
The ”vector” container is an array that resizes to accommodate new elements. Access

is always checked against the array bounds. Insertion and deletion of items are more
expensive than in lists, and the cost increases linearly with the array size. Access is very
cheap, since a multiplication suffices to get to any array position.

Most functions of the interface are shared with the list, Dlist and the other sequential
containers.

Special arrays using a modified error function

Some functions of the iVector interface will examine the return value of the error function
after an index error is detected. If the error function returns a pointer value different
than NULL , it will be assumed that that is the value of the API that should be returned
to the user. This allows for the implementation of infinite arrays or arrays where an
access into some element beyond the end of the array provokes an automatic resize
operation of the array up to the required length.

In case of an index error, this container passes always a pointer to the container and
the out of range index to the error function. The functions where the return value of
the error function is used are:

• CopyElement. If the return value is not NULL the returned pointer is used to copy
into the result buffer.

• GetElement. If the return pointer is not NULL the pointer is the result of the
function.

• InsertAt. If the return pointer is not NULL , the vector is resized up to the index
that is required.

5.3.1 The interface

typedef struct tagVectorInterface {

int (*Add)(Vector *AL,const void *newval);

int (*AddRange)(Vector *AL,size_t n,const void *newvalues);

int (*Append)(Vector *AL1, Vector *AL2);

int (*Apply)(Vector *AL,int (*Applyfn)(void *element,void * arg),

void *arg);

void *(*Back)(const Vector *AL);

int (*Clear)(Vector *AL);

Mask *(*CompareEqual)(const Vector *left,const Vector *right,

Mask *m);

Mask *(*CompareEqualScalar)(const Vector *left, const void *right,

Mask *m);

int (*Contains)(const Vector *AL,const void *element,

void *ExtraArgs);

Vector *(*Copy)(const Vector *AL);

5.3. The Vector interface: iVector 127

int (*CopyElement)(const Vector *AL,size_t idx,void *outbuf);

void **(*CopyTo)(const Vector *AL);

Vector *(*Create)(size_t elementsize,size_t startsize);

Vector *(*CreateWithAllocator)(size_t elemsiz,size_t startsiz,

const ContainerAllocator *mm);

int (*Equal)(const Vector *first,const Vector *second);

int (*Erase)(Vector *AL,const void *);

int (*EraseAll)(Vector *AL,const void *);

int (*EraseAt)(Vector *AL,size_t idx);

int (*Finalize)(Vector *AL);

void *(*Front)(const Vector *AL);

const ContainerAllocator *(*GetAllocator)(const Vector *AL);

size_t (*GetCapacity)(const Vector *AL);

void **(*GetData)(const Vector *AL);

void *(*GetElement)(const Vector *AL,size_t idx);

size_t (*GetElementSize)(const Vector *AL);

unsigned (*GetFlags)(const Vector *AL);

Vector *(*GetRange)(const Vector *AL, size_t start, size_t end);

Vector *(*IndexIn)(Vector *SC,Vector *AL);

int (*IndexOf)(const Vector *AL,const void *data,void *ExtraArgs,

size_t *result);

Vector *(*Init)(Vector *r,size_t elementsize,size_t startsize);

int (*InitIterator)(Vector *V,void *buf);

Vector *(*InitializeWith)(size_t elementSize, size_t n,

const void *Data);

int (*Insert)(Vector *AL,void *);

int (*InsertAt)(Vector *AL,size_t idx,void *newval);

int (*InsertIn)(Vector *AL, size_t idx,Vector *newData);

Vector *(*Load)(FILE *stream, ReadFunction readFn,void *arg);

int (*Mismatch)(Vector *a1,Vector *a2,size_t *mismatch);

Iterator *(*NewIterator)(Vector *AL);

int (*PopBack)(Vector *AL,void *result);

int (*PushBack)(Vector *AL,const void *str);

int (*RemoveRange)(Vector *SC,size_t start,size_t end);

int (*ReplaceAt)(Vector *AL,size_t idx,void *newval);

int (*Reserve)(Vector *src,size_t newCapacity);

int (*Resize)(Vector *AL,size_t newSize);

int (*Reverse)(Vector *AL);

int (*RotateLeft)(Vector *V,size_t n);

int (*RotateRight)(Vector *V,size_t n);

int (*Save)(const Vector *AL,FILE *stream, SaveFunction saveFn,

void *arg);

int (*SearchWithKey)(Vector *vec,size_t startByte,size_t sizeKey,

size_t startIndex,void *item,size_t *result);

128 Chapter 5. The containers

int (*Select)(Vector *src,const Mask *m);

Vector *(*SelectCopy)(Vector *src,Mask *m);

int (*SetCapacity)(Vector *AL,size_t newCapacity);

CompareFunction (*SetCompareFunction)(Vector *l,

CompareFunction fn);

DestructorFunction (*SetDestructor)(Vector *v,

DestructorFunction fn);

ErrorFunction (*SetErrorFunction)(Vector *AL,ErrorFunction);

unsigned (*SetFlags)(Vector *AL,unsigned flags);

size_t (*Size)(const Vector *AL);

size_t (*Sizeof)(const Vector *AL);

size_t (*SizeofIterator)(const Vector *);

int (*Sort)(Vector *AL);

int (*deleteIterator)(Iterator *);

} VectorInterface;

5.3.2 The API

Add

int (*Add)(Vector *AL,void *data);

int (*Add)(TYPEVector, TYPE data);

Description: Adds the given element to the end of the container. It is the same
operations as the PushBack operation. It is assumed that ”data” points to a contiguous
memory area of at least ElementSize bytes. Returns a value greater than zero if the
addition completed successfully, a negative error code otherwise.
Errors:
CONTAINER ERROR BADARG The vector or the data pointers are NULL .
CONTAINER ERROR READONLY The vector is read-only. No modifications allowed.
CONTAINER ERROR NOMEMORY Not enough memory to complete the operation.
Returns:A positive number if the operation completed, negative error code otherwise.
Example:

Vector *AL = iVector.Create(sizeof(double));

double data = 4.5;

int result = iVector.Add(AL,&data);

if (result < 0) { /* Error handling */ }

// Template version

#include "doubleVector.h"

doubleVector *AL = idoubleVector.Create();

int result = idoubleVector.Add(AL,4.5);

if (result < 0) { /* Error handling */ }

5.3. The Vector interface: iVector 129

AddRange

int (*Add)(Vector *AL,size_t n, void *data);

int (*Add)(TYPEVector *AL,size_t n, TYPE *data);

Description: Adds the n given elements to the end of the container. It is the same
operations as the PushBack operation. It is assumed that ”data” points to a contiguous
memory area of at least n*ElementSize bytes. Returns a value greater than zero if the
addition completed successfully, a negative error code otherwise. If n is zero no error is
issued even if the array pointer or the data pointer are NULL .
Errors:

CONTAINER ERROR BADARG The vector or the data pointers are NULL , and n is not
zero.
CONTAINER ERROR READONLY The vector is read-only. No modifications allowed.
CONTAINER ERROR NOMEMORY Not enough memory to complete the operation.
Returns:A positive number if the operation completed, negative error code otherwise.
Example:

Vector *AL;

double data[] = {4.5, 4.6, 4.7 };

AL = iVector.Create(sizeof(double),5);

int result = iVector.Add(AL,3, data);

if (result < 0) { /* Error handling */ }

// Template version

#include "doubleVector.h"

doubleVector *AL = idoubleVector.Create(5);

double data[] = {4.5, 4.6, 4.7 };

int result = idoubleVector.Add(AL,3, data);

if (result < 0) { /* Error handling */ }

Append

int (*Append)(Vector *AL1, Vector *AL2);

Description: Adds all elements of AL2 at the end of the first container AL1. The two
vectors should contain elements of the same type.
Errors:

CONTAINER ERROR BADARG One of the Vector pointer is NULL .
CONTAINER ERROR READONLY The first argument is read-only. No modifications al-
lowed.
CONTAINER ERROR NOMEMORY Not enough memory to complete the operation.
Returns:A positive number if the operation completed, negative error code otherwise.

Apply

130 Chapter 5. The containers

int (*Apply)(Vector l,int (Applyfn)(void *,void *),void *arg);

int (*Apply)(TYPEVector l,int (Applyfn)(TYPE,void *),void *arg);

Description: Will call the given function for each element of the array. The first
argument of the callback function receives an element of the array. The second argument
of the callback is the arg argument that the Apply function receives and passes to the
callback. This way some context can be passed to the callback, and from one element
to the next. Note that the result of the callback is not used. This allows all kinds of
result types to be accepted after a suitable cast. If the array is read-only, a copy of the
element will be passed to the callback function.

Errors:

CONTAINER ERROR BADARG Either list or Applyfn are NULL .

CONTAINER ERROR NOMEMORY The list is read-only and there is no more memory to
allocate the buffer to copy each element.

Returns:A positive value if no errors or a negative error code.

Example:

static int Callback(void *pelement,void *pResult)

{

double *p = pelement;

double *result = pResult;

*result += *p;

return 1;

}

double AddVector(Vector *l) {

double sum = 0;

Vector *alist = iVector.Create(sizeof(double),2);

double d = 2;

iVector.Add(alist,&d);

d = 3;

iVector.Add(alist,&d);

iList.Apply(alist,Callback,&sum);

// Here sum should be 5.

return sum;

}

// ------------------------------Template version

static int Callback(double element,void *pResult)

{

double *result = pResult;

*result += element;

return 1;

}

double AddVector(Vector *l) {

double sum = 0;

5.3. The Vector interface: iVector 131

doubleVector *alist = idoubleVector.Create(2);

idoubleVector.Add(alist,2);

idoubleVector.Add(alist,3);

idoubleList.Apply(alist,Callback,&sum);

// Here sum should be 5.

return sum;

}

Back

void *(*Back)(const Vector *v);

TYPE (*Back)(const TYPEVector *v);

Description: Returns the last element of the given vector or NULL if the vector is
empty.
Errors:
CONTAINER ERROR BADARG The vector pointer is NULL .
CONTAINER ERROR READONLY The vector is read only.
Returns:The last element or NULL if the vector is empty or an error occurs.

Clear

int (*Clear)(Vector *l);

Description: Erases all stored data and releases the memory associated with it. The
vector header will not be destroyed, and its contents will be the same as when the
array was initially created. It is an error to use this function when there are still active
iterators for the container.
Returns:The result is greater than zero if successful, or an error code if an error occurs.
Errors:
CONTAINER ERROR BADARG The vector pointer is NULL .
CONTAINER ERROR READONLY The vector is read only.
Example:

Vector *Al;

int m = iVector.Clear(Al);

CompareEqual

Mask *(*CompareEqual)(ValArray *left,ValArray *right,

Mask bitarray);

Description: Assigns to each element of the mask the result of comparing the corre-
sponding elements of the left and right arrays. Conceptually this operation is:

132 Chapter 5. The containers

Mask[i] = (left[i] == right[i])

If the mask argument is NULL it will be allocated and returned. The allocator used is
the global memory manager. If it is not NULL it should contain at least enough positions
to hold the data. If it doesn’t it will be finalized using iMask.Finalize and allocated
with the necessary length.
Errors:

CONTAINER ERROR NOMEMORY . The given byte array argument was NULL but there
is no memory to allocate the result.
CONTAINER ERROR BADARG The given mask hasn’t enough positions available.
CONTAINER ERROR INCOMPATIBLE The arrays are of different length.
Returns:A pointer to the bitarray passed or allocated, or NULL if an error occurs.

CompareEqualScalar

Mask *(*CompareEqual)(const Vector *left,const void *right,

Mask *bitarray);

Description: Assigns to each element of the mask the result of comparing the elements
of the left array with the right argument. Conceptually this operation is:

bit[i] = (left[i] == right)

If the bitarray argument is NULL it will be allocated and returned. The allocator used
is the one from the left argument. If it is not NULL it will be allocated if its length is
less than the needed length.
Errors:

CONTAINER ERROR NOMEMORY . The given byte array argument was NULL but there
is no memory to allocate the result.
Returns:A pointer to the bitarray or NULL if an error occurs.

Contains

int (*Contains)(Vector *a,void *data);

int (*Contains)(TYPEVector *a,TYPE data);

Description: Searches the given data in the array. The ”data” argument is supposed
to point to an element at least ElementSize bytes. The array’s comparison function is
used for determining if two elements are equal. This comparison function defaults to
memcmp.
Errors:

CONTAINER ERROR BADARG Either array or data are NULL .
Returns:One if the given data is stored in the array, zero otherwise. If either the data
pointer or the array pointer are NULL it returns a negative error code.
Example:

5.3. The Vector interface: iVector 133

Vector *a = iVector.Create(sizeof(double),2);

double data = 78.67;

int r = iVector.Contains(a,&data);

// ---------------------------Template version

doubleVector *a = iVector.Create(2);

int r = iVector.Contains(a,78.67);

Copy

Vector *(*Copy)(Vector *A);

Description: A shallow copy of the given array is performed. Only ElementSize bytes
will be copied for each element. If the element contains pointers, only the pointers are
copied, not the objects they point to. The new memory will be allocated using the given
array’s allocator.
Errors:
CONTAINER ERROR NOMEMORY There is not enough memory to complete the opera-
tion.
CONTAINER ERROR BADARG The given vector pointer is NULL .
Example:

Vector *newVector,*OldVector;

newVector = iVector.Copy(OldVector);

CopyElement

Vector *(*Copy)(const Vector *A,size_t idx,void *result);

Description: The element at the given index is copied into the output buffer that
should be at least big enough to hold one element. If the index is bigger than the
number of elements the error function is called. If it returns a valid pointer (not NULL

) it is assumed that this is a pointer to a valid element that should be copied into the
output buffer.
Errors:
If the idx argument is out of range the CopyElement function calls the vector error
function. If the error function returns a result different than NULL , the function assumes
that it is a pointer to some value that should be copied into the result buffer.
CONTAINER ERROR INDEX The index is out of bounds.
CONTAINER ERROR BADARG The given vector pointer is NULL .
Example:

Vector *V;

char buffer[16];

newVector = iVector.CopyElement(V,3,buffer);

134 Chapter 5. The containers

CopyTo

void **(*CopyTo)(Vector *AL);

Description: Copies the whole contents of the given array into a table of pointers to
newly allocated elements, finished by a NULL pointer.
Errors:
CONTAINER ERROR BADARG The iterator pointer is NULL .
CONTAINER ERROR NOMEMORY There is not enough memory to complete the opera-
tion.
Returns:A pointer to a table of pointers or NULL if an error occurs.

deleteIterator

int deleteIterator(Iterator *it);

Description: Reclaims the memory used by the given iterator object
Returns:Integer smaller than zero with error code or a positive number when the op-
eration completes.
Errors:
CONTAINER ERROR BADARG The iterator pointer is NULL .

Create

Vector *(*Create)(size_t element_size,size_t startsize);

TYPEVector *(*Create)(size_t startsize);

Description: The creation function returns an empty array, initialized with all the
default values. The current memory manager is used to allocate the space needed for
the header. The array is supposed to contain elements of the same size. If the elements
you want to store are of different size, use a pointer to them, and create the array with
sizeof(void *) as the size parameter.
Returns:A pointer to a newly created array or NULL if an error occurs.
Errors:
CONTAINER ERROR NOMEMORY There is not enough memory to complete the opera-
tion.
CONTAINER ERROR BADARG The given element size is zero.

Any errors provoke the call the current default error function of the library since this
is the creation function.
Example:

Vector *DArray = iVector.Create(sizeof(double),100);

CreateWithAllocator

Vector *(*CreateWithAllocator)(size_t elementsize,

size_t startsize,ContainerAllocator *allocator);

5.3. The Vector interface: iVector 135

Description: This function is identical to Create with the difference that it accepts a
pointer to an allocator object. Actually, Create can be written as:

return CreateWithAllocator(elementsize,startsize,CurrentAllocator);

Equal

int (*Equal)(Vector *first,Vector *second);

Description: Compares the given arrays. If they differ in their length, flags, or element
size they compare unequal. If any of their elements differ, they compare unequal. If
both first and second are NULL they compare equal.

Errors:

None

Returns:The result is one if the vectors are equal, zero otherwise.

Erase

int (*Erase)(Vector *AL,void *data);

int (*Erase)(TYPEVector *AL,TYPE data);

Description: Removes from the vector the element that matches the given data, that
is assumed to be a pointer to an element.

Returns:A negative error code if an error occurred, or a positive value that indicates
that at least one match was found and the elements were removed. If the element is not
in the vector the result value is CONTAINER ERROR NOTFOUND .

Errors:

CONTAINER ERROR BADARG One or both arguments are NULL .

Example:

double d = 2.3;

Vector *AL;

int r = iVector.Erase(AL,&d);

if (r > 0)

printf("2.3 erased|n");

else if (r == 0)

printf("No element with value 2.3 present\n");

else

printf("error code %d\n",r);

EraseAll

int (*EraseAll)(Vector *v,const void *data);

int (*EraseAll)(TYPEVector *v,const TYPE data);

136 Chapter 5. The containers

Description: Removes from the list all elements that match the given data, that is
assumed to be a pointer to an element.
Returns:A negative error code if an error occurred, or a positive value that indicates
that at least a match was found and the element was removed. If the element is not in
the list the result is CONTAINER ERROR NOTFOUND .
Errors:
CONTAINER ERROR BADARG One or both arguments are NULL .

EraseAt

int (*EraseAt)(Vector *AL,size_t idx);

Description: Removes from the array the element at the given position.
Returns:A negative error code if an error occurred or a positive value that indicates
that the element was removed.
Errors:
CONTAINER ERROR BADARG The given vector pointer is NULL .
CONTAINER ERROR INDEX The given position is out of bounds.
Example:

Vector *AL;

int r = iVector.EraseAt(AL,2);

if (r > 0)

printf("Element at position 2 erased\n");

else

printf("Error code %d\n",r);

Finalize

int (*Finalize)(Vector *AL);

Description: Reclaims all memory used by the container, including the array header
object itself.
Errors:
CONTAINER ERROR BADARG The given vector pointer is NULL .
CONTAINER ERROR READONLY The container is read-only. No modifications allowed.
Returns:A positive value means the operation completed. A negative error code indi-
cates failure.
Example:

Vector *AL;

int r = iVector.Finalize(AL);

if (r < 0) { /* error handling */ }

5.3. The Vector interface: iVector 137

Front

void *(*Front)(const Vector *v);

TYPE (*Front)(const TYPEVector *v);

Description: Returns the first element of the given vector or NULL if the vector is
empty.
Errors:
CONTAINER ERROR BADARG The vector pointer is NULL .
CONTAINER ERROR READONLY The vector is read only.
Returns:The first element or NULL if the vector is empty or an error occurs.

GetCapacity

size_t (*GetCapacity)(const Vector *AL);

Description: Returns the number of elements the array can hold before it needs to
reallocate its data7.
Errors:
CONTAINER ERROR BADARG The given array is NULL .
Returns:The array capacity or zero if there was an error.

GetElementSize

size_t (*GetElementSize)(const Vector *AL);

Description: Retrieves the size of the elements stored in the given vector. Note that
this value can be different than the value given to the creation function because of
alignment requirements. In template containers this function returns sizeof(TYPE).
Errors:
CONTAINER ERROR BADARG The given vector pointer is NULL .
Returns:The element size.
Example:

Vector *AL;

size_t siz = iVector.GetElementSize(AL);

GetData

void **(*GetData)(const Vector *AL);

Description: Returns a pointer to the data area of the container, or NULL if an error
occurs.
Errors:
CONTAINER ERROR READONLY The container is read-only.
CONTAINER ERROR BADARG The given pointer is NULL

Returns:The pointer to the array’s data or NULL .
7A similar function exists in the C++ STL: max size()

138 Chapter 5. The containers

GetElement

void *(*GetElement)(Vector *AL,size_t idx);

TYPE *(*GetElement)(TYPEVector *AL,size_t idx);

Description: Returns a read only pointer to the element at the given index, or NULL

if the operation failed. This function will return NULL if the vector is read only. If the
index is greater than the number of elements, the error function will be called. If the
error function returns a valid pointer (not NULL) the result will be that pointer. This
allows the construction of infinite arrays, or sparse arrays, etc. By default, the error
function returns always NULL .

Use the CopyElement function to get a read/write copy of an element of the vector.
Errors:
CONTAINER ERROR BADARG The given array pointer is NULL .
CONTAINER ERROR INDEX The given position is out of bounds.
CONTAINER ERROR READONLY The array is read only.
Example:

Vector *AL;

double *d = iVector.GetElement(AL,3);

if (d == NULL) { /* Error handling */ }

GetFlags / SetFlags

unsigned (*GetFlags)(Vector *AL);

unsigned (*SetFlags)(Vector *AL,unsigned newFlags);

Description: GetFlags returns the state of the container flags, SetFlags sets the flags
to a new value and returns the old value.

The Vector container supports the following flags:
CONTAINER READONLY If this flag is set, no modifications to the container

are allowed, and the Clear and Finalize functions will not work. The GetElement func-
tion will always return NULL . You should use the CopyElement function to access the
data

GetRange

Vector *(*GetRange)(Vector *AL,size_t start,size_t end);

Description: Selects a series of consecutive elements starting at position start and
ending at position end. Both the elements at start and end are included in the result.
If start ¿ end or start ¿ Size(AL), NULL is returned. If end is bigger than the number of
elements in the vector AL, only elements up to the number of elements will be used. The
selected elements are copied into a new array. The original array remains unchanged.
Errors:
CONTAINER ERROR BADARG The given array pointer or the element given are NULL

5.3. The Vector interface: iVector 139

Returns:A pointer to a new vector containing the selected elements or NULL if an error
occurs.
Example:

Vector *AL;

Vector *range = iVector.GetRange(AL,2,5);

if (range == NULL) { /* Error handling */ }

IndexIn

Vector *(*IndexIn)(Vector *SC,Vector *AL);

Description: Returns an array built from indexing the first argument (”SC”) with
the array of indexes ”AL” that should be an array of size t elements. The number of
elements of the resulting array is equal to the number of elements of the indexes array.
Errors:
CONTAINER ERROR BADARG The given array pointer or the indexes array are NULL .
CONTAINER ERROR INDEX Any given position is out of bounds.
CONTAINER ERROR NOMEMORY There is not enough memory to complete the opera-
tion.
Returns:A new array or NULL if an error occurs. No partial results are returned. If
any index is out of bounds the whole operation fails.

IndexOf

int (*IndexOf)(Vector *l,void *data,void *ExtraArgs,size_t *result);

int (*IndexOf)(TYPEVector *l,TYPE data,void *ExtraArgs,size_t *result);

Description: Searches for an element in the array. If found its zero based index is
returned in the pointer ”result”. Otherwise the result of the search is CONTAINER -

ERROR NOTFOUND . The ”extraArgs” argument will be passed to the comparison func-
tion, that is used to compare elements.
Errors:
CONTAINER ERROR BADARG The given array pointer or the element given are NULL .
Returns:A positive number if the element is found, or a negative number containing
an error code or the negative constant CONTAINER ERROR NOTFOUND .
Example:

Vector *AL;

double data = 6.8;

size_t pos;

int r = iVector.IndexOf(AL,&data,NULL,&pos);

if (r == CONTAINER_ERROR_NOTFOUND)

printf("Not found\n");

140 Chapter 5. The containers

InsertAt

int (*InsertAt)(Vector *AL,size_t idx,void *newData);

int (*InsertAt)(TYPEVector *AL,size_t idx,TYPE newData);

Description: Inserts the new element. The new element will have the given index,
that can go from zero to the vector count inclusive, i.e. one more than the number of
elements in the vector. If the index is out of bounds, the vector error function is called.
If the function returns a valid pointer (a pointer different than NULL) it will be assumed
that the vector should be increased to the index given. The vector is resized and the
data is inserted at the requested position. This allows the implementation of infinite
vectors, sparse vectors, and other data structures.
Errors:
When this API detects an index error, it calls the error function. If the error function
returns a pointer different from NULL , the API will extend the requested vector to make
possible the insertion. If the API is unable to extend the vector and error is returned
and the vector remains unchanged.
CONTAINER ERROR BADARG The given vector pointer or the element given are NULL .
CONTAINER ERROR READONLY The vector is read only.
CONTAINER ERROR INDEX The given position is out of bounds.
CONTAINER ERROR NOMEMORY There is not enough memory to complete the opera-
tion.
Returns:A positive value if the operation succeeded, or a negative error code if the
operation failed.
Example:

double d = 2.7;

Vector *AL = iVector.Create(sizeof(double),3);

int r = iVector.InsertAt(AL,2,&d);

if (r < 0) { /* Error handling */ }

else { /* Normal processing */ }

// --------------------------Template version

doubleVector *AL = idoubleVector.Create(3);

int r = idoubleVector.InsertAt(AL,2,2.7);

if (r < 0) { /* Error handling */ }

else { /* Normal processing */ }

InsertIn

int (*InsertIn)(Vector *Destination, size_t pos, Vector *src);

Description: Inserts the array given in its third argument at the given position in the
array pointed to by its first argument. The data is copied, and the source argument is

5.3. The Vector interface: iVector 141

not modified in any way. Both arrays must have elements of the same type. The library
only tests the size of each one.
Errors:

CONTAINER ERROR BADARG The source or the destination vectors are NULL .
CONTAINER ERROR READONLY The destination vector is read only.
CONTAINER ERROR INDEX The given position is out of bounds.
CONTAINER ERROR NOMEMORY There is not enough memory to complete the opera-
tion.
CONTAINER ERROR INCOMPATIBLE The vectors store elements of different size.
Returns:A positive value if the operation succeeded, or a negative error code if the
operation failed.
Example:

#include <containers.h>

static void PrintVector(Vector *AL)

{

size_t i;

printf("Count %ld, Capacity %ld\n",(long)iVector.Size(AL),

(long)iVector.GetCapacity(AL));

for (i=0; i<iVector.Size(AL);i++) {

printf("%g ",*(double *)iVector.GetElement(AL,i));

}

printf("\n");

}

static void FillVector(Vector * AL,int start)

{

size_t i;

for (i=0; i<10;i++) {

double d = i+start;

iVector.Add(AL,&d);

}

}

int main(void)

{

Vector *AL = iVector.Create(sizeof(double),10);

Vector *AL1 =iVector.Create(sizeof(double),10);

FillVector(AL,0);

FillVector(AL1,100);

iVector.InsertIn(AL,5,AL1);

PrintVector(AL);

return 0;

142 Chapter 5. The containers

}

OUTPUT:

Count 20, Capacity 20

0 1 2 3 4 100 101 102 103 104 105 106 107 108 109 5 6 7 8 9

---Template version

#include <containers.h>

#include "doublevector.h"

static void PrintVector(doubleVector *AL)

{

size_t i;

printf("Count %ld, Capacity %ld\n",(long)iVector.Size(AL),

(long)iVector.GetCapacity(AL));

for (i=0; i<iVector.Size(AL);i++) {

printf("%g ",idoubleVector.GetElement(AL,i));

}

printf("\n");

}

static void FillVector(Vector * AL,int start)

{

size_t i;

for (i=0; i<10;i++) {

idoubleVector.Add(AL,i+start);

}

}

int main(void)

{

Vector *AL = idoubleVector.Create(10);

Vector *AL1 =idoubleVector.Create(10);

FillVector(AL,0);

FillVector(AL1,100);

iVector.InsertIn(AL,5,AL1);

PrintVector(AL);

return 0;

}

OUTPUT:

Count 20, Capacity 20

0 1 2 3 4 100 101 102 103 104 105 106 107 108 109 5 6 7 8 9

5.3. The Vector interface: iVector 143

Load

Vector *(*Load)(FILE *stream,ReadFunction readFn,void *arg);

Description: Reads an array previously saved with the Save function from the stream
pointed to by stream. If readFn is not NULL , it will be used to read each element. The
arg argument will be passed to the read function. If the read function is NULL , this
argument is ignored and a default read function is used.
Errors:
CONTAINER ERROR BADARG The given stream pointer is NULL .
CONTAINER ERROR NOMEMORY There is not enough memory to complete the opera-
tion.
Returns:A new array or NULL if the operation could not be completed. Note that the
function pointers in the array are NOT saved, nor any special allocator that was in the
original vector. Those values will be the values by default. To rebuild the original state
the user should replace the pointers again in the new array.

NewIterator

Iterator *(*NewIterator)(Vector *AL);

Description: Allocates and initializes a new iterator object to iterate this array.
Errors:
If no more memory is available it returns NULL .
Returns:A pointer to a new iterator or NULL if there is no more memory left.
Example:

Vector *AL;

Iterator *it = iVector.NewIterator(AL);

double *d;

for (d=it->GetFirst(it); d != NULL; d = it->GetNext(it)) {

double val = *d;

// Work with the value here

}

iVector.deleteIterator(it);

Mismatch

int (*Mismatch)(const Vector *a1,const Vector *a2,

size_t *mismatch);

Description: Returns the index of the first element that is different when comparing
both arrays in the passed pointer mismatch. If one array is shorter than the other
the comparison stops when the last element from the shorter array is compared. The
comparison stops when the first difference is spotted.
Errors:

144 Chapter 5. The containers

CONTAINER ERROR BADARG Any of the arguments is NULL .
CONTAINER ERROR INCOMPATIBLE The containers have different comparison functions
or store elements of different size.
Returns:If a mismatch is found the result is greater than zero and the mismatch ar-
gument will contain the index of the first element that compared unequal. This will be
always the case for arrays of different length.

If both arrays are the same length and no differences are found the result is zero
and the value pointed to by the mismatch argument is one more than the length of the
arrays.

If an error occurs, a negative error code is returned. The mismatch argument contains
zero.

PopBack

int (*PopBack)(Vector *AL,void *result);

int (*PopBack)(TYPEVector *AL,TYPE *result);

Description: Copies the last element into the given result buffer and deletes the element
from the container. If the result buffer is NULL , no copy is performed.
Errors:
CONTAINER ERROR BADARG The array is NULL .
CONTAINER ERROR READONLY The array is read only.
Returns:A negative value if an error occurs, zero if the array is empty or greater than
zero if the operation succeeded.

RemoveRange

int (*RemoveRange)(Vector *SC,size_t start,size_t end);

Description: Removes all elements having an index equal or greater than start and
less than end . If end is greater than the number of elements in the collection it will
be adjusted to one more than the number of elements. If start is bigger than end the
range is still valid and starts with the value of end and ends with the value of start .
Errors:
CONTAINER ERROR BADARG The vector pointer is NULL .
Returns:Zero if the vector is empty. Otherwise returns a positive number for success,
a negative error code in case of an error.

ReplaceAt

int (*ReplaceAt)(Vector *AL,size_t idx,void *newData);

int (*ReplaceAt)(TYPEVector *AL,size_t idx,TYPE newData);

Description: Replaces the array element at position idx with the new data starting at
the position pointed to by ”newData” and extending ElementSize bytes.
Errors:

5.3. The Vector interface: iVector 145

CONTAINER ERROR BADARG The array or the new element pointer are NULL .
CONTAINER ERROR READONLY The array is read only.
CONTAINER ERROR INDEX The given position is out of bounds.
Returns:A negative error code if an error occurs, or a positive value if the operation
succeeded.
Example:

Vector *AL = iVector.Create(sizeof(double),2);

double d = 6.7;

int r = iVector.ReplaceAt(AL,2,&d);

if (r < 0) { /* Error handling */ }

// --------------------------------Template version

doubleVector *AL = idoubleVector.Create(2);

int r = idoubleVector.ReplaceAt(AL,2,6.7);

if (r < 0) { /* Error handling */ }

Reserve

int (*Reserve)(Vector *AL, size_t newSize);

Description: The capacity of the vector is increased at least by the given amount in
preparation for a planned increase in elements. The size is in element units.
Errors:
CONTAINER ERROR BADARG The array pointer is NULL .
CONTAINER ERROR READONLY The array is read only.
CONTAINER ERROR NOMEMORY Not enough memory is available
Returns:A positive number if the space could be reserved, a negative error code if not.

Resize

int (*Resize)(Vector *AL, size_t newSize);

Description: Resizes the given vector to the new capacity, expressed in element units.
If the new capacity is smaller than the elements in the vector some elements will be
erased. For each erased element its destructor (if any) is called. If the requested newSize

argument is equal to the number of elements in the container, all storage beyond what is
needed to store exactly newSize elements, is released. This allows to signal the library
that the extra storage is no longer needed8.

iVector.Resize(vec,iVector.Size(vec));

Obviously under some implementations it is maybe impossible to allocate exactly
the space needed, for instance because space can be only allocated in chunks bigger than
the element size of the vector. In those cases only a ”best effort” will be done and the

8The latest C++ standard adds this operation calling it std::vector::shrink to fit

146 Chapter 5. The containers

used storage will be reduced to a minimum. If an error occurs, and the container can’t
be resized, no changes occur and the container is left unmodified.
Errors:
CONTAINER ERROR BADARG The array pointer is NULL .
CONTAINER ERROR READONLY The array is read only.
CONTAINER ERROR NOMEMORY Not enough memory is available
Returns:A negative error code if an error occurs, or a positive value if the operation
succeeded. If the requested capacity is equal to the current capacity the result is zero.

Reverse

int (*Reverse)(Vector *AL);

Description: Reverses the order of the elements of the given Vector.
Errors:
CONTAINER ERROR BADARG The array pointer is NULL .
CONTAINER ERROR READONLY The array is read only.
CONTAINER ERROR NOMEMORY Not enough memory for intermediate storage available
Returns:A negative error code if an error occurs, or a positive value if the operation
succeeded.

RotateRight

int (*RotateRight)(Vector *src,size_t n);

Description: Rotates right the array by the indicated amount. The last n elements
will be written to the start of the array, and the rest will be shifted right.
Errors:
CONTAINER ERROR BADARG The array pointer is NULL .
CONTAINER ERROR READONLY The array is read only.
CONTAINER ERROR NOMEMORY Not enough memory is available
Returns:A positive number if something was moved, zero otherwise (the input was zero
or a modulo of the array size).

RotateLeft

int (*RotateLeft)(Vector *src,size_t n);

Description: Rotates left the array by the indicated amount. The first n elements will
be written to the end of the array, and the rest will be shifted left to fill the empty n
places.
Errors:
CONTAINER ERROR BADARG The array pointer is NULL .
CONTAINER ERROR READONLY The array is read only.
CONTAINER ERROR NOMEMORY Not enough memory for intermediate storage available
Returns:A positive number if something was moved, zero otherwise (the input was zero
or a modulo of the array size), or an error code less than zero if an error occurs.

5.3. The Vector interface: iVector 147

Save

int (*Save)(const Vector *AL, FILE *out, SaveFunction Fn, void *arg);

Description: The contents of the given vector are saved into the given stream. If the
save function pointer is not NULL , it will be used to save the contents of each element
and will receive the arg argument passed to Save, together with the output stream.
Otherwise a default save function will be used and arg will be ignored. The output
stream must be opened for writing and must be in binary mode.
Errors:
CONTAINER ERROR BADARG The array pointer or the stream pointer are NULL . EOF
A disk input/output error occurred.
Returns:A positive value if the operation completed, a negative value or EOF other-
wise.
Example:

Vector *AL;

FILE *outFile;

if (iVector.Save(AL,outFile,NULL,NULL) < 0) {

/* Handle error here */

}

SearchWithKey

int (*SearchWithKey)(Vector *vec,size_t startByte,size_t sizeKey,

size_t startIndex,void *item, size_t*result);

Description: This function searches the vector for a match in a region of the stored
objects, ignoring the rest of the data. It will start at the object with startIndex and
compare (using memcmp) the specified region of each object. The region of interest
within the stored object is specified by a byte offset and a size. If a match is found
the search stops and the zero based index of the object will be written into the result
pointer. If the index of the start of the iteration is bigger than the number of elements
in the array nothing is searched and the result is zero.

If the sum of startByte and sizeKey is bigger than the size of the elements stored, the
comparison will start at the given offset but will stop at the end of the stored element.
Errors:
CONTAINER ERROR BADARG The array or the item element pointers are NULL .
Returns:A negative error code if an error occurs, zero if no match was found, or a
positive number indicating that a match was found. The given index pointer is modified
only if a match is found.

Select

int (*Select)(Vector *v,Mask *m);

148 Chapter 5. The containers

Description: Using the given mask, the elements where the corresponding mask ele-
ment is zero are eliminated, those with a mask value different of zero are retained. The
mask must have the same length as the array.

Errors:

CONTAINER ERROR INCOMPATIBLE The mask and the array are of different length.

Returns:A positive value for success, or a negative error code otherwise.

SelectCopy

Vector *(*SelectCopy)(Vector *v,Mask *m);

Description: Using the given mask, the elements where the corresponding mask ele-
ment is different from zero are copied into a new array, those with a mask value different
of zero are ignored. The mask must have the same length as the array.

Errors:

CONTAINER ERROR INCOMPATIBLE The mask and the array are of different length.

Returns:A positive value for success, or a negative error code otherwise.

SetCapacity

int (*SetCapacity)(Vector *AL,size_t newCapacity);

Description: Resizes the given Vector to a new value. The new capacity means there
will be that number of elements allocated, avoiding costly resizing operations when new
elements are added to the Vector. If the number given is less than the number of elements
present in the array, elements are discarded from the end of the array.

Errors:

CONTAINER ERROR BADARG The Vector pointer is NULL .

CONTAINER ERROR READONLY The array is read only.

Returns:A positive value if resizing was completed, a negative error code otherwise.

SetCompareFunction

CompareFunction (*SetCompareFunction)(Vector *AL,

CompareFunction f);

Description: if the f argument is non NULL , it sets the array comparison function to
f.

Errors:

CONTAINER ERROR BADARG The array pointer is NULL .

CONTAINER ERROR READONLY The array is read only and the function argument is
not NULL .

Returns:The old value of the comparison function.

Example:

5.3. The Vector interface: iVector 149

ErrorFunction fn,newfn;

Vector *AL;

fn = iVector.SetErrorFunction(AL,newfn);

SetDestructor

DestructorFunction (*SetDestructor)(Vector *v,DestructorFunction fn);

Description: Sets the destructor function to its given argument. If the function argu-
ment is NULL nothing is changed and the call is interpreted as a query since the return
value is the current value of the destructor function. If the vector argument is NULL ,
the result is NULL .
Returns:The old value of the destructor.

SetErrorFunction

ErrorFunction (*SetErrorFunction)(Vector *V,ErrorFunction);

Description: Replaces the current error function for the given vector with the new error
function if the ErrorFunction parameter is different from NULL . If the V parameter is
NULL the function returns the value of the current default error function.
Errors:
CONTAINER ERROR BADARG The vector pointer is NULL .
CONTAINER ERROR READONLY The vector is read only and the function argument is
not NULL .
Returns:The old value of the error function or NULL if there is an error.

Size

size_t (*Size)(const Vector *AL);

Description: Returns the number of elements stored in the array.
Example:

Vector *AL;

size_t elem = iVector.Size(AL);

Sizeof

size_t (*Sizeof)(Vector *AL);

Description: Returns the total size in bytes of the vector, including the header, and
all data stored in it. If the argument is NULL , the size of the header only is returned.
Returns:The number of bytes used by the vector or the size of the Vector header if the
argument is NULL .
Example:

150 Chapter 5. The containers

Vector *AL;

size_t size = iVector.Sizeof(AL);

Sort

int Sort(Vector *AL);

Description: Sorts the given array using the its comparison function. The order of the
original array is destroyed. You should copy it if you want to preserve it.
Returns:A positive number if sorting succeeded, a negative error code if not.
Example:

Vector *AL;

if (iVector.Sort(AL) < 0) { /* Error handling */ }

5.4. The bit-string container: iBitString 151

5.4 The bit-string container: iBitString

BitString vocabulary. Specific items are in bold.
A bit string is a derivation from the Vector container, specialized to hold a sequence

152 Chapter 5. The containers

of bits. It is a sequential container designed to save space in the storage of boolean
values 9.

5.4.1 The interface

typedef struct tagBitStringInterface {

int (*Add)(BitString *BitStr,int);

int (*AddRange)(BitString *b, size_t bitSize, void *data);

BitString *(*And)(BitString *bsl,BitString *bsr);

int (*AndAssign)(BitString *bsl,BitString *bsr);

int (*Append)(BitString *left,BitString *right);

int (*Apply)(BitString *BitStr,int (*Applyfn)(int ,void * arg),

void *arg);

uintmax_t (*BitBlockCount)(BitString *b);

int (*BitLeftShift)(BitString *bs,size_t shift);

int (*BitRightShift)(BitString *bs,size_t shift);

int (*Clear)(BitString *BitStr);

int (*Contains)(BitString *BitStr,BitString *str,void *ExtraArgs);

BitString *(*Copy)(BitString *);

int (*CopyBits)(BitString *bitstr,void *buf);

BitString *(*Create)(size_t bitlen);

BitString *(*CreateWithAllocator)(size_t startsiz,

const ContainerAllocator *mm);

int (*Equal)(BitString *bsl,BitString *bsr);

int (*Erase)(BitString *BitStr,int bit);

int (*EraseAt)(BitString *BitStr,size_t idx);

int (*Finalize)(BitString *BitStr);

const ContainerAllocator *(*GetAllocator)(const BitString *b);

size_t (*GetCapacity)(BitString *BitStr);

unsigned char *(*GetData)(BitString *BitStr);

int (*GetElement)(BitString *BitStr,size_t idx);

size_t (*GetElementSize)(BitString *b);

unsigned (*GetFlags)(BitString *BitStr);

BitString *(*GetRange)(BitString *b,size_t start,size_t end);

int (*IndexOf)(BitString *BitStr,int SearchedBit,void *ExtraArgs,

size_t *result);

BitString *(*Init)(BitString *BitStr,size_t bitlen);

int (*InitIterator)(BitString *,void *);

BitString *(*InitializeWith)(size_t size,void *data);

size_t (*Insert)(BitString *BitStr,int bit);

size_t (*InsertAt)(BitString *BitStr,size_t idx,int bit);

9The equivalent in C# is the BitArray class in System.Collections. In Java the equivalent is the
BitSet class.

5.4. The bit-string container: iBitString 153

int (*LessEqual)(BitString *bsl,BitString *bsr);

BitString *(*Load)(FILE *stream, ReadFunction saveFn,void *arg);

int (*Memset)(BitString *,size_t start,size_t stop,int newval);

Iterator *(*NewIterator)(BitString *);

BitString *(*Not)(BitString *bsl);

int (*NotAssign)(BitString *bsl);

BitString *(*Or)(BitString *left,BitString *right);

int (*OrAssign)(BitString *bsl,BitString *bsr);

int (*PopBack)(BitString *BitStr);

uintmax_t (*PopulationCount)(BitString *b);

size_t (*Print)(BitString *b,size_t bufsiz,unsigned char *out);

int (*PushBack)(BitString *BitStr,int val);

int (*ReplaceAt)(BitString *BitStr,size_t idx,int newval);

BitString *(*Reverse)(BitString *b);

int (*Save)(const BitString *bitstr,FILE *stream,

SaveFunction saveFn,void *arg);

int (*SetCapacity)(BitString *BitStr,size_t newCapacity);

int (*SetElement)(BitString *bs,size_t position,int b);

ErrorFunction *(*SetErrorFunction)(BitString *,ErrorFunction fn);

unsigned (*SetFlags)(BitString *BitStr,unsigned flags);

size_t (*Size)(BitString *BitStr);

size_t (*Sizeof)(BitString *b);

BitString *(*StringToBitString)(unsigned char *);

BitString *(*Xor)(BitString *bsl,BitString *bsr);

int (*XorAssign)(BitString *bsl,BitString *bsr);

int (*deleteIterator)(Iterator *);

} BitStringInterface;

5.4.2 API

Contrary to the other containers presented above like iList or iVector, bitstring re-
ceives and returns not pointers but values of bits. This is an important difference and
makes for significant changes in the interface of many functions.

Other functions like Apply do not make much sense for bits and are provided just to
be coherent in the overall design of the library. Obviously a function that needs a function
call per bit is not very fast. The function GetElementSize is provided for compatibility
purposes only and returns always 1. Actually it should return 0.125 assuming 8 bits
bytes.

Add

int (*Add)(BitString *BitStr,int);

Description: Adds a bit at the end of the given bitstring.
Errors:

154 Chapter 5. The containers

CONTAINER ERROR BADARG The given pointer is NULL .
CONTAINER ERROR NOMEMORY There is no memory to carry out the operation.
Returns:A positive number if the bit is added or a negative error code otherwise.
Example:

#include "containers.h"

int main(int argc,char *argv[])

{

size_t i;

BitString *b;

unsigned char buf[512];

b = iBitString.Create(32);

for (i=0; i<32;i++)

iBitString.Add(b,i&1);

iBitString.Print(b,sizeof(buf),buf);

printf("%s\n",buf);

return 0;

}

OUTPUT:

1010 1010 1010 1010 1010 1010 1010 1010

And

BitString *(*And)(BitString *left,BitString *right);

Description: Makes a logical AND between the left and right arguments. The result
is returned in a new bit string, both arguments are not modified. The length of the
resulting bit string is the smallest length of both strings.
Returns:A pointer to the newly allocated result or NULL in case of error.
Errors:
CONTAINER ERROR BADARG One of both bitstring pointers are NULL .
CONTAINER ERROR NOMEMORY Not enough memory is available to complete the op-
eration.
Example:

#include "containers.h"

int main(int argc,char *argv[])

{

size_t i;

BitString *b,*c,*d;

unsigned char buf[512];

b = iBitString.Create(32);

c = iBitString.Create(32);

5.4. The bit-string container: iBitString 155

for (i=0; i<32;i++) {

iBitString.Add(b,i&1);

iBitString.Add(c,i<16);

}

iBitString.Print(b,sizeof(buf),buf);

printf("%s\n",buf);

printf(" AND\n");

iBitString.Print(c,sizeof(buf),buf);

printf("%s\n",buf);

printf("=\n");

d = iBitString.And(b,c);

iBitString.Print(d,sizeof(buf),buf);

printf("%s\n",buf);

return 0;

}

OUTPUT:

1010 1010 1010 1010 1010 1010 1010 1010

AND

0000 0000 0000 0000 1111 1111 1111 1111

=

0000 0000 0000 0000 1010 1010 1010 1010

AndAssign

int (*AndAssign)(BitString *left,BitString *right);

Description: Makes a logical AND of its two arguments and assigns the result into the
left bit string. If the bit strings have a different length, the operation uses the bits of the
right argument until either the end of the right argument or the end of the destination
string is reached.
Returns:A positive number or a negative error code in case of error.
Errors:

CONTAINER ERROR BADARG One or both arguments are NULL .
Example:

#include "containers.h"

int main(int argc,char *argv[])

{

size_t i;

BitString *b,*c;

unsigned char buf[512];

b = iBitString.Create(32);

c = iBitString.Create(32);

156 Chapter 5. The containers

for (i=0; i<32;i++) {

iBitString.Add(b,i&1);

iBitString.Add(c,i<16);

}

iBitString.Print(b,sizeof(buf),buf);

printf("%s\n",buf);

printf(" AND\n");

iBitString.Print(c,sizeof(buf),buf);

printf("%s\n",buf);

printf("=\n");

iBitString.AndAssign(b,c);

iBitString.Print(b,sizeof(buf),buf);

printf("%s\n",buf);

return 0;

}

OUTPUT:

1010 1010 1010 1010 1010 1010 1010 1010

AND

0000 0000 0000 0000 1111 1111 1111 1111

=

0000 0000 0000 0000 1010 1010 1010 1010

BitBlockCount

uintmax_t (*BitBlockCount)(BitString *b);

Description: Computes the number of blocks where 1 or more bits are set.
Returns:The number of blocks of set bits.
Errors:

CONTAINER ERROR BADARG The given argument is NULL .
Example:

#include "containers.h"

int main(int argc,char *argv[])

{

size_t i;

BitString *b,*c,*d;

unsigned char buf[512];

b = iBitString.Create(32);

c = iBitString.Create(32);

for (i=0; i<32;i++) {

iBitString.Add(b,i&1);

iBitString.Add(c,i<16);

5.4. The bit-string container: iBitString 157

}

iBitString.Print(b,sizeof(buf),buf);

printf("%s BitBlockCount=%ld\n",buf,iBitString.BitBlockCount(b));

iBitString.Print(c,sizeof(buf),buf);

printf("%s BitBlockCount=%ld\n",buf,iBitString.BitBlockCount(c));

return 0;

}

OUTPUT:

1010 1010 1010 1010 1010 1010 1010 1010 BitBlockCount=16

0000 0000 0000 0000 1111 1111 1111 1111 BitBlockCount=1

CopyBits

int (*CopyBits)(BitString *b, void *buffer);

Description: Copies the bits into the given buffer. The size of the buffer is at least:

1+iBitstring.Size(bitstr)/8

Errors:
CONTAINER ERROR BADARG Either the bitstring or the buffer pointer are NULL .
Returns:A positive number if the bits are copied, a negative error code otherwise.

GetData

unsigned char *(*GetData)(BitString *b);

Description: Returns a pointer to the bits stored in the bitstring. If the string is
read-only the result is NULL . The size of the needed buffer can be calculated according
to:

BitString *bitstr;

size_t bytesize;

bytesize = 1+iBitString.GetSize(bitstr)/CHAR_BIT;

Errors:
CONTAINER ERROR BADARG The bit string pointer is NULL .
CONTAINER ERROR READONLY The bitstring is read-only.

GetRange

BitString *(*GetRange)(BitString *b,size_t start,size_t end);

Description: Returns all the bits between the start (inclusive) and the end (inclusive)
indices. If end is smaller than start, start and end are exchanged. If end is greater than

158 Chapter 5. The containers

the size of the bit string, all elements up to the last one are returned. If both start and
end are out of range, an error is issued and the result is NULL .
Returns:A new bit string with the specified contents.
Errors:
CONTAINER ERROR BADARG The given argument is NULL .
Example:

#include "containers.h"

int main(void)

{

char outbuf[256];

BitString *bs = iBitString.StringToBitString("0001 1111 0000 0000");

BitString *bs1 = iBitString.GetRange(bs,8,14);

BitString *bs2 = iBitString.GetRange(bs,7,14);

iBitString.Print(bs,sizeof(outbuf),outbuf);

printf("Original:%s \n",outbuf);

iBitString.Print(bs1,sizeof(outbuf),outbuf);

printf("Range 8,14: %s\n",outbuf);

iBitString.Print(bs2,sizeof(outbuf),outbuf);

printf("Range 7,14:%s\n",outbuf);

return 0;

}

OUTPUT:

Original:0001 1111 0000 0000

Range 8,14: 01 1111

Range 7,14:001 1110

BitLeftShift

int (*BitLeftShift)(BitString *bs,size_t shift);

Description: Shifts left the given bit string by the specified number of bits. New bits
introduced by the right are zeroed.
Errors:
CONTAINER ERROR BADARG The bit string pointer is NULL .
Returns:An integer bigger than zero if successful, a negative error code otherwise.
Example:

#include "containers.h"

static void Putbs(BitString *bs,char *prompt)

{

char outbuf[256];

iBitString.Print(bs,sizeof(outbuf),outbuf);

printf("%s: %s\n",prompt,outbuf);

}

5.4. The bit-string container: iBitString 159

int main(int argc,char *argv[])

{

char outbuf[256];

int ls;

if (argc < 2) {

fprintf(stderr,"Usage: %s: amount\n",argv[0]);

return 0;

}

ls = atoi(argv[1]);

BitString *bs = iBitString.StringToBitString("0001 1111 1010 0000");

Putbs(bs,"Original ");

iBitString.BitLeftShift(bs,ls);

sprintf(outbuf,"Shifted left by %d",ls);

Putbs(bs,outbuf);

return 0;

}

OUTPUT:

~/ccl/test $./a.out 1

Original : 0001 1111 1010 0000

Shifted left by 1: 0011 1111 0100 0000

~/ccl/test $./a.out 3

Original : 0001 1111 1010 0000

Shifted left by 3: 1111 1101 0000 0000

Not

BitString *(*Not)(BitString *src);

Description: Makes a logical NOT of its argument. The result is returned in a new bit
string. The length of the resulting bit string is the same as the length of the argument.
Returns:A pointer to the newly allocated bit string or NULL in case of error.
Errors:
CONTAINER ERROR BADARG The argument is NULL .
CONTAINER ERROR NOMEMORY Not enough memory is available to complete the op-
eration.

NotAssign

int (*NotAssign)(BitString *src);

Description: Makes a logical NOT of its argument and assigns the result into it.
Errors:
CONTAINER ERROR BADARG The argument is NULL .
Returns:A positive number or a negative error code in case of error.
Example:

160 Chapter 5. The containers

#include "containers.h"

int main(int argc,char *argv[])

{

size_t i;

BitString *b;

unsigned char buf[512];

b = iBitString.Create(32);

for (i=0; i<32;i++) {

iBitString.Add(b,i<16);

}

iBitString.Print(b,sizeof(buf),buf);

printf(" b = %s\n",buf);

iBitString.NotAssign(b);

iBitString.Print(b,sizeof(buf),buf);

printf("NOT b = %s\n",buf);

return 0;

}

OUTPUT:

b = 0000 0000 0000 0000 1111 1111 1111 1111

NOT b = 1111 1111 1111 1111 0000 0000 0000 0000

InitializeWith

BitString *(*ObjectToBitString)(size_t size,void *p);

Description: The bits starting by the given pointer are copied into a new bit string
using the size (in bytes) indicated by the second parameter size.
Errors:
CONTAINER ERROR BADARG The pointer is NULL

CONTAINER ERROR NOMEMORY There is not enough ressources to finish the operation.
Returns:A new bit string or NULL if there is an error.
Example:

#include "containers.h"

/* This example changes the sign of a double precision

number by changing its sign bit */

int main(void)

{

double d = -0.125; /* Number is negative */

BitString *b = iBitString.ObjectToBitString(sizeof(double),&d);

/* Now set sign to zero, making the number positive */

iBitString.SetElement(b,63,0);

iBitString.CopyBits(b,&d);

5.4. The bit-string container: iBitString 161

printf("%g\n",d);

return 0;

}

OUTPUT:

0.125

Or

BitString *(*Or)(BitString *left,BitString *right);

Description: Makes a logical OR between the left and right arguments. The result
is returned in a new bit string, both arguments are not modified. The length of the
resulting bit string is the smallest length of both strings.
Errors:
CONTAINER ERROR BADARG One of both bitstring pointers are NULL .
CONTAINER ERROR NOMEMORY Not enough memory is available to complete the op-
eration.

OrAssign

int (*OrAssign)(BitString *left,BitString *right);

Description: Makes a logical OR of its two arguments and assigns the result into the
left bit string. If the bit strings have a different length, the operation uses the bits of the
right argument until either the end of the right argument or the end of the destination
string is reached.
Errors:
CONTAINER ERROR BADARG One or both arguments are NULL .
Returns:A positive number or a negative error code in case of error.

PopulationCount

uintmax_t (*PopulationCount)(BitString *b);

Description: Computes the number of 1 bits in the bit string.
Returns:The number of set bits in the string.
Errors:
CONTAINER ERROR BADARG The given argument is NULL .

Print

size_t (*Print)(BitString *b,size_t bufsiz,unsigned char *out);

Description: Prints into the given buffer the contents of the bitstring b without exceed-
ing the length of the given buffer bufsiz. The bits will be grouped into 4 bits separated
by a space. Each group of 8 bits will be separated from the rest by two spaces.
Errors:

162 Chapter 5. The containers

CONTAINER ERROR BADARG . The bit string pointer is NULL .
Returns:The number of characters written to the output string, including the termi-
nating zero. If the output string pointer is NULL , it returns the number of characters
that would be needed to print the contents of the bitstring.

Reverse

BitString *(*Reverse)(BitString *b);

Description: The bit sequence of the argument is reversed
Returns:A new bit string containing the reversed argument.
Errors:
CONTAINER ERROR BADARG The given argument is NULL .
Example:

#include "containers.h"

int main(int argc,char *argv[])

{

size_t pos;

BitString *b,*c;

unsigned char buf[512];

if (argc < 2) {

fprintf(stderr,"Usage: %s <bitstring>\n",argv[0]);

return 1;

}

b = iBitString.StringToBitString(argv[1]);

iBitString.Print(b,sizeof(buf),buf);

printf("Reversing bits of %s\n",buf);

c = iBitString.Reverse(b);

iBitString.Print(c,sizeof(buf),buf);

printf("%s\n",buf);

return 0;

}

OUTPUT:

Reversing bits of 1111 1100 0000 1111 1111 1111

1111 1111 1111 0000 0011 1111

RemoveAt

int (*RemoveAt)(BitString *bitStr,size_t idx);

Description: Removes the bit at the specified position. If the position is greater than
the length of the string the last position will be used.
Errors:

5.4. The bit-string container: iBitString 163

CONTAINER ERROR BADARG The given bit string pointer is NULL

Returns:A positive number when the bit was removed, a negative error code otherwise.
If the bit string is empty the result is zero.
Example:

#include "containers.h"

int main(int argc,char *argv[])

{

size_t pos;

BitString *b;

unsigned char buf[512];

if (argc < 3) {

fprintf(stderr,"Usage: %s bitstring pos\n",argv[0]);

return 1;

}

b = iBitString.StringToBitString(argv[1]);

pos = atoi(argv[2]);

iBitString.Print(b,sizeof(buf),buf);

printf("Erasing bit %d of %s\n",pos,buf);

iBitString.EraseAt(b,pos);

iBitString.Print(b,sizeof(buf),buf);

printf("%s\n",buf);

return 0;

}

OUTPUT:

Erasing bit 2 of 11 1000 1110 0011 1000

1 1100 0111 0001 1100

Set

int (*Set)(BitString *B,size_t start,size_t stop,bool newvalue);

Description: Sets the range of bits delimiteded by its start and end arguments to the
value given by its newvalue argument. If the new value is different than zero a ’1’ bit is
written, otherwise the bit is set to zero. If the stop argument is bigger than the length
of the bitstring, the end of the string will be used.
CONTAINER ERROR BADARG The bit string pointer is NULL.
CONTAINER ERROR INDEX The start argument is bigger or equal to the length of the
bitstring.

StringToBitString

BitString *(*StringToBitString)(unsigned char *);

164 Chapter 5. The containers

Reads a bitstring from a character string. The character string should contain only the
characters ’1’, ’0’, space and tab.
Errors:
CONTAINER ERROR BADARG The character string pointer is NULL .
Returns:A pointer to the new bitstring or NULL if there was an error or the given
character string did not contain any ’1’ or ’0’.

Xor

BitString *(*Xor)(BitString *left,BitString *right);

Description: Makes a logical XOR between the left and right arguments. The result
is returned in a new bit string, both arguments are not modified. The length of the
resulting bit string is the smallest length of both strings.
Returns:A pointer to its result or NULL in case of error.
Errors:
CONTAINER ERROR BADARG One of both bitstring pointers are NULL .
CONTAINER ERROR NOMEMORY Not enough memory is available to complete the op-
eration.

XorAssign

int (*XorAssign)(BitString *left,BitString *right);

Description: Makes a logical XOR of its two arguments and assigns the result into the
left bit string. If the bit strings have a different length, the operation uses the bits of the
right argument until either the end of the right argument or the end of the destination
string is reached.
Returns:A positive number or a negative error code in case of error.
Errors:
CONTAINER ERROR BADARG Its argument is NULL .

5.5. The string collection container: istrCollection, iWstrCollection 165

5.5 The string collection container: istrCollection, iWstrCollection

A string collection is a derivation from the Vector container, specialized to hold character
strings.

5.5.1 The interface

To avoid unnecessary repetitions in this document here is documented a generic inter-
face. The word ElementType is either char for multi-byte strings, or wchar_t for wide
character strings. The word strCollection in this context means either

• a multi-byte string collection using the strCollectionInterface

• a wide character string collection using the WstrCollectionInterface

typedef struct tagstrCollectionInterface {

int (*Add)(strCollection *SC,const char *newval);

int (*AddRange)(strCollection *s,size_t n,const char **values);

int (*Append)(strCollection *,strCollection *);

int (*Apply)(strCollection *SC,int (*Applyfn)(char *,void * arg),

void *arg);

char *(*Back)(const strCollection *str);

struct _Vector *(*CastToArray)(const strCollection *SC);

int (*Clear)(strCollection *SC);

Mask *(*CompareEqual)(const strCollection *left,

const strCollection *right,Mask *m);

Mask *(*CompareEqualScalar)(const strCollection *left,

const char *str,Mask *m);

int (*Contains)(const strCollection *SC,const char *str);

strCollection *(*Copy)(const strCollection *SC);

char **(*CopyTo)(const strCollection *SC);

strCollection *(*Create)(size_t startsize);

strCollection *(*CreateFromFile)(const char *fileName);

strCollection *(*CreateWithAllocator)(size_t startsiz,

const ContainerAllocator *mm);

int (*Equal)(const strCollection *SC1,const strCollection *SC2);

int (*Erase)(strCollection *SC,const char *);

int (*EraseAll)(strCollection *SC,const char *);

int (*EraseAt)(strCollection *SC,size_t idx);

int (*Finalize)(strCollection *SC);

size_t (*FindFirst)(const strCollection *SC,const char *text);

size_t (*FindNext)(const strCollection *SC, const char *text,

size_t start);

strCollection *(*FindText)(const strCollection *SC,

const char *text);

166 Chapter 5. The containers

Vector *(*FindTextIndex)(const strCollection *SC,const char *text);

Vector *(*FindTextPositions)(const strCollection *SC,

const char *text);

char *(*Front)(const strCollection *str);

const ContainerAllocator *(*GetAllocator)(const strCollection *AL);

size_t (*GetCapacity)(const strCollection *SC);

char **(*GetData)(const strCollection *SC);

char *(*GetElement)(const strCollection *SC,size_t idx);

size_t (*GetElementSize)(const strCollection *SC);

unsigned (*GetFlags)(const strCollection *SC);

strCollection *(*GetRange)(strCollection *SC, size_t start,

size_t end);

strCollection *(*IndexIn)(const strCollection *SC,

const Vector *AL);

int (*IndexOf)(const strCollection *SC,const char *SearchedString,

size_t *result);

strCollection *(*Init)(strCollection *result,size_t startsize);

int (*InitIterator)(strCollection *SC,void *buf);

strCollection *(*InitWithAllocator)(strCollection *c,size_t start,

const ContainerAllocator *mm);

strCollection *(*InitializeWith)(size_t n, char **data);

int (*Insert)(strCollection *SC,char *);

int (*InsertAt)(strCollection *SC,size_t idx,const char *newval);

int (*InsertIn)(strCollection *source, size_t idx,

strCollection *newData);

strCollection *(*Load)(FILE *stream, ReadFunction readFn,

void *arg);

int (*Mismatch)(const strCollection *a1,const strCollection *a2,

size_t *mismatch);

Iterator *(*NewIterator)(strCollection *SC);

size_t (*PopBack)(strCollection *, char *result,size_t bufsize);

size_t (*PopFront)(strCollection *SC,char *outbuf,size_t buflen);

int (*PushBack)(strCollection *,const char *data);

int (*PushFront)(strCollection *SC,char *str);

int (*RemoveRange)(strCollection *SC,size_t start,size_t end);

int (*ReplaceAt)(strCollection *SC,size_t idx,char *newval);

int (*Reverse)(strCollection *SC);

int (*Save)(const strCollection *SC,FILE *stream,

SaveFunction saveFn,void *arg);

int (*Select)(strCollection *src, const Mask *m);

strCollection *(*SelectCopy)(const strCollection *src,

const Mask *m);

int (*SetCapacity)(strCollection *SC,size_t newCapacity);

StringCompareFn (*SetCompareFunction)(strCollection *SC,

5.5. The string collection container: istrCollection, iWstrCollection 167

StringCompareFn);

DestructorFunction (*SetDestructor)(strCollection *v,

DestructorFunction fn);

ErrorFunction (*SetErrorFunction)(strCollection *SC,

ErrorFunction fn);

unsigned (*SetFlags)(strCollection *SC,unsigned flags);

size_t (*Size)(const strCollection *SC);

size_t (*Sizeof)(const strCollection *SC);

size_t (*SizeofIterator)(const strCollection *l);

int (*Sort)(strCollection *SC);

int (*WriteToFile)(const strCollection *SC,const char *filename);

int (*deleteIterator)(Iterator *);

} strCollectionInterface;

5.5.2 API

Most of the functions present in the interface are exactly like the functions in Vector.
Only those that differ will be documented here.

AddRange

int (*AddRange)(strCollection *SC,size_t n,

const ElementType *data[]);

Description: Adds each string of the array of string pointers at the end of the container.
It is assumed that ”data” points to a contiguous array of string pointers whose size is
given by the ”n” parameter. Returns a value greater than zero if the addition completed
successfully, a negative error code otherwise. If n is zero nothing is done and no errors
are issued, even if the array pointer or the data pointer are NULL .
Errors:
CONTAINER ERROR BADARG The strCollection pointer or the data pointers are NULL .
CONTAINER ERROR READONLY The collection is read-only. No modifications allowed.
CONTAINER ERROR NOMEMORY Not enough memory to complete the operation.
Returns:A positive number if the operation completed, negative error code otherwise.
Invariants: The data added is copied and not modified in any way.
Example:

strCollection *SC = istrCollection.Create(10);

char *data[] = { "one","two,"three"};

int result = istrCollection.AddRange(SC,3,data);

if (result < 0) { /* Error handling */ }

CastToArray

Vector *(*CastToArray)(const strCollection *SC);

168 Chapter 5. The containers

Description: Converts a string collection into an vector.
Errors:
CONTAINER ERROR BADARG The strCollection pointer is NULL .
CONTAINER ERROR NOMEMORY Not enough memory to complete the operation.
Invariants: The given collection is not modified in any way.
Returns:A positive number if the operation completed, negative error code otherwise.

CreateFromFile

strCollection *(*CreateFromFile)(const char *fileName);

Description: Reads the given text file and stores each line in a string of the collection.
The end of line characters are discarded.
Errors:
CONTAINER ERROR BADARG The fileName pointer is NULL .
CONTAINER ERROR NOMEMORY Not enough memory to complete the operation.
CONTAINER ERROR NOENT The file doesn’t exist or can’t be opened for reading.
Returns:A pointer to a new string collection with the contents of the file. If an error
occurs the result is NULL and the current error function (in the iError interface) is called.

FindFirst

size_t (*FindFirstText)(const strCollection *SC,

const ElementType *text);

Description: Finds the first occurrence of the given text in the string collection.
Errors:
CONTAINER ERROR BADARG One or both arguments are NULL .
Invariants: Neither the input collection, nor the given text are modified.
Returns:The zero based index of the line that contains the given text or the constant
CONTAINER ERROR NOTFOUND if the text is not found.

FindNext

Iterator *(*Find)(const strCollection *SC,const ElementType *txt,

size_t start);

Description: Starts searching for the given text at the specified line.
Errors:
CONTAINER ERROR BADARG The strCollection or the text pointer are NULL .
Invariants: Neither the input collection, nor the given text are modified in any way.
Returns:An iterator that points to the element found or NULL if nothing was found.

FindTextPositions

Vector *(*FindTextPositions)(const strCollection *SC,

const ElementType *text);

5.5. The string collection container: istrCollection, iWstrCollection 169

Description: Searches all occurrences of the given text in the given string collection.
Errors:
CONTAINER ERROR BADARG The strCollection or the text pointer are NULL .
CONTAINER ERROR NOMEMORY Not enough storage for holding the resulting array.
Invariants: Neither the input collection, nor the given text are modified.
Returns:An array list containing a pair of integers for each occurrence containing the
zero based position of the line where the text was found and a second number indicating
the character index within the line where the searched text occurs. The result is NULL

if there wasn’t any occurrences of the searched text in the string collection or an error
was detected.

Front

const CHARTYPE *(*Front)(const strCollection *l);

Description: Returns the first element of the given list or NULL if the collection is
empty.
Errors:
CONTAINER ERROR BADARG The collection pointer is NULL .
CONTAINER ERROR READONLY The collection is read only.
Invariants: The input collection is not modified. The resulting pointer should not be
modified in any way.
Returns:The first element or NULL if the collection is empty or an error occurs.

Init

strCollection *(*Init)(strCollection *result, size_t startsize);

Description: Initializes the given string collection to contain at least the number of
strings given. Uses the current memory manager.
Errors:
CONTAINER ERROR NOMEMORY There is no more memory left to complete the opera-
tion.
CONTAINER ERROR BADARG The string collection pointer is NULL

Returns:A pointer to the initialized string collection or NULL if an error occurs.

InitWithAllocator

strCollection *(*InitWithAllocator)(strCollection *result,

size_t startsize,

const ContainerAllocator *allocator);

Description: Initializes the given string collection to contain at least the number of
strings given. Uses the given memory manager.
Errors:
CONTAINER ERROR NOMEMORY There is no more memory left to complete the opera-
tion.

170 Chapter 5. The containers

CONTAINER ERROR BADARG The string collection pointer is NULL

Returns:A pointer to the initialized string collection or NULL if an error occurs.

InsertIn

int (*InsertIn)(strCollection *dst, size_t pos,

const strCollection *newData);

Description: Inserts the given strCollection into the destination strCollection at the
given position. If the position is greater than the actual length of the string collection
the new data will be inserted at the end.
Errors:
CONTAINER ERROR BADARG The source or destination pointers are NULL .
CONTAINER ERROR READONLY The destination is read only.
Invariants: The new data is not modified in any way.
Example:

#include <containers.h>

static void PrintStringCollection(strCollection *AL)

{

size_t i;

printf("Count %ld, Capacity %ld\n",

(long)istrCollection.Size(AL),

(long)istrCollection.GetCapacity(AL));

for (i=0; i<istrCollection.Size(AL);i++) {

printf("%s ",istrCollection.GetElement(AL,i));

}

printf("\n");

}

static void FillStringCollection(strCollection * AL,int start)

{

size_t i;

char buf[256];

for (i=0; i<10;i++) {

double d = i+start;

sprintf(buf,"%g",d);

istrCollection.Add(AL,buf);

}

}

int main(void)

{

strCollection *AL = istrCollection.Create(10);

strCollection *AL1 =istrCollection.Create(10);

5.5. The string collection container: istrCollection, iWstrCollection 171

FillStringCollection(AL,0);

FillStringCollection(AL1,100);

istrCollection.InsertIn(AL,5,AL1);

PrintStringCollection(AL);

return 0;

}

The example creates two string collections, fills them with the string representation of
the numbers from 0 to 9 and from 100 to 109, then inserts the second collection into the
first one at position 5.
OUTPUT:

Count 20, Capacity 20

0 1 2 3 4 100 101 102 103 104 105 106 107 108 109 5 6 7 8 9

Mismatch

int (*Mismatch)(const strCollection *a1,

const strCollection *a2,

size_t *mismatch);

Description: Returns the index of the first element that is different when compar-
ing both collections in the passed pointer mismatch. If one is shorter than the other
the comparison stops when the last element from the shorter array is compared. The
comparison also stops when the first difference is spotted.
Errors:
CONTAINER ERROR BADARG Any of the arguments is NULL .
Invariants: The input collections are not modified in any way. Both collections could
be the same.
Returns:If a mismatch is found the result is greater than zero and the mismatch ar-
gument will contain the index of the first element that compared unequal. This will be
always the case for arrays of different length.

If both arrays are the same length and no differences are found the result is zero
and the value pointed to by the mismatch argument is one more than the length of the
arrays.

If an error occurs, a negative error code is returned. The mismatch argument contains
zero.
Example:

#include "containers.h"

char *table[] = {"String 1", "String 2","String 3","String 4",};

int main(void)

{

size_t idx;

172 Chapter 5. The containers

strCollection *sc = istrCollection.Create(4);

strCollection *sc2;

istrCollection.AddRange(sc,sizeof(table)/sizeof(table[0]),table);

sc2 = istrCollection.Copy(sc);

istrCollection.ReplaceAt(sc,2,"String456");

istrCollection.Mismatch(sc,sc2,&idx);

printf("String collections differ at position %d\n",idx);

}

OUTPUT:

String collections differ at position 2

PopBack

size_t (*PopBack)(strCollection *SC,ElementType *buf,size_t buflen);

Description: If the string collection is not empty, it will copy at most buflen characters
into the given buffer. If the buffer pointer is NULL or the length of the buffer is zero it
will return the length of the element that would be popped.
Errors:

CONTAINER ERROR BADARG The strCollection pointer is NULL .
Returns:Zero if the collection was empty, a negative error code if an error occurs, or a
positive value if the range was erased.

RemoveRange

int (*RemoveRange)(strCollection *SC,size_t start,size_t end);

Description: Removes all strings having an index equal or greater than start and
less than end . If end is greater than the number of elements in the collection it will
be adjusted to one more than the number of elements. If start is bigger than end the
range is still valid and starts with the value of end and ends with the value of start .
Errors:

CONTAINER ERROR BADARG The strCollection pointer is NULL .
Returns:Zero if the string collection is empty. Otherwise returns a positive number for
success, a negative error code in case of an error.

SetCompareFunction

StringCompareFn (*SetCompareFunction)(strCollection *SC,

StringCompareFn StrCmp);

Description: Sets the function used for comparing two strings to the given one. If the
value of the new function is NULL the current value is returned.

Note that the definition of the StringCompareFn differs from the normal comparison
functions used in all other containers. Its definition is as follows:

5.5. The string collection container: istrCollection, iWstrCollection 173

typedef int (*StringCompareFn)(const void **s1,

const void **s2,CompareInfo *info);

The reason for this change is that a string container holds pointers to characters, hence
a double indirection is needed by functions like sort.
Errors:
CONTAINER ERROR BADARG The strCollection pointer is NULL .
Returns:The old value of the comparison function.

WriteToFile

int (*WriteToFile)(const strCollection *SC,const char *fileName);

Description: Writes the contents of the given string collection into a file with the given
name. If the collection is empty an empty file is created. The resulting file contains a
line for each string in the collection.
Errors:
CONTAINER ERROR BADARG The strCollection pointer or the fileName are NULL .
Invariants: The input collection is not modified.
Returns:A positive number if the operation completes, or a negative error code other-
wise. If the collection is empty the result is zero.

174 Chapter 5. The containers

5.6 The dictionary container: iDictionary

The dictionary vocabulary.

5.6. The dictionary container: iDictionary 175

A dictionary is an associative container that associates a text key with a piece of
data. It can be implemented by means of a hash table that uses a hash function to map
the key into a restricted integer range, used to index a table. A common usage is to
associate some data with a character key, but it can also be used to just store character
keys without any data associated with them. The container is then used just to see if a
given key is stored there or not. In this case the container should be created with object
size of zero.

The interest of hash tables is that the access to objects using the key is very fast.

5.6.1 The dictionary interface

This interface (like the string collection container) comes in two flavors: One with keys
of 8 bit characters, another with keys in the wide character set. Both interfaces are
identical, except for the keys parameter.

This is the interface for the multi-byte character set.

typedef struct tagDictionaryInterface {

int (*Add)(Dictionary *Dict,const char *key,const void *Data);

int (*Apply)(Dictionary *Dict,int (*Applyfn)(const char *Key,

Vector *(*CastToArray)(const Dictionary *);

int (*Clear)(Dictionary *Dict);

int (*Contains)(const Dictionary *dict,const char *key);

Dictionary *(*Copy)(const Dictionary *dict);

int (*CopyElement)(const Dictionary *Dict,const char *Key,

void *outbuf);

Dictionary *(*Create)(size_t ElementSize,size_t hint);

Dictionary *(*CreateWithAllocator)(size_t elementsize,size_t hint,

const ContainerAllocator *mm);

int (*Equal)(const Dictionary *d1,const Dictionary *d2);

int (*Erase)(Dictionary *Dict,const char *);

int (*Finalize)(Dictionary *Dict);

const ContainerAllocator *(*GetAllocator)(const Dictionary *Dict);

void *(*GetElement)(const Dictionary *Dict,const char *Key);

size_t (*GetElementSize)(const Dictionary *d);

unsigned (*GetFlags)(const Dictionary *Dict);

strCollection *(*GetKeys)(const Dictionary *Dict);

double (*GetLoadFactor)(Dictionary *d);

Dictionary *(*Init)(Dictionary *dict,size_t ElementSize,

size_t hint);

int (*InitIterator)(Dictionary *dict,void *buf);

Dictionary *(*InitWithAllocator)(Dictionary *D,size_t elemsize,

size_t hint,const ContainerAllocator *mm);

Dictionary *(*InitializeWith)(size_t elementSize,size_t n,

const char **Keys,const void *Values);

176 Chapter 5. The containers

int (*Insert)(Dictionary *Dict,const char *key,const void *Data);

int (*InsertIn)(Dictionary *dst,Dictionary *src);

Dictionary * (*Load)(FILE *stream, ReadFunction readFn, void *arg);

Iterator *(*NewIterator)(Dictionary *dict);

int (*Replace)(Dictionary *dict,const char *Key,const void *Data);

int (*Save)(const Dictionary *Dict,FILE *stream,

SaveFunction saveFn,void *arg);

DestructorFunction (*SetDestructor)(Dictionary *v,

DestructorFunction fn);

ErrorFunction (*SetErrorFunction)(Dictionary *Dict,

ErrorFunction fn);

unsigned (*SetFlags)(Dictionary *Dict,unsigned flags);

HashFunction (*SetHashFunction)(Dictionary *d,HashFunction newFn);

size_t (*Size)(const Dictionary *Dict);

size_t (*Sizeof)(const Dictionary *dict);

size_t (*SizeofIterator)(const Dictionary *);

int (*deleteIterator)(Iterator *);

} DictionaryInterface;

This is the interface for the wide character set.

typedef struct tagWDictionaryInterface {

int (*Add)(WDictionary *Dict,const wchar_t *key,const void *Data);

int (*Apply)(WDictionary *Dict,int (*Applyfn)(const wchar_t *Key,

Vector *(*CastToArray)(const WDictionary *);

int (*Clear)(WDictionary *Dict);

int (*Contains)(const WDictionary *dict,const wchar_t *key);

WDictionary *(*Copy)(const WDictionary *dict);

int (*CopyElement)(const WDictionary *Dict,const wchar_t *Key,

void *outbuf);

WDictionary *(*Create)(size_t ElementSize,size_t hint);

WDictionary *(*CreateWithAllocator)(size_t elementsize,size_t hint,

const ContainerAllocator *mm);

int (*Equal)(const WDictionary *d1,const WDictionary *d2);

int (*Erase)(WDictionary *Dict,const wchar_t *);

int (*Finalize)(WDictionary *Dict);

const ContainerAllocator *(*GetAllocator)(const WDictionary *Dict);

void *(*GetElement)(const WDictionary *Dict,const wchar_t *Key);

size_t (*GetElementSize)(const WDictionary *d);

unsigned (*GetFlags)(const WDictionary *Dict);

WstrCollection *(*GetKeys)(const WDictionary *Dict);

double (*GetLoadFactor)(WDictionary *d);

WDictionary *(*Init)(WDictionary *dict,size_t ElementSize,

size_t hint);

5.6. The dictionary container: iDictionary 177

int (*InitIterator)(WDictionary *dict,void *buf);

WDictionary *(*InitWithAllocator)(WDictionary *D,size_t elemsize,

size_t hint,const ContainerAllocator *mm);

WDictionary *(*InitializeWith)(size_t elementSize,size_t n,

const wchar_t **Keys,const void *Values);

int (*Insert)(WDictionary *Dict,const wchar_t *key,

const void *Data);

int (*InsertIn)(WDictionary *dst,WDictionary *src);

WDictionary * (*Load)(FILE *stream, ReadFunction readFn,

void *arg);

Iterator *(*NewIterator)(WDictionary *dict);

int (*Replace)(WDictionary *dict,const wchar_t *Key,

const void *Data);

int (*Save)(const WDictionary *Dict,FILE *stream,

SaveFunction saveFn,void *arg);

DestructorFunction (*SetDestructor)(WDictionary *v,

DestructorFunction fn);

ErrorFunction (*SetErrorFunction)(WDictionary *Dict,

ErrorFunction fn);

unsigned (*SetFlags)(WDictionary *Dict,unsigned flags);

WHashFunction (*SetHashFunction)(WDictionary *d,

WHashFunction newFn);

size_t (*Size)(const WDictionary *Dict);

size_t (*Sizeof)(const WDictionary *dict);

size_t (*SizeofIterator)(const WDictionary *);

int (*deleteIterator)(Iterator *);

} WDictionaryInterface;

5.6.2 The API

Add

int (*Add)(Dictionary *Dict,char *key,const void *data);

Description: Adds the given element to the container using the given ”key” string.
It is assumed that ”data” points to a contiguous memory area of at least ElementSize
bytes. Both the key and the data are copied into the container. If the size of dictionary
data elements is zero the data argument is ignored and can be NULL .

If an element exists with the given key, its contents are replaced with the new data.
For a different behavior use Insert or Replace.
Errors:
CONTAINER ERROR BADARG The dictionary, or the key pointers are NULL .
CONTAINER ERROR READONLY The dictionary is read-only. No modifications allowed.
CONTAINER ERROR NOMEMORY Not enough memory to complete the operation.

178 Chapter 5. The containers

Returns:A positive number if the operation added a new element, zero if the data was
written into an existing element, or a negative error code if an error occurred.
Example:

Dictionary *dict;

double data = 4.5;

int result = iDictionary.Add(dict,"Interest rate",&data);

if (result < 0) { /* Error handling */ }

Apply

int (*Apply)(Dictionary *Dict,

int (Applyfn)(const char *key,

void *data,

void *extraArg),

void *extraArg);

Description: Will call the given function for each element of the array. The first
argument of the callback function receives they key ,the second is a pointer to the element
of the Dictionary. The third argument of the callback is the ”extraArg” argument that
the Apply function receives and passes to the callback. This way some context can be
passed to the callback, and from one element to the next. Note that the result of the
callback is not used. This allows all kinds of result types to be accepted after a suitable
function type cast. If the dictionary is read-only, a copy of the element will be passed
to the callback function.
Errors:
CONTAINER ERROR BADARG Either the dictionary pointer or Applyfn are NULL .
CONTAINER ERROR NOMEMORY The dictionary is read-only and there is no more mem-
ory to allocate the buffer to copy each element.
Example:

static int print(const char *key,

void *pElement,

void *pResult)

{

double *p = pElement;

printf("%s: %g\n",key,*p);

return 1;

}

int main(void) {

Dictionary *dict = iDictionary.Create(sizeof(double),5);

double d = 2;

iDictionary.Add(dict,"First item",&d);

d = 3;

iDictionary.Add(dict,"Second item",&d);

5.6. The dictionary container: iDictionary 179

iDictionary.Apply(dict,print,NULL);

return 0;

}

Output should be:

First item: 2

Second item: 3

CastToArray

Vector *(*CastToArray)(Dictionary *);

Description: Returns a vector containing all the elements in the dictionary (without
any keys). If the element size of the dictionary is zero the result is NULL .
CONTAINER ERROR BADARG The dictionary pointer is NULL .
CONTAINER ERROR NOMEMORY The creation of the resulting vector failed or the dic-
tionary is read-only and there is no more memory to allocate the buffer to copy each
element.
Returns:The new vector or NULL .

Clear

int (*Clear)(Dictionary *dict);

Description: Erases all stored data and releases the memory associated with it. The
dictionary header is not destroyed, and its contents will be the same as when it was
initially created. It is an error to use this function when there are still active iterators
for the container.
Returns:The result is greater than zero if successful, or an error code if an error occurs.
Errors:
CONTAINER ERROR BADARG The vector pointer is NULL .
CONTAINER ERROR READONLY The vector is read only.
Example:

Dictionary *Dict;

int m = iDictionary.Clear(Dict);

Contains

int (*Contains)(Dictionary *Dict,const char *Key);

Description: Returns one if the given key is stored in the dictionary, zero otherwise.
If an error occurs it returns a negative error code.
Errors:
CONTAINER ERROR BADARG Either Dict or Key are NULL .
Example:

180 Chapter 5. The containers

Dictionary *dict;

int r = iDictionary.Contains(dict,"Item 1");

Copy

Dictionary *(*Copy)(Dictionary *Dict);

Description: A shallow copy of the given dictionary is performed. Only ElementSize
bytes will be copied for each element. If the element contains pointers, only the pointers
are copied, not the objects they point to. The new memory will be allocated using the
allocator in the source dictionary.
Errors:
CONTAINER ERROR NOMEMORY There is not enough memory to complete the opera-
tion.
CONTAINER ERROR BADARG The given vector pointer is NULL .
Returns:A pointer to a copy of the given dictionary or NULL .
Example:

Dictionary *newDict,*Old;

newDict = iDictionary.Copy(Old);

CopyElement

int (*CopyElement)(Dictionary *Dict,cont char *Key, void *outbuf);

Description: A shallow copy of the given dictionary element is performed. Only ele-
ment size bytes will be copied. If the element contains pointers, only the pointers are
copied, not the objects they point to. The new memory will be allocated using the
allocator in the source dictionary. If the element size is zero nothing is copied and the
result is zero.
Errors:
CONTAINER ERROR NOMEMORY There is not enough memory to complete the opera-
tion.
CONTAINER ERROR BADARG The given vector pointer is NULL .
Returns:A positive value for success, zero if the element size of the dictionary is zero,
or a negative error code.
Example:

Dictionary *Dict;

int r = iDictionary.CopyElement(Dict,"Key",outbuf);

if (r < 0)

; // handle error

else if (r == 0)

; nothing was copied

else // Use outbuf data here

5.6. The dictionary container: iDictionary 181

Create

Dictionary *(*Create)(size_t ElementSize,size_t hint);

Dictionary *(*CreateWithAllocator)(size_t elementsize,size_t hint,

ContainerAllocator *allocator);

Description: Creates a new dictionary with the given element size and with a table big
enough to store hint entries. The Create function uses the current memory manager
as the allocator for the new dictionary. CreateWithAllocator uses the given allocator
object.
Errors:
CONTAINER ERROR NOMEMORY Not enough memory to complete the operation.
Returns:A pointer to the new dictionary or NULL if there is not enough memory to
create it.

deleteIterator

int deleteIterator(Iterator *it);

Description: Reclaims the memory used by the given iterator object
Returns:Integer smaller than zero with error code or a positive number when the op-
eration completes.
Errors:
CONTAINER ERROR BADARG The iterator pointer is NULL .

Equal

int (*Equal)(Dictionary *d1,Dictionary *d2);

Description: Compares the given dictionaries using their comparison function. If the
dictionaries differ in their size, flags, or hash functions they compare unequal. If any of
their elements differ, they compare unequal. If both d1 and d2 are NULL they compare
equal. If Both d1 and d2 are empty they compare equal.
Errors:
None
Returns:The result is one if the dictionaries are equal, zero otherwise.

Erase

int (*Erase)(Dictionary *Dict,const char *key);

Description: Removes from the dictionary the element that matches the given key.
Returns:A positive value that indicates that a match was found and the element was
removed. If no element matched the result is CONTAINER ERROR NOTFOUND . If an
error occurs, a negative error code is returned.
Errors:
CONTAINER ERROR BADARG One or both arguments are NULL .
Example:

182 Chapter 5. The containers

double d = 2.3;

Vector *AL;

int r = iVector.Erase(AL,&d);

if (r > 0)

printf("2.3 erased|n");

else if (r == 0)

printf("No element with value 2.3 present\n");

else

printf("error code %d\n",r);

Finalize

int (*Finalize)(Dictionary *dict);

Description: Reclaims all memory used by the dictionary, including the array header
object itself.
Errors:
CONTAINER ERROR BADARG The given pointer is NULL .
CONTAINER ERROR READONLY The dictionary is read-only. No modifications allowed.
Returns:A positive value means the operation completed. A negative error code indi-
cates failure.
Example:

Dictionary *AL;

int r = iDictionary.Finalize(AL);

if (r < 0) { /* error handling */ }

GetAllocator

ContainerAllocator (*GetAllocator)(Dictionary *Dict);

Description: Retrieves the memory manager of the given dictionary.
Errors:
CONTAINER ERROR BADARG The given pointer is NULL .
Returns:The memory manager object or NULL if an error occurs.

GetElementSize

size_t (*GetElementSize)(const Dictionary *Dict);

Description: Retrieves the size of the elements stored in the given dictionary. Note
that this value can be different than the value given to the creation function because of
alignment requirements.
Errors:
CONTAINER ERROR BADARG The given pointer is NULL .
Returns:The element size or zero if an error.
Example:

5.6. The dictionary container: iDictionary 183

Dictionary *Dict;

size_t siz = iDictionary.GetElementSize(Dict);

GetElement

void *(*GetElement)(Dictionary *Dict,const char *key);

Description: Returns a pointer to the element at the given index, or NULL if the
operation failed. This function will return NULL if the dictionary is read only.

Use the CopyElement function to get a read/write copy of an element of the dictio-
nary.
Errors:
CONTAINER ERROR BADARG The given dictionary pointer or the key are NULL .
CONTAINER ERROR READONLY The array is read only.
Example:

Dictionary *Dict;

double *d = iDictionary.GetElement(Dict,"Index");

if (d == NULL) { /* Error handling */ }

GetFlags

unsigned (*GetFlags)(Dictionary *dict);

Description: Returns the flags element of the given dictionary.
Errors:
CONTAINER ERROR BADARG The given dictionary pointer is NULL .

GetLoadFactor

double (*GetLoadFactor)(Dictionary *dict);

Description: Returns the number of elements divided by the size of the table.
Errors:
CONTAINER ERROR BADARG The given dictionary pointer is NULL .

InsertIn

int (*InsertIn)(Dictionary *dst,Dictionary *src);

Description: Inserts all keys of the src dictionary into the dst dictionary. If the
container changes during the insertion process the operation aborts.
Errors:
CONTAINER ERROR BADARG The given dictionary pointer is NULL .
CONTAINER ERROR NOMEMORY . There is not enough memory to complete the opera-
tion.
Returns:A positive number if successful, zero if the container changed during the op-
eration, or a negative error code.

184 Chapter 5. The containers

Init

Dictionary *(*Init)(Dictionary *Dict,size_t elementsize,size_t hint);

Description: Initializes the indicated storage for use asa dictionary object. This pro-
cedure is completely equivalent to Create with the difference that there is no allocation
done for the dictionary header. Uses the current memory manager for the allocations of
the slot table.
Returns:A pointer to its first argument if successfull or NULL if there is no memory to
complete the operation.

InitializeWith

Dictionary *(*InitializeWith)(size_t elemSize, size_t n,

char **keys,void *Values);

Description: Construct a dictionary from the given keys and values. The Values

argument should be either NULL or a valid pointer to n elements of size elementSize.
The keys argument should be a table of string pointers with each string associated with
each element of the Values table.
Errors:
CONTAINER ERROR BADARG The keys argument is NULL .
CONTAINER ERROR NOMEMORY . There is not enough memory to complete the opera-
tion.
Returns:The new dictionary object or NULL if an error occurs

InitWithAllocator

Dictionary *(*InitWithAllocator)(Dictionary *Dict,

size_t elementsize, size_t hint,

ContainerAllocator *allocator);

Description: Initializes the indicated storage for use as a dictionary object. This
procedure is completely equivalent to CreateWithAllocator with the difference that
there is no allocation done for the dictionary header. Uses the given memory manager
for the allocations of the slot table.
Returns:A pointer to its first argument if successfull or NULL if there is no memory to
complete the operation.

Insert

int (*Insert)(Dictionary *Dict, const char *key,void *Data);

Description: Inserts the new key and its corresponding data into the given dictionary.
If the key is already present, nothing is changed. This contrasts with the behavior of
Add that will replace an existing key.
Errors:

5.6. The dictionary container: iDictionary 185

CONTAINER ERROR BADARG Any of the given pointers is NULL .
CONTAINER ERROR READONLY The array is read only.
CONTAINER ERROR NOMEMORY Not enough memory to complete the operation.
Returns:A positive value if the key was inserted, zero if the key was already present,
or a negative error code.

Load

Dictionary *(*Load)(FILE *stream,ReadFunction readFn,void *arg);

Description: Reads a dictionary previously saved with the Save function from the
stream pointed to by stream. If readFn is not NULL , it will be used to read each
element. The ”arg” argument will be passed to the read function. If the read function
is NULL , this argument is ignored and a default read function is used.
Errors:
CONTAINER ERROR BADARG The given stream pointer is NULL .
CONTAINER ERROR NOMEMORY There is not enough memory to complete the opera-
tion.
Returns:A new dictionary or NULL if the operation could not be completed. Note that
the function pointers in the array are NOT saved, nor any special allocator that was
in the original dictionary. Those values will be the values by default. To rebuild the
original state the user should replace the pointers again in the new array.

NewIterator

Iterator *(*NewIterator)(Dictionary *Dict);

Description: Allocates and initializes a new iterator object to iterate this dictionary.
The exact sequence is implementation defined but it will be the same for the same
dictionary with the same number of elements.
Errors:
If no more memory is available it returns NULL .
Returns:A pointer to a new iterator or NULL if there is no more memory left.
Example:

Dictionary *Dict;

Iterator *it = iDictionary.NewIterator(Dict);

double *d;

for (d=it->GetFirst(it); d != NULL; d = it->GetNext(it)) {

double val = *d;

// Work with the value here

}

iDictionary.deleteIterator(it);

186 Chapter 5. The containers

SetDestructor

DestructorFunction SetDestructor(Dictionary *d,DestructorFunction fn);

Description: Sets the destructor function to its given argument. If the function argu-
ment is NULL nothing is changed and the call is interpreted as a query since the return
value is the current value of the destructor function. If the dictionary argument is NULL

, the result is NULL .
Returns:The old value of the destructor.

SetHashFunction

size_t (*SetHashFunction)(Dicttionary *dict,HashFunction newFn);

Description: This function is both a query function and a function to change the hash
function used by the given dictionary.

• If the dictionary pointer is NULL returns the value of the default hash function
used by the library at startup.

• If the newFn parameter is NULL it returns the hash function used by the given
dictionary without modifying it.

• Otherwise it sets the hash function in the given dictionary to the new one, returning
the value of the old one.

Size

size_t (*Size)(const Dictionary *Dict);

Description: Returns the number of elements stored in the dictionary or SIZE MAX
if the dictionary pointer is NULL .
Errors:
CONTAINER ERROR BADARG The given array pointer or the key are NULL .
Example:

Dictionary *Dict;

size_t elem = iDictionary.Size(Dict);

Save

int (*Save)(const Dictionary *D, FILE *out, SaveFunction Fn, void *arg);

Description: The contents of the given dictionary are saved into the given stream.
If the save function pointer is not NULL , it will be used to save the contents of each
element and will receive the arg argument passed to Save, together with the output
stream. Otherwise a default save function will be used and arg will be ignored. The
output stream must be opened for writing and must be in binary mode.

5.6. The dictionary container: iDictionary 187

Errors:
CONTAINER ERROR BADARG The dictionary pointer or the stream pointer are NULL .
EOF A disk input/output error occurred.
Returns:A positive value if the operation completed, a negative value or EOF otherwise.
Example:

Dictionary *Dict;

FILE *outFile;

if (iDictionary.Save(Dict,outFile,NULL,NULL) < 0) {

/* Handle error here */

}

Sizeof

size_t (*Sizeof)(Dictionary *Dict);

Description: Returns the total size in bytes of the dictionary, including the header,
and all data stored in the dictionary, including the size of the dictionary header. If Dict
is NULL , the result is the size of the Dictionary structure.
Returns:The number of bytes used by the dictionary or the size of the Dictionary
structure if the argument is NULL .
Example:

Dictionary *Dict;

size_t size = iDictionary.Sizeof(Dict);

SetErrorFunction

ErrorFunction (*SetErrorFunction)(Dictionary *dict,ErrorFunction efn);

Description: Replaces the current error function for the given dictionary with the new
error function if the ErrorFunction parameter is different from NULL . If the dict

parameter is NULL the function returns the value of the current default error function.
Errors:
CONTAINER ERROR BADARG The dictionary pointer is NULL .
CONTAINER ERROR READONLY The dictionary is read only and the function argument
is not NULL .
Returns:The old value of the error function or NULL if there is an error.

Size

size_t (*Size)(const Dictionary *d);

Description: Returns the number of elements stored in the dictionary. If the argument
is NULL the result is zero.
Example:

188 Chapter 5. The containers

Dictionary *d;

size_t elem = iDictionary.Size(d);

5.7. The TreeMap interface: iTreeMap 189

5.7 The TreeMap interface: iTreeMap

The tree map container uses a tree to associate keys to values. Trees are extremely
efficient data structures that allow access to millions of items with a few comparisons.
Disadvantages include a greater overhead than other containers, and a complex machin-
ery to maintain them.

This associative container is special in that it contains no separate key, the elements
themselves are the key. Obviously they need imperatively a comparison function, and
that comparison function could use some parts of the stored object as a key, but that is
transparent to the interface.

An essential point in this container is the comparison function. Since all insertions
searches and deletions from/to the tree are done using that function, it is essential that
is defined correctly. Like all other comparison functions it can receive an extra argument
that conveys some kind of context to it. This implies that functions like ’Add’ have an
extra argument to be able to pass this context to the comparison function.

The comparison function must be consistent

It is important to stress that for this container it is essential that the comparison
function returns always the same result for two given elements. The context passed
through this auxiliary arguments must not be used to change the result of the element
comparison according to some external factor. Any inconsistency in the comparison
function will destroy completely the whole container and the user will be unable to
retrieve the data stored or (worst) retrieve the wrong data.

5.7.1 The interface

typedef struct tagTreeMapInterface {

int (*Add)(TreeMap *ST, void *Data,void *ExtraArgs);

int (*Apply)(TreeMap *ST,

int (*Applyfn)(const void *data,void *arg),

void *arg);

TreeMap *(*Copy)(TreeMap *src);

TreeMap *(*CreateWithAllocator)(size_t ElementSize,

ContainerAllocator *m);

TreeMap *(*Create)(size_t ElementSize);

unsigned (*GetFlags)(TreeMap *ST);

int (*Clear)(TreeMap *ST);

int (*Contains)(TreeMap *ST,void *element,void *ExtraArgs);

int (*deleteIterator)(Iterator *);

int (*Erase)(TreeMap *tree, void *element,void *ExtraArgs);

int (*Equal)(TreeMap *t1, TreeMap *t2);

int (*Finalize)(TreeMap *ST);

void *(*Find)(TreeMap *tree,void *element,void *ExtraArgs);

190 Chapter 5. The containers

size_t (*GetElementSize)(TreeMap *d);

TreeMap *(*InitializeWith)(size_t elementSize, size_t n,

void *Elements);

int (*Insert)(TreeMap *RB, const void *Data, void *ExtraArgs);

Iterator *(*NewIterator)(TreeMap *);

TreeMap *(*Load)(FILE *stream, ReadFunction loadFn,void *arg);

int (*Save)(TreeMap *src,FILE *stream,

SaveFunction saveFn,void *arg);

CompareFunction (*SetCompareFunction)(TreeMap *ST,

CompareFunction fn);

DestructorFunction (*SetDestructor)(TreeMap *Tree,

DestructorFunction fn);

ErrorFunction (*SetErrorFunction)(TreeMap *ST, ErrorFunction fn);

unsigned (*SetFlags)(TreeMap *ST, unsigned flags);

size_t (*Sizeof)(TreeMap *ST);

size_t (*Size)(TreeMap *ST);

} TreeMapInterface;

All the above functions were described for the sequential containers and their syntax is
here the same.

5.8. Hash Table: iHashTable 191

5.8 Hash Table: iHashTable

Hash table is a similar container as dictionary, but allows for more features at the expense
of a slightly more complicated interface. Keys aren’t restricted to zero terminated strings
but can be any kind of data. The table resizes itself as it grows. Merging two hash tables

5.8.1 The interface

typedef struct tagHashTableInterface {

int (*Add)(HashTable *HT,const void *key,size_t klen,

const void *Data);

int (*Apply)(HashTable *HT,int (*Applyfn)(void *Key,size_t klen,

void *data,void *arg),void *arg);

int (*Clear)(HashTable *HT);

int (*Contains)(const HashTable *ht,const void *Key,size_t klen);

HashTable *(*Copy)(const HashTable *Orig,Pool *pool);

HashTable *(*Create)(size_t ElementSize);

int (*Erase)(HashTable *HT,const void *key,size_t klen);

int (*Finalize)(HashTable *HT);

void *(*GetElement)(const HashTable *HT,const void *Key,

size_t klen);

size_t (*GetElementSize)(const HashTable *HT);

unsigned (*GetFlags)(const HashTable *HT);

HashTable *(*Init)(HashTable *ht,size_t ElementSize);

int (*InitIterator)(HashTable *SC,void *buf);

HashTable *(*Load)(FILE *stream, ReadFunction readFn, void *arg);

HashTable *(*Merge)(Pool *p, const HashTable *overlay,

const HashTable *base, void * (*merger)(Pool *p,

const void *key, size_t klen, const void *h1_val,

const void *h2_val, const void *data), const void *data);

Iterator *(*NewIterator)(HashTable *);

HashTable *(*Overlay)(Pool *p, const HashTable *overlay,

const HashTable *base);

int (*Replace)(HashTable *HT,const void *key, size_t klen,

const void *val);

int (*Resize)(HashTable *HT,size_t newSize);

int (*Save)(const HashTable *HT,FILE *stream, SaveFunction saveFn,

void *arg);

int (*Search)(HashTable *ht,int (*Comparefn)(void *rec,

const void *key,size_t klen,const void *value), void *rec);

DestructorFunction (*SetDestructor)(HashTable *v,

DestructorFunction fn);

ErrorFunction (*SetErrorFunction)(HashTable *HT,ErrorFunction fn);

unsigned (*SetFlags)(HashTable *HT,unsigned flags);

192 Chapter 5. The containers

GeneralHashFunction (*SetHashFunction)(HashTable *ht,

GeneralHashFunction hf);

size_t (*Size)(const HashTable *HT);

size_t (*Sizeof)(const HashTable *HT);

size_t (*SizeofIterator)(const HashTable *ht);

int (*deleteIterator)(Iterator *);

} HashTableInterface;

5.8.2 The API

Add

int (*Add)(HashTable *ht,

void *key,

size_t keyLength,

const void *data);

Description: Adds the given element to the container using the given ”key” string. It
is assumed that ”data” points to a contiguous memory area of at least ht-¿ElementSize
bytes. Both the key and the data are copied into the container.

If an element exists with the given key, its contents are replaced with the new data.
Errors:

CONTAINER ERROR BADARG The hash table, the key or the data pointers are NULL .
CONTAINER ERROR READONLY : The hash table is read-only. No modifications allowed.
CONTAINER ERROR NOMEMORY Not enough memory to complete the operation.
Returns:A positive number if the operation added a new element, zero if the data was
written into an existing element, or a negative error code if an error occurred.
Example:

HashTable *ht;

double data = 4.5;

int result = iHashTable.Add(ht,"Interest rate",

strlen("Interest rate"),&data);

if (result < 0) { /* Error handling */ }

Apply

int (*Apply)(HashTable *ht,

int (Applyfn)(const char *key,

size_t keyLength,

void *data,

void *extraArg),

void *extraArg);

5.8. Hash Table: iHashTable 193

Description: Apply will call the given function for each element of the array. The first
argument of the callback function receives they key ,the second is the length of the key.
The third is a pointer to one element of the table. The fourth argument of the callback
is the ”extraArg” argument that the Apply function receives and passes to the callback.
This way some context can be passed to the callback, and from one element to the next.

Note that the result of the callback is not used. This allows all kinds of result types
to be accepted after a suitable function type cast.

If the dictionary is read-only, a copy of the element will be passed to the callback
function.
Errors:
CONTAINER ERROR BADARG Either the hash table pointer or Applyfn are NULL .
CONTAINER ERROR NOMEMORY The hash table is read-only and there is no more
memory to allocate the buffer to copy each element.
Example:

static int print(const char *key,

void *pElement,

void *pResult)

{

double *p = pElement;

printf("%s: %g\n",key,*p);

return 1;

}

int main(void) {

Dictionary *dict = iDictionary.Create(sizeof(double),5);

double d = 2;

iDictionary.Add(dict,"First item",&d);

d = 3;

iDictionary.Add(dict,"Second item",&d);

iDictionary.Apply(dict,print,NULL);

return 0;

}

Output should be:

First item: 2

Second item: 3

Clear

int (*Clear)(HashTable *ht);

Description: Erases all stored data and releases the memory associated with it. The
hash table header is not destroyed, and its contents will be the same as it was when
initially created. It is an error to use this function when there are still active iterators
for the container.

194 Chapter 5. The containers

Returns:The result is greater than zero if successful, or an error code if an error occurs.
Errors:
CONTAINER ERROR BADARG The hash table pointer is NULL .
CONTAINER ERROR READONLY The hash table is read only.
Example:

HashTable *ht;

int m = iHashTable.Clear(ht);

Copy

HashTable *(*Copy)(const HashTable *Orig,Pool *pool);

Description: Copies the given hash table using the given pool. If ”pool” is NULL ,the
pool of the given hash table will be used.
Errors:
CONTAINER ERROR BADARG The hash table pointer is NULL .
CONTAINER ERROR NOMEMORY Not enough memory to complete the operation.

Create

HashTable *(*Create)(size_t ElementSize);

Description: Creates a new hash table and initializes all fields. The table will use the
current memory manager for its pool.
Errors:
CONTAINER ERROR BADARG The parameter is zero or bigger than the maximum size
the implementation supports.
CONTAINER ERROR NOMEMORY Not enough memory to complete the operation.

deleteIterator

int (*deleteIterator)(Iterator *);

Description: Releases the memory used by the given iterator.
Errors:
CONTAINER ERROR BADARG The parameter is NULL .
Returns:A positive value if successful or a negative error code.

Erase

int (*Erase)(HashTable *HT,void *key,size_t keyLength);

Description: Removes from the hash table the element with the given key.
Errors:
CONTAINER ERROR BADARG The hash table parameter or the key pointer are NULL ,
or the keyLength is zero.

5.8. Hash Table: iHashTable 195

Returns:A positive number if the operation completed, a negative error code otherwise.
Finalize Synopsis: int (*Finalize)(HashTable *HT); Description: Releases all memory

used by the hash table and destroys the hash table header itself.
Errors:
CONTAINER ERROR BADARG The parameter is NULL .

GetElement

void *(*GetElement)(const HashTable *H,const void *Key,size_t keyLen);

Description: Returns a pointer to the given hash table element.
Errors:
CONTAINER ERROR BADARG The hash table parameter or the key pointer are NULL ,
or the keyLen parameter is zero.
Returns:A pointer to the element or NULL if no element with the specified key exists.

GetFlags

unsigned (*GetFlags)(const HashTable *HT);

Description: Returns an unsigned integer with the state of the table.

Load

HashTable *(*Load)(FILE *stream,ReadFunction readFn,void *arg);

Description: Reads a table previously saved with the Save function from the stream
pointed to by stream. If readFn is not NULL , it will be used to read each element. The
”arg” argument will be passed to the read function. If the read function is NULL , this
argument is ignored and a default read function is used.
Errors:
CONTAINER ERROR BADARG The given stream pointer is NULL .
CONTAINER ERROR NOMEMORY There is not enough memory to complete the opera-
tion.
Returns:A new table or NULL if the operation could not be completed. Note that the
function pointers in the array are NOT saved in most implementations, nor any special
allocator that was in the original table. In most implementations those values will be
the values by default. To rebuild the original state the user should replace the pointers
again in the new table.

Merge

HashTable *(*Merge)(Pool *p,

const HashTable *overlay,

const HashTable *base,

void * (*merger)(Pool *p,

const void *key,

196 Chapter 5. The containers

size_t keyLength,

const void *h1_val,

const void *h2_val,

const void *data),

const void *data);

Description: Merge two hash tables into one new hash table. If the same key is present
in both tables, call the supplied merge function to produce a merged value for the key
in the new table. Both hash tables must use the same hash function. The arguments
should be:

1. The pool to use when allocating memory. If NULL , the pool of the ”base” hash
table will be used.

2. The first table to be used in the merge.

3. The second table

4. An argument to pass to the merger function.

NewIterator

Iterator *(*NewIterator)(HashTable *HT);

Description: Allocates and initializes a new iterator object to iterate this table. The
exact sequence of each object returned is implementation defined but it will be the same
for the same dictionary with the same number of elements.
Errors:
CONTAINER ERROR BADARG The parameter is NULL .
CONTAINER ERROR NOMEMORY Not enough memory to complete the operation.
Returns:A pointer to a new iterator or NULL if the operation couldn’t be completed.
Example:

HashTable *HT;

Iterator *it = iHashTable.NewIterator(HT);

double *d;

for (d=it->GetFirst(it); d != NULL; d = it->GetNext(it)) {

double val = *d;

// Work with the value here

}

iHashTable.deleteIterator(it);

Overlay

HashTable *(*Overlay)(Pool *p,

const HashTable *overlay,

const HashTable *base);

5.8. Hash Table: iHashTable 197

Description: Copies overlay into base. If conflicts arise, the data in base will be copied
in the result.
Errors:

CONTAINER ERROR BADARG One of the arguments is NULL .
CONTAINER ERROR NOMEMORY Not enough memory to complete the operation.

Resize

int (*Resize)(HashTable *HT,size_t newSize);

Description: Will resize the given hash table to a new size. If the given new size is
zero, the new size is implementation defined, and equal to the amount when automatic
resizing occurs.
Errors:

CONTAINER ERROR BADARG The parameter is NULL .
CONTAINER ERROR NOMEMORY Not enough memory to complete the operation.
Returns:A positive value if the operation completed, a negative error code otherwise.

Replace

int (*Replace)(HashTable *HT, const void *key,

size_t keyLength,const void *data);

Description: Will replace the contents of the given element if found.
Errors:

CONTAINER ERROR BADARG The hash table pointer, the key or the replacement data
are NULL , or the keyLength is zero.
Returns:A positive number if the element was replaced or zero if the element wasn’t
found. If the operation didn’t complete a negative error code is returned.

Save

int (*Save)(const HashTable *HT, FILE *out, SaveFunction Fn, void *arg);

Description: The contents of the given table are saved into the given stream. If the
save function pointer is not NULL , it will be used to save the contents of each element
and will receive the arg argument passed to Save, together with the output stream.
Otherwise a default save function will be used and arg will be ignored. The output
stream must be opened for writing and must be in binary mode.
Errors:

CONTAINER ERROR BADARG The array pointer or the stream pointer are NULL .
EOF A disk input/output error occurred.
Returns:A positive value if the operation completed, a negative value or EOF other-
wise.
Example:

198 Chapter 5. The containers

HashTable *HT;

FILE *outFile;

if (iHashTable.Save(HT,outFile,NULL,NULL) < 0) {

/* Handle error here */

}

SetErrorFunction

ErrorFunction (*SetErrorFunction)(HashTable *HT,ErrorFunction fn);

Description: Replaces the current error function for the given table with the new error
function if the ErrorFunction parameter is different from NULL . If the HT parameter
is NULL the function returns the value of the current default error function.
Errors:
CONTAINER ERROR BADARG The table pointer is NULL .
CONTAINER ERROR READONLY The table is read only and the function argument is
not NULL .
Returns:The old value of the error function or NULL if there is an error.

Size

size_t (*Size)(const HashTable *HT);

Description: Returns the number of elements stored in the given table.
Errors:
CONTAINER ERROR BADARG The table pointer is NULL .
Returns:The number of elements stored in the table

Sizeof

size_t (*Sizeof)(const HashTable *HT);

Description: Returns the number of bytes of storage used in the given table including
the size of the elements stored in it. If HT is NULL the result is the size of the HashTable
header.
Returns:The number of elements stored in the table or the size of the HashTable header
if the HT pointer is NULL .

5.9. Queues: iQueue 199

5.9 Queues: iQueue

Queues are a type of container adaptors, specifically designed to operate in a FIFO
context (first-in first-out), where elements are inserted into one end of the container and
extracted from the other.

The sample implementation shows how to implement this container as an ”adaptor”
container, i.e. based on another container. The implementation uses a linked list to
implement a queue 10.

5.9.1 Interface

typedef struct tagQueueInterface {

int (*Back)(Queue *Q,void *result);

int (*Clear)(Queue *Q);

Queue *(*Create)(size_t elementSize);

Queue *(*CreateWithAllocator)(size_t elementSize,

ContainerAllocator *allocator);

int (*Dequeue)(Queue *Q,void *result);

int (*Enqueue)(Queue *Q, void *Element);

int (*Finalize)(Queue *Q);

int (*Front)(Queue *Q,void *result);

List *(*GetData)(Queue *q);

size_t (*Size)(Queue *Q);

size_t (*Sizeof)(Queue *Q);

} QueueInterface;

5.9.2 The API

All methods are exactly like the ones in other containers except for Enqueue, that is
equivalent to ”Add” since adds one element at the end of the container, and Dequeue,
that is the same as PopFront, i.e. pops the first element of the container.

Front

int (*Front)(Queue *Q,void *result);

10The Java language provides an interface in the class java.util. C# offers a Queue class in
System.Collections, implemented as a circular array that is icreased automatically if needed. There
is also a generic Queue class.

In C++ the definition is: template < class T, class Container = deque<T> > class queue;

Where

• T: Type of the elements.

• Container: Type of the underlying container object used to store and access the elements.

200 Chapter 5. The containers

Description: Returns the contents of the first element in the given memory area that
should be at least the size of the element size of the queue. Note that nothing is changed,
and the first element is not erased from the container.

Returns:A positive number for success, zero if the queue is empty or a negative error
code.

Errors:

CONTAINER ERROR BADARG The Queue pointer is NULL .

Back

int (*Back)(Queue *Q,void *result);

Description: Returns the contents of the last element in the given memory area that
should be at least the size of the element size of the queue. Note that nothing is changed,
and the last element is not erased from the container.

Returns:A positive number for success, zero if the queue is empty or a negative error
code.

Errors:

CONTAINER ERROR BADARG The Queue pointer is NULL .

GetData

List *(*GetData)(Queue *q);

Description: Queues are based on the list container. It is not necessary to duplicate all
the list functions in the queue interface: this function allows you to access the underlying
list and use all the list specific APIs with it.

Returns:A pointer to the list container or NULL if the queue pointer passed is NULL .

5.10 Deque: iDeque

Deque (usually pronounced like ”deck”) is an irregular acronym of double-ended queue.
Double-ended queues are a kind of sequence containers. As such, their elements are
ordered following a strict linear sequence. Deques may be implemented by specific
libraries in different ways, but in all cases they allow for adding and retrieving elements
at both ends, with storage always handled automatically (expanding and contracting as
needed).

Operations to insert and retrieve elements in the middle are not provided because
if users need a plain sequential container they can use one. Individual implementation
can offer those if they think it is useful. This differs from the C++ implementation.

Here is a little table with a Rosetta stone for deque:

5.10. Deque: iDeque 201

C Ada C++ Java Perl PHP Python

PushBack Append push back offerLast push array push append
PushFront Prepend push front offerFirst unshift array unshift appendleft
PopBack Delete Last pop back pollLast pop array pop pop
PopFront Delete First pop front pollFirst shift array shift popleft
Back Last Element back peekLast $array[-1] end <obj>[-1]

Some functions that the C++ interface provides like is empty() can be obtained in
this implementation simply by invoking:

iDeque.Size(deque) == 0

5.10.1 Interface

The interface iDeque is as follows:

typedef struct tagDequeInterface {

void (*Apply)(Deque *Q,int (*Applyfn)(void *,void * arg),

void *arg);

int (*Back)(Deque *d,void *outbuf);

int (*Clear)(Deque *Q);

size_t (*Contains)(Deque * d, void* item);

Deque *(*Copy)(Deque *d);

Deque *(*Create)(size_t elementSize);

int (*Equal)(Deque *d1,Deque *d2);

int (*Erase)(Deque * d, const void* item);

int (*EraseAll)(Deque * d, const void* item);

int (*Finalize)(Deque *Q);

int (*Front)(Deque *d,void *outbuf);

unsigned (*GetFlags)(Deque *Q);

Deque *(*Init)(Deque *d,size_t elementSize);

int (*InitIterator)(Deque *dc,void *buf);

Deque *(*Load)(FILE *stream, ReadFunction readFn,void *arg);

Iterator *(*NewIterator)(Deque *Deq);

int (*PopBack)(Deque *d,void *outbuf);

int (*PopFront)(Deque *d,void *outbuf);

int (*PushBack)(Deque *Q,const void *Element);

int (*PushFront)(Deque *Q, void *Element);

int (*Reverse)(Deque * d);

int (*Save)(const Deque *d,FILE *stream, SaveFunction saveFn,

void *arg);

DestructorFunction (*SetDestructor)(Deque *Q,

DestructorFunction fn);

ErrorFunction (*SetErrorFunction)(Deque *d,ErrorFunction);

unsigned (*SetFlags)(Deque *Q,unsigned newFlags);

size_t (*Size)(Deque *Q);

202 Chapter 5. The containers

size_t (*Sizeof)(Deque *d);

size_t (*SizeofIterator)(Deque *);

int (*deleteIterator)(Iterator *);

} DequeInterface;

The deque container can be implemented as an adaptor container, for instance based
on a double linked list or in an vector. In any case the underlying container interface is
not visible.

Apply

void (*Apply)(Deque *d,int (Applyfn)(void *,void *),void *arg);

Description: Will call the given function for each element. The first argument of the
callback function receives an element of the array. The second argument of the callback
is the arg argument that the Apply function receives and passes to the callback. This
way some context can be passed to the callback, and from one element to the next. Note
that the result of the callback is not used. This allows all kinds of result types to be
accepted after a suitable cast. If the array is read-only, a copy of the element will be
passed to the callback function.
Errors:
CONTAINER ERROR BADARG Either the deque or Applyfn are NULL .
CONTAINER ERROR NOMEMORY The list is read-only and there is no more memory to
allocate the buffer to copy each element.

Back

int (*Back)(Deque *d,void *outbuf);

Description: Copies into the given buffer the last element stored in the Deque d.
Errors:
CONTAINER ERROR BADARG Either d or outbuf are NULL .
Returns:A positive value of the operation completed, zero if the container is empty, or
a negative error code otherwise.

Clear

int (*Clear)(Deque *Q);

Description: Erases all elements stored in the queue and reclaims the memory used.
The Deque object itself is not destroyed.
Errors:
CONTAINER ERROR BADARG The deque pointer is NULL .
CONTAINER ERROR READONLY The deque is read-only. No modifications allowed.

5.10. Deque: iDeque 203

Contains

size_t (*Contains)(Deque * d, void* item);

Description: Searches the deque for the given data, returning its (index one based)
position or zero if not found. Errors
CONTAINER ERROR BADARG The deque pointer is NULL .
Returns:The index of element or zero if not found.

Copy

Deque *(*Copy)(Deque *d);

Description: Makes a copy of the given deque.
Errors:
CONTAINER ERROR BADARG The deque pointer is NULL .
CONTAINER ERROR NOMEMORY Not enough memory to complete the operation.
Returns:A pointer to the new container or NULL if the operation did not complete.

Create

Deque *(*Create)(size_t elementSize);

Description: Creates a new Deque container using ”elementSize” as the size that each
element will have.
Errors:
CONTAINER ERROR BADARG The elementSize parameter is zero or bigger than what
the implementation supports.
CONTAINER ERROR NOMEMORY Not enough memory to complete the operation.
Returns:A pointer to the new container or NULL if the operation did not complete.
Example:

Deque *d = iDeque.Create(sizeof(myType));

if (d == NULL) { /* Error handling */ }

Equal

int (*Equal)(Deque *d1,Deque *d2);

Description: Compares the given deques using their comparison function. If they differ
in their size, flags, or compare functions they compare unequal. If any of their elements
differ, they compare unequal. If both d1 and d2 are NULL they compare equal. If both
are empty, they compare equal.
Errors:
None
Returns:The result is one if the deques are equal, zero otherwise.

204 Chapter 5. The containers

Front

int (*Front)(Deque *d,void *outbuf);

Description: Copies into the given buffer the first element stored in the Deque d.
Errors:

CONTAINER ERROR BADARG Either d or outbuf are NULL .
Returns:A positive value of the operation completed, zero if the container is empty, or
a negative error code otherwise.

Erase

int (*Erase)(Deque * d, void* item);

Description: Erases the first occurrence of the given element from the container if
found, starting from the front.
Errors:

CONTAINER ERROR BADARG The deque pointer or the item pointer are NULL .
CONTAINER ERROR READONLY The deque is read-only. No modifications allowed.
Returns:A positive number if the item was found and erased, zero if the item wasn’t
found, or a negative error code if the operation did not complete.

Finalize

int (*Finalize)(Deque *d);

Description: Reclaims all memory used by the container erasing all elements, if any.
Then it destroys the container object itself.
Errors:

CONTAINER ERROR BADARG The deque pointer is NULL .
CONTAINER ERROR READONLY The deque is read-only. No modifications allowed.
Returns:A positive number if the operation completed, a negative error code otherwise.

GetFlags

unsigned (*GetFlags)(Deque *d);

Description: Retrieves the state of the flags. If the implementation doesn’t support
this field this function always returns zero.
Errors:

CONTAINER ERROR BADARG The deque pointer is NULL .
Returns:The state of the flags field.

Load

Deque *(*Load)(FILE *stream,ReadFunction readFn,void *arg);

5.10. Deque: iDeque 205

Description: Reads a deque previously saved with the Save function from the stream
pointed to by stream. If readFn is not NULL , it will be used to read each element. The
”arg” argument will be passed to the read function. If the read function is NULL , this
argument is ignored and a default read function is used.
Errors:
CONTAINER ERROR BADARG The given stream pointer is NULL .
CONTAINER ERROR NOMEMORY There is not enough memory to complete the opera-
tion.
Returns:A new deque or NULL if the operation could not be completed. Note that the
function pointers in the deque are NOT saved in most implementations, nor any special
allocator that was in the original table. In most implementations those values will be
the values by default. To rebuild the original state the user should replace the pointers
again in the new table.

PopBack

int (*PopBack)(Deque *d,void *outbuf);

Description: Copies into the given buffer the last element stored in the Deque d, then
erases the element from the deque.
Errors:
CONTAINER ERROR BADARG Either d or outbuf are NULL .
Returns:A positive value of the operation completed, zero if the container is empty, or
a negative error code otherwise.

PopFront

int (*PopFront)(Deque *d,void *outbuf);

Description: Copies into the given buffer the first element stored in the Deque d, thnen
erases the element from the deque.
Errors:
CONTAINER ERROR BADARG Either d or outbuf are NULL .
Returns:A positive value of the operation completed, zero if the container is empty, or
a negative error code otherwise.

PushBack

int (*PushBack)(Deque *d,void *element);

Description: Adds the given element to the end of the deque. It is assumed that
”element” points to a contiguous memory area of at least ElementSize bytes.
Errors:
CONTAINER ERROR BADARG The deque or the element pointers are NULL .
CONTAINER ERROR READONLY The deque is read-only. No modifications allowed.
CONTAINER ERROR NOMEMORY Not enough memory to complete the operation.

206 Chapter 5. The containers

Returns:A positive number if the operation added a new element, or a negative error
code if an error occurred.
Example:

Deque *d;

double data = 4.5;

int result = iDeque.PushBack(d,&data);

if (result < 0) { /* Error handling */ }

PushFront

int (*PushFront)(Deque *d,void *element);

Description: Adds the given element to the start of the deque. It is assumed that
”element” points to a contiguous memory area of at least ElementSize bytes.
Errors:

CONTAINER ERROR BADARG The deque or the element pointers are NULL .
CONTAINER ERROR READONLY The deque is read-only. No modifications allowed.
CONTAINER ERROR NOMEMORY Not enough memory to complete the operation.
Returns:A positive number if the operation added a new element, or a negative error
code if an error occurred.
Example:

Deque *d;

double data = 4.5;

int result = iDeque.PushFront(d,&data);

if (result < 0) { /* Error handling */ }

Save

int (*Save)(const Deque *d, FILE *out, SaveFunction Fn, void *arg);

Description: The contents of the given deque are saved into the given stream. If the
save function pointer is not NULL , it will be used to save the contents of each element
and will receive the arg argument passed to Save, together with the output stream.
Otherwise a default save function will be used and arg will be ignored. The output
stream must be opened for writing and must be in binary mode.
Errors:

CONTAINER ERROR BADARG The deque pointer or the stream pointer are NULL . EOF
A disk input/output error occurred.
Returns:A positive value if the operation completed, a negative value or EOF other-
wise.
Example:

5.10. Deque: iDeque 207

Deque *d;

FILE *outFile;

if (iDeque.Save(d,outFile,NULL,NULL) < 0) {

/* Handle error here */

}

208 Chapter 5. The containers

5.11 Priority queues

Priority queues are queues where each element has a priority associated with it. In this
implementation the elements with the lowest priority associated with the data are served
first.

The value of the priority key must be within the bounds set up by the two manifest
constants:

CCL_PRIORITY_MIN

CCL_PRIORITY_MAX

They are defined by the implementation and they define a subset of an integer or long
integer range. This allows the implementation to save some values for special ”markers”
if needed. If the implementation doesn’t need this feature it can define the bounds as
to cover the full possible range for the key type.

The key type is defined as the C99 type intptr_t: the integer type that can hold a
pointer.

5.11.1 Interface

typedef struct tagPQueueInterface {

int (*Add)(PQueue *Q,intptr_t key,const void *Element);

int (*Clear)(PQueue *Q);

PQueue *(*Copy)(const PQueue *src);

PQueue *(*Create)(size_t elementSize);

PQueue *(*CreateWithAllocator)(size_t elementSize,

ContainerAllocator *allocator);

int (*Equal)(const PQueue *q1,const PQueue *q2);

int (*Finalize)(PQueue *Q);

intptr_t (*Front)(const PQueue *Q,void *result);

intptr_t (*Pop)(PQueue *Q,void *result);

int (*Push)(PQueue *Q,intptr_t key,const void *Element);

size_t (*Size)(const PQueue *Q);

size_t (*Sizeof)(const PQueue *Q);

PQueue *(*Union)(PQueue *left, PQueue *right);

} PQueueInterface;

5.11.2 A complete example

1 #include <stdlib.h>

2 #include "containers.h"

3 #define MAX_ITERATIONS 10

4 int main(void)

5 {

6 char buf[20];

5.11. Priority queues 209

7 PQueue *pq = iPQueue.Create(20);

8 int r,i;

9 for (i=0; i<MAX_ITERATIONS;i++) {

10 char buf[20];

11 int d = rand();

12 snprintf(buf,20,"%d",d);

13 r = iPQueue.Push(pq,d,buf);

14 if (r < 0) break;

15 }

16 printf("The queue has %zu elements\n",iPQueue.Size(pq));

17 printf("It uses %zu bytes. The size of the header structure is %zu\n",

18 iPQueue.Sizeof(pq),iPQueue.Sizeof(NULL));

19 r = iPQueue.Size(pq);

20 for (i=0; i<r; i++){

21 iPQueue.Pop(pq,buf);

22 printf("%s ",buf);

23 }

24 printf("\n");

25 }

26 OUTPUT

27 The queue has 10 elements

28 It uses 968 bytes. The size of the header structure is 88

29 16807 101027544 282475249 470211272 984943658 1144108930

30 1457850878 1458777923 1622650073 2007237709

The example uses two loops: one for filling the priority queue, the other for printing all
its elements.

We create the priority queue with an element size of 20. This is more than enough
to hold a character string containing the textual representation of the priority.

In the first loop (lines 9 to 15) we associate a priority that we obtain from the random
number generator, to a character string containing the text representation of it. We use
the Push primitive to add to the priority queue (line 13). In case of any error we stop.

We print some information about the queue in lines 16-18. In line 19 we store the
length of the queue in a temporary variable. This is necessary since we will use the Pop

primitive that erases the lowest priority element, so the length of the queue will change.
We can’t use MAX_ITERATIONS either because it could be that the queue doesn’t have
its full length because an error in line 13 forced us to break the first loop in line 14
withoutb reaching MAX_ITERATIONS 11.

The output is obviously insorted order, since the queue releases the data from the
lowest priority to the highest.

11This example requires C99. The snprintf function is specific to C99 but that would be easy to
replace by plain sprintf. The %zu format directive is also specific to C99. In C90 systems it could be
replaced by %u or %lu.

210 Chapter 5. The containers

5.11.3 The API

Add

int (*Add)(PQueue *q, intptr_t key,void *Element);

Description: Adds to the given queue q the given element Element with its associated
priority key. This function is identical to the Push function below.

Clear

int (*Clear)(PQueue *Q);

Description: Erases all elements stored in the queue and reclaims the memory used.
The priority queue object itself is not destroyed.
Errors:

CONTAINER ERROR BADARG The PQueue pointer is NULL .
CONTAINER ERROR READONLY The queue is read-only. No modifications allowed.
Returns:A positive number if the queue is cleared, a negative error code otherwise.

Create

PQueue *(*Create)(size_t elementSize);

Description: Creates a new priority queue container using ”elementSize” as the size
that each element will have.
Errors:

CONTAINER ERROR BADARG The elementSize parameter is zero or bigger than what
the implementation supports.
CONTAINER ERROR NOMEMORY Not enough memory to complete the operation.
Returns:A pointer to the new container or NULL if the operation did not complete.

Copy

PQueue *(*Copy)(PQueue *d);

Description: Makes a copy of the given queue.
Errors:

CONTAINER ERROR BADARG The queue pointer is NULL .
CONTAINER ERROR NOMEMORY Not enough memory to complete the operation.
Returns:A pointer to the new queue or NULL if the operation did not complete.

Create

PQueue *(*Create)(size_t elementSize);

5.11. Priority queues 211

Description: Creates a new priority queue container using ”elementSize” as the size
that each element will have.
Errors:
CONTAINER ERROR BADARG The elementSize parameter is zero or bigger than what
the implementation supports.
CONTAINER ERROR NOMEMORY Not enough memory to complete the operation.
Returns:A pointer to the new container or NULL if the operation did not complete.

Equal

int (*Equal)(PQueue * q1, PQueue *q2);

Description: Compares two priority queues for equality. Two NULL pointers compare
equal.
Errors:
None.
Returns:A positive number if the two queues are equal, zero otherwise.

Finalize

int (*Finalize)(PQueue *d);

Description: Reclaims all memory used by the container erasing all elements, if any.
Then it destroys the container object itself.
Errors:
CONTAINER ERROR BADARG The priority queue pointer is NULL .
CONTAINER ERROR READONLY The deque is read-only. No modifications allowed.
Returns:A positive number if the operation completed, a negative error code otherwise.

Front

intptr_t (*Front)(PQueue *q,void *result);

Description: Copies into the given buffer the element with the lowest priority in the
queue q.
Errors:
CONTAINER ERROR BADARG Either the queue pointer or the result pointer is NULL .
Returns:The value of the priority associated with the lowest priority element. If the
queue is empty the result is INT_MIN.

Pop

intptr_t (*Pop)(PQueue *d,void *outbuf);

Description: Copies into the given buffer the element with the lowest priority in the
Deque d, then erases the element from the deque.
Errors:

212 Chapter 5. The containers

CONTAINER ERROR BADARG Either d or outbuf are NULL .
Returns:The priority value associated with the element or INT_MIN if the queue is
empty.

Push

int (*Push)(PQueue *q, intptr_t key,void *Element);

Description: Adds to the given queue q the given element Element with its associated
priority key

Size

size_t (*Size)(PQueue *q);

Description: Computes the number of elements in the given priority queue.

Sizeof

size_t (*Sizeof)(PQueue *q);

Description: Computes the number of bytes used in the given priority queue. If the
argument q is NULL it returns the number of bytes used by the header structure.

5.12. Bloom filters 213

5.12 Bloom filters

Bloom filters allow you to determine cheaply and quickly if an element is member of a
set without actually looking into the large set. This container doesn’t store any data,
just a series of bits indicating whether the element is there. It can return false an-
swers, specifically a false positive meaning it can answer ”yes, the element is there”
when in fact it is not. When it tells you however that the element is not there
you can be sure it is not in the set. The probability that a false answer occurs can
be calculated in function of the size reserved for the bit table: the bigger the ta-
ble, the smaller the probability of a false answer for a fixed number of elements. 12

5.12.1 The interface: iBloomFilter

typedef struct tagBloomFilterInterface {

size_t (*CalculateSpace)(size_t maxfElements,double probability);

BloomFilter *(*Create)(size_t maxElements,double probability);

size_t (*Add)(BloomFilter *b,const void *key,size_t keylen);

int (*Find)(BloomFilter *b,const void *key,size_t keylen);

int (*Clear)(BloomFilter *b);

int (*Finalize)(BloomFilter *b);

12More about bloom filters in: http://pages.cs.wisc.edu/ cao/papers/summary-cache/node8.html,
and at the NIST: http://xw2k.nist.gov/dads/html/bloomFilter.html

The original paper about them was published by Burton Bloom: Space/time trade-offs in hash
coding with allowable errors. Communications of ACM, pages 13(7):422-426, July 1970.

The idea behind this data structure is to allocate a vector of m bits, initially all set to 0, and then
choose k independent hash functions, h1, h2, . . . , hk,each with range {1, . . . ,m}. For each element a ∈ A,
the whole set, the bits at positions h1(a), h2(a), ..., hk(a) in v are set to 1. (A particular bit might be
set to 1 multiple times).

Given a query for some key b we check the bits at positions h1(b), h2(b), ..., hk(b). If any of them
is 0, then certainly b is not in the set A. Otherwise we conjecture that b is in the set although there
is a certain probability that we are wrong. This is called a “false positive”. The parameters k (the
maximum number of elements) and m (the probability) should be chosen such that the probability m
of a false positive (and hence a false hit) is acceptable.

214 Chapter 5. The containers

} BloomFilterInterface;

5.12.2 The API

CalculateSpace

size_t (*CalculateSpace)(size_t maxElements,double probability);

Description: Returns the space in bytes that would occupy a bloom filter to hold the
given number of elements with the given probability. The probability parameter should
be greater than zero and smaller than 1.0. For values very close to the values zero and
one, a huge number of bits can be necessary and the filter creation function will return
NULL because of lack memory problems.
Errors:
CONTAINER ERROR BADARG The probability is smaller or equal than zero, or bigger
or equal than one.
Returns:The number of bytes needed or zero in case of error.

Create

BloomFilter *(*Create)(size_t maxElements,double probability);

Description: Creates and initializes a filter with space enough to hold MaxElements
with the given probability for a false answer. The probability parameter should be
greater than zero and smaller than 1.0. For values very close to the values zero and
one, a huge number of bits can be necessary and the filter creation function will return
NULL because of lack memory problems.
Errors:
CONTAINER ERROR BADARG The probability is smaller or equal than zero, or bigger
or equal than one.
CONTAINER ERROR NOMEM There is no memory for the allocation of the necessary
data structures.
Returns:A pointer to a newly allocated bloom filter or NULL in case of error.

Add

size_t (*Add)(BloomFilter *b,const void *key,size_t keylen);

Description: Adds the given key to the filter. The keylen argument should be the
length of the key, that should never be zero.
Errors:
CONTAINER ERROR BADARG The filter pointer or the key pointer are NULL , or the
keylen is zero.
CONTAINER ERROR CONTAINER FULL . The maximum number of elements has been
reached.
Returns:The number of elements in the filter or zero if there is an error.

5.12. Bloom filters 215

Find

int (*Find)(BloomFilter *b,const void *key,size_t keylen);

Description: Searches the given key in the filter.
Errors:
CONTAINER ERROR BADARG The filter pointer or the key pointer are NULL , or the
keylen is zero.
Returns:One if the element is found, zero if it is not, or a negative error code if an
error occurs.

Clear

int (*Clear)(BloomFilter *b);

Description: Removes all elements from the filter. No memory is released.
Errors:
CONTAINER ERROR BADARG The given pointer is NULL .
Returns:One if all elements were cleared, a negative error code otherwise.

Finalize

int (*Finalize)(BloomFilter *b);

Description: Releases all memory held by the filter.
Errors:
CONTAINER ERROR BADARG The given pointer is NULL .
Returns:One if all elements were cleared, a negative error code otherwise.

216 Chapter 5. The containers

5.13 Value arrays

Value arrays are a group of containers that store the basic types of the language: short,
int, long, long long, float, double, long double and have some specialized op-
erations that should be done in hardware when the underlying CPU allows it. The ob-
jective here is to simplify the vector interface replacing the void * with the concrete
type that these arrays hold.

We have the following ValArrays:

Name Interface name Element type
ValArrayShort iValArrayShort short
ValArrayInt iValArrayInt int
ValArrayUInt iValArrayUInt unsigned
ValArrayLong iValArrayLong long
ValArrayDouble iValArrayDouble double
ValArrayFloat iValArrayFloat float
ValArrayLongDouble iValArrayLongDouble long double
ValArrayLLong iValArrayLLong long long
ValArrayULLong iValArrayULLong unsigned long long
ValArraySize t iValArraySize t size t

Some types can be just aliases for other types. For instance when int and long have the
same size there is no point in providing a separate implementation. This will be always
the case with the type size_t that will be an alias for one of the unsigned types. This
type is needed to represent arrays of indices that can be used to select elements into
another array.

The operations supported are the same as the vector data type with several differ-
ences:

• Simplified interfaces. For instance in the vector container the result of GetElement
is always a pointer to the data. ValArray simplifies this by using directly the
underlying type as return value. The functions that change their signature are:

1. Contains. Second parameter is not a pointer but the underlying type.

2. Erase. Second parameter is not a pointer but the underlying type.

3. Apply. The apply function receives the underlying type and not a pointer.

4. Add. The second argument is the underlying type.

5. GetElement. Returns the underlying type.

6. PushBack.Second argument changes.

7. PopFront. Returns the underlying type.

8. InsertAt. Second argument.

9. ReplaceAt. Third argument

5.13. Value arrays 217

10. IndexOf. Second argument.

11. Insert. Second argument

12. AddRange. Second argument is not a void pointer but a pointer to the
underlying type.

13. CopyElement. Second argument is not a void pointer but a pointer to the
underlying type.

14. CopyTo. The return type is not a void ** but a pointer to an array of the
underlying type.

• No destructors. There is no point in using destructors with the basic types.

• No extra arguments used in the comparison function. The comparison is done
inline whenever possible. The function SetComparisonFunction is accepted but
does nothing.

• Creation functions do not need the element size parameter.

• The GetElementSize returns the size in bytes of the underlying type but doesn’t
use its argument that can be NULL .

• The Save and Load functions do not need a user defined save/load function since
it is obvious how the basic types are to be written to the disk: they contain surely
no pointers that need to be followed. Their signature is changed.

• Iterators are unchanged and still return a pointer to an element 13.

• No tests for NULL arguments in the default version. Obviously those tests can be
added in other versions or implementations since any NULL arguments provokes
undefined behavior 14.

5.13.1 Operations

Each operation described below needs two compatible arrays, i.e. arrays that have the
same number of elements. If that is not the case an error occurs. A single number
can be used in place of an array, extending it to the shape of the array. The naming
convention is to add the ”Scalar” token to the operation name, so we have for instance
MultiplyWith and MultiplyWithScalar.

In general all operations use the data of the left argument and write their results into
the left argument. The right argument remains unmodified. This allows to construct
efficient RPN evaluators to avoid allocating intermediate results.

13This way it is possible to return NULL to stop the iteration of course
14The rationale for this is that speed in these containers is very important. It is assumed that

numerical software using this types is optimized, and a test for NULL and the corresponding jumps
would slow down the number crunching.

218 Chapter 5. The containers

5.13.2 Slices and masks

A slice is a description of a certain portion of the array. It has three fields:

1. Start, The zero based index of the element that starts the slice.

2. Length. The number of elements that are selected by the slice.

3. Increment. The number of elements that are skipped between elements when
passing from one element of the slice to the next.

When a ValArray is created, the slice used is the default one: 0, Size(ValArray), 1.
The slice starts at element zero, has the same number of elements that the number of
elements in the array, and its increment is 1. Using the API SetSlice and ResetSlice

you can modify the elements that will be selected for all operations. When a slice is
active, all elements that aren’t in the selected slice are ignored.

Slices are maintained by the library automatically. If you erase elements from the
array until the slice is empty, the library automatically resets the slice. If you add
elements, the length of the slice will increase if necessary.

A Mask is a boolean vector of ones or zeroes that selects elements from the array.
It can be implemented as a bitstring or as a sequence of bytes, this is implementation
defined. When used in combination with some ValArray operation, it selects the elements
that will be affected by the operation.

5.13.3 The interface

This is a generic interface description. The ElementType token is replaced in each
ValArray by the underlying type: int, double, etc. In the same style, ValArray and the
ValArrayInterface tokens are replaced with the corresponding value array name and
interface name.

typedef struct tagValArrayInterface {

int (*Abs)(ValArray *src);

ElementType (*Accumulate)(const ValArray *src);

int (*Add)(ValArray *AL,ElementType newval);

int (*AddRange)(ValArray *AL,size_t n,

const ElementType *newvalues);

int (*And)(ValArray *left, const ValArray *right);

int (*AndScalar)(ValArray *left, const ElementType right);

int (*Append)(ValArray *AL1, ValArray *AL2);

int (*Apply)(ValArray *AL,int (*Applyfn)(ElementType element,

void * arg),void *arg);

ElementType (*Back)(const ValArray *src);

int (*BitLeftShift)(ValArray *data,int shift);

int (*BitRightShift)(ValArray *data, const int shift);

int (*Clear)(ValArray *AL);

5.13. Value arrays 219

char *(*Compare)(const ValArray *left, const ValArray *right,

char *bytearray);

Mask *(*CompareEqual)(const ValArray *left,const ValArray *right,

Mask *bytearray);

Mask *(*CompareEqualScalar)(const ValArray *left,

const ElementType right, Mask *bytearray);

char *(*CompareScalar)(const ValArray *left,

const ElementType right,char *bytearray);

int (*Contains)(const ValArray *AL,ElementType data);

ValArray *(*Copy)(const ValArray *AL);

int (*CopyElement)(const ValArray *AL,size_t idx,

ElementType *outbuf);

ElementType *(*CopyTo)(ValArray *AL);

ValArray *(*Create)(size_t startsize);

ValArray *(*CreateSequence)(size_t n,ElementType start,

ElementType increment);

ValArray *(*CreateWithAllocator)(size_t startsize,

ContainerAllocator *allocator);

int (*DivideBy)(ValArray *left, const ValArray *right);

int (*DivideByScalar)(ValArray *left, ElementType right);

int (*DivideScalarBy)(ValArray *left,ElementType right);

int (*Equal)(const ValArray *first, const ValArray *second);

int (*Erase)(ValArray *AL,ElementType elem);

int (*EraseAt)(ValArray *AL,size_t idx);

Mask *(*FCompare)(const ValArray *left, const ValArray *right,

Mask *bytearray,ElementType tolerance);

int (*FillSequential)(ValArray *dst,size_t length,ElementType start,

ElementType increment);

int (*Finalize)(ValArray *AL);

int (*ForEach)(ValArray *src,ElementType (*ApplyFn)(ElementType));

int (*Fprintf)(const ValArray *src,FILE *out,const char *fmt);

ElementType (*Front)(const ValArray *src);

ContainerAllocator *(*GetAllocator)(const ValArray *AL);

size_t (*GetCapacity)(const ValArray *AL);

ElementType *(*GetData)(const ValArray *src);

ElementType (*GetElement)(const ValArray *AL,size_t idx);

size_t (*GetElementSize)(const ValArray *AL);

unsigned (*GetFlags)(const ValArray *AL);

ValArray *(*GetRange)(const ValArray *AL, size_t start,

size_t end);

int (*GetSlice)(ValArray *array,size_t *start,size_t *length,

size_t *increment);

ValArray *(*IndexIn)(const ValArray *SC,const ValArraySize_t *AL);

int (*IndexOf)(ValArray *AL,ElementType data,size_t *result);

220 Chapter 5. The containers

ValArray *(*Init)(ValArray *AL,size_t startsize);

int (*InitIterator)(ValArray *AL,void *buf);

ValArray *(*InitializeWith)(size_t n, ElementType *data);

int (*Insert)(ValArray *AL,ElementType);

int (*InsertAt)(ValArray *AL,size_t idx,ElementType newval);

int (*InsertIn)(ValArray *AL, size_t idx, ValArray *newData);

int (*Inverse)(ValArray *src);

ValArray *(*Load)(FILE *stream);

ElementType (*Max)(const ValArray *src);

int (*Memset)(ValArray *dst,ElementType fillValue,size_t length);

ElementType (*Min)(const ValArray *src);

int (*Mismatch)(const ValArray *a1,const ValArray *a2,

size_t *mismatch);

int (*Mod)(ValArray *left,const ValArray *right);

int (*ModScalar)(ValArray *left,const ElementType right);

int (*MultiplyWith)(ValArray *left, const ValArray *right);

int (*MultiplyWithScalar)(ValArray *left, ElementType right);

Iterator *(*NewIterator)(ValArray *AL);

int (*Not)(ValArray *left);

int (*Or)(ValArray *left, const ValArray *right);

int (*OrScalar)(ValArray *left, const ElementType right);

int (*PopBack)(ValArray *AL,ElementType *result);

ElementType (*Product)(const ValArray *src);

int (*PushBack)(ValArray *AL,ElementType data);

int (*RemoveRange)(ValArray *src,size_t start,size_t end);

int (*ReplaceAt)(ValArray *AL,size_t idx,ElementType newval);

int (*ResetSlice)(ValArray *array);

int (*Resize)(ValArray *src, size_t newSize);

int (*Reverse)(ValArray *AL);

int (*RotateLeft)(ValArray *AL, size_t n);

int (*RotateRight)(ValArray *AL,size_t n);

int (*Save)(const ValArray *AL,FILE *stream);

int (*Select)(ValArray *src,const Mask *m);

ValArray *(*SelectCopy)(const ValArray *src,const Mask *m);

int (*SetCapacity)(ValArray *AL,size_t newCapacity);

CompareFunction (*SetCompareFunction)(ValArray *l,

CompareFunction fn);

DestructorFunction (*SetDestructor)(ValArray *cb,

DestructorFunction fn);

ErrorFunction (*SetErrorFunction)(ValArray *AL,ErrorFunction);

unsigned (*SetFlags)(ValArray *AL,unsigned flags);

int (*SetSlice)(ValArray *src,size_t start,size_t length,

size_t increment);

size_t (*Size)(const ValArray *AL);

5.13. Value arrays 221

size_t (*Sizeof)(const ValArray *AL);

size_t (*SizeofIterator)(const ValArray *);

int (*Sort)(ValArray *AL);

int (*SubtractFrom)(ValArray *left, const ValArray *right);

int (*SubtractFromScalar)(ElementType left, ValArray *right);

int (*SubtractScalarFrom)(ValArray *left, ElementType right);

int (*SumScalarTo)(ValArray *left,ElementType right);

int (*SumTo)(ValArray *left,const ValArray *right);

int (*Xor)(ValArray *left, const ValArray *right);

int (*XorScalar)(ValArray *left, const ElementType right);

int (*deleteIterator)(Iterator *);

} ValArrayInterface;

222 Chapter 5. The containers

Abs

int (*Abs)(ValArray *src);

5.13. Value arrays 223

Description: If any of the values in the source array is smaller than zero it will be
negated. This function is only defined for signed or floating point types. It has no
meaning with unsigned types.
Returns:Zero if the array was empty, a positive number if successful.

Accumulate

ElementType (*Accumulate)(ValArray *src);

Description: Calculates the sum of all the elements of the given vector. If a slice
definition is active only the slice elements are considered.
Errors:
None are mandatory but implementations should check for overflow when possible.
Returns:The sum of the elements.

Add

int (*Add)(ValArray *AL,ElementType newval);

Description: Adds an element at the end of the array. If a slice is active, the increment
field (stride) will be used: the new element will be separated by the increment field of
the slice and empty fields will be filed with zeroes. The length of the slice will be
incremented by one.
Errors:

CONTAINER ERROR NOMEMORY Not enough memory to complete the operation.
Returns:A positive number if the element was added or a negative error code otherwise.

AddRange

int (*AddRange)(ValArray *AL,size_t n,ElementType *newvalues);

Description: Adds a range of elements at the end of the array. If a slice is active,
the increment field (stride) will be used: each new element will be separated by the
increment field of the slice and empty fields will be filed with zeroes. The length of the
slice will be incremented by n. If n is zero no error will be issued and the result is a
positive number.
Errors:

CONTAINER ERROR NOMEMORY Not enough memory to complete the operation.
Returns:A positive number if the elements were added or a negative error code other-
wise.

Apply

int (*Apply)(ValArray *AL,

int (*Applyfn)(ElementType element,void * arg),

void *arg);

224 Chapter 5. The containers

Description: Calls the given function for each element of the array. If a slice is active
only the elements in the slice will be used.
Errors:
None
Returns:A positive number

And

int (*And)(ValArray *left,ValArray *right);

Description: Performs a bitwise AND operation between each element of the right
argument with the corresponding element of the left argument. Conceptually this op-
eration is: left &= right. This operation is allowed only between unsigned integer
types. For floating point data this operation has no meaning. If a slice is active only
the slice elements are affected. If both arrays have slices they must be compatible, i.e.
they must have the same length.
Errors:

CONTAINER ERROR INCOMPATIBLE The arrays or slices have a different number of
elements.
Returns:A positive number for success, or a negative error code.

BitLeftShift

int (*BitLeftShift)(ValArray *dst,int shift);

Description: Shifts left each element of the given ValArray by shift bits. If shift is
negative it performs a right shift instead.
Errors:
No errors.
Returns:A positive number or a negative error code if an implementation detects an
invalid pointer. This error is not required to be detected.

BitRightShift

int (*BitRightShift)(ValArray *dst,int shift);

Description: Shifts right each element of the given ValArray by shift bits. If shift
is negative it performs a left shift instead.
Errors:
No errors.
Returns:A positive number or a negative error code if an implementation detects an
invalid pointer. This error is not required to be detected.

Clear

int (*Clear)(ValArray *array);

5.13. Value arrays 225

Description: Sets the number of elements to zero but doesn’t release any memory. Any
slice definitions are cleared.
Errors:
None.
Returns:A positive integer.

Compare

char *(*Compare)(ValArray *left,ValArray *right,

char *bitarray);

Description: Assigns to each byte of the bitarray the result of comparing the corre-
sponding elements of the left and right arrays. Conceptually this operation is:

byte[i] = (left[i] < right[i]) ? -1 : (left[i] == right[i]) ? 0 : 1

If the bytearray argument is NULL it will be allocated and returned. The allocator used
is the one from the left argument. If it is not NULL it will be assumed that it contains
at least GetSize(left) positions available.
Errors:
CONTAINER ERROR NOMEMORY . The given byte array argument was NULL but there
is no memory to allocate the result.
CONTAINER ERROR INCOMPATIBLE The arrays are of different length.
Returns:A pointer to the bitarray or NULL if an error occurs.

CompareScalar

char *(*CompareScalar)(const ValArray *left,

const ElementType right, char *bitarray);

Description: Assigns to each byte of the bitarray the result of comparing the elements
of the left array with the right argument. Conceptually this operation is:

byte[i] = (left[i] < right) ? -1 : (left[i] == right) ? 0 : 1

If the bitarray argument is NULL it will be allocated and returned. The allocator used
is the one from the left argument. If it is not NULL it will be assumed that it contains
at least GetSize(left) positions available.
Errors:
CONTAINER ERROR NOMEMORY . The given byte array argument was NULL but there
is no memory to allocate the result.
Returns:A pointer to the bitarray or NULL if an error occurs.

CompareEqual

Mask *(*CompareEqual)(ValArray *left,ValArray *right,

Mask bitarray);

226 Chapter 5. The containers

Description: Assigns to each element of the mask the result of comparing the corre-
sponding elements of the left and right arrays. Conceptually this operation is:

bit[i] = (left[i] == right[i])

If the bitarray argument is NULL it will be allocated and returned. The allocator used is
the global memory manager. If it is not NULL it should contain at least enough positions
to hold the data.

Errors:

CONTAINER ERROR NOMEMORY . The given byte array argument was NULL but there
is no memory to allocate the result.

CONTAINER ERROR BADARG The given mask hasn’t enough positions available.

CONTAINER ERROR INCOMPATIBLE The arrays are of different length.

Returns:A pointer to the bitarray passed or allocated, or NULL if an error occurs.

CompareEqualScalar

Mask *(*CompareEqual)(ValArray *left,ElementType right,

Mask *bitarray);

Description: Assigns to each bit of the bitarray the result of comparing the elements
of the left array with the right argument. Conceptually this operation is:

bit[i] = (left[i] == right)

If the bitarray argument is NULL it will be allocated and returned. The allocator used
is the one from the left argument. If it is not NULL it will be assumed that it contains
at least

1+GetSize(left)/CHAR_BIT

positions available.

Errors:

CONTAINER ERROR NOMEMORY . The given byte array argument was NULL but there
is no memory to allocate the result.

Returns:A pointer to the bitarray or NULL if an error occurs.

Contains

int (*Contains)(ValArray *a,ElementType data);

Description: Searches the given data in the array. If any slice specifications are active,
only the slice is searched.

Errors:

None

Returns:One if the given data is stored in the array, zero otherwise.

5.13. Value arrays 227

Copy

ValArray *(*Copy)(const ValArray *A);

Description: A copy of the given array is performed. The new memory will be allocated
using the given array’s allocator. If any slice specifications are current, only the elements
of the slice will be copied into the resulting vector, that will have the size of the slice.
Slice specifications are not copied.
Errors:
CONTAINER ERROR NOMEMORY There is not enough memory to complete the opera-
tion.
Returns:The new array.

CopyTo

ElementType *(*CopyTo)(ValArray *AL);

Description: Copies the whole contents of the given array into a table of newly allo-
cated elements. If a slice specification is active only the slice will be returned.
Errors:
CONTAINER ERROR NOMEMORY There is not enough memory to complete the opera-
tion.
Returns:A pointer to a table or NULL if an error occurs.

Create

ValArray *(*Create)(size_t capacity);

Description: Creates an empty array with enough storage to hold capacity elements.
Errors:
CONTAINER ERROR NOMEMORY Not enough storage to complete this operation.
Returns:A pointer to the empty array or NULL if an error occurs.

CreateSequence

ValArray *(*CreateSequence)(size_t size,

ElementType startValue,

ElementType increment);

Description: Creates an array with size elements and fills it with elements of the
ValArray data type starting with the startValue argument, and increasing it by the
value of increment at each step. The increment value can be negative or zero. If it is
zero the array is filled with the same value. This is equivalent to the Fill API15.
Errors:
CONTAINER ERROR NOMEMORY Not enough storage to complete this operation.
Returns:A pointer to the sequence or NULL if an error occurs.

15In C++ the sequence n,0,1 is called iota as in the APL language. This can be obtained with
CreateSequence(n,0,1)

228 Chapter 5. The containers

DivideBy

int (*DivideBy)(ValArray *left,ValArray *right);

Description: Divides each element of the left argument by the corresponding element
of the right argument. Conceptually this operation is: left /= right. If any of the
elements of the right argument is zero, an error occurs and the computation stops,
leaving the left argument with some elements divided and others not16.
Errors:
CONTAINER ERROR INCOMPATIBLE The arrays have a different number of elements.
CONTAINER ERROR DIVIDE BY ZERO The second argument has an element that is zero.
Returns:A positive number for success, or a negative error code.

DivideByScalar

int (*DivideByScalar)(ValArray *left, ElementType right);

Description: Divides each element of the left argument by the right argument. Con-
ceptually this operation is: left /= right. If the right argument is zero an error occurs
and the left argument remains unchanged.
Errors:
CONTAINER ERROR DIVIDE BY ZERO The second argument is zero.
Returns:A positive number for success, or a negative error code.

DivideScalarBy

int (*DivideScalarBy)(ElementType left, ValArray *right);

Description: Divides each element of the left argument by the right argument. Con-
ceptually this operation is: right = left / right. If the left argument is zero an error
occurs and the right argument remains unchanged.
Errors:
CONTAINER ERROR DIVIDE BY ZERO The first argument is zero.
Returns:A positive number for success, or a negative error code.

Equal

int (*Equal)(const ValArray *src1,const ValArray *src2);

Description: Returns 1 if both arrays are equal, zero otherwise. It is legal to compare
an array with NULL . If both arrays are NULL they compare equal. Any slice definitions
in the arrays must be equal. If equal, they restrict the number of elements compared.
Errors:
None.
Returns:True or false depending if the arrays are equal or not.

16Some implementations can provide a debug mode where the left argument is somehow preserved,
or provide a mode that replaces zero by one and continues. In all cases a division by zero should provoke
an error.

5.13. Value arrays 229

Erase

int (*Erase)(ValArray *AL,ElementType data);

Description: Removes from the vector the element that matches the given data.

Errors:

CONTAINER ERROR NOTFOUND No match was found.

Returns:A negative error code if an error occurred, or a positive value that indicates
that a match was found and the element was removed. If the element is not in the
ValArray the result value is CONTAINER ERROR NOTFOUND .

EraseAll

int (*EraseAll)(ValArray *v,const void *data);

Description: Removes from the array all elements that match the given data, that is
assumed to be a pointer to an element.

Returns:A negative error code if an error occurred, or a positive value that indicates
that at least a match was found and the element was removed. If the element is not in
the list the result is CONTAINER ERROR NOTFOUND .

EraseAt

int (*EraseAt)(ValArray *AL,size_t idx);

Description: Removes from the array the element at the given position. If a slice
specification is defined for the array, the index is understood as an index within the slice
and not as an index in the array.

Errors:

CONTAINER ERROR BADARG The given vector pointer is NULL .

CONTAINER ERROR INDEX The given position is out of bounds.

Returns:A negative error code if an error occurred or a positive value that indicates
that the element was removed.

FCompare

char *(*FCompare)(const ValArray *left,

const ValArray *right,

unsigned char *bytearray,

ElementType tolerance);

Description: This function is exactly like the Compare function but designed for com-
paring floating point numbers. Direct comparison of floating point numbers are known
to be problematic. This comparison will be realized within the tolerance defined by the
fourth parameter

230 Chapter 5. The containers

The sample implementation uses the ideas of Donald Knuth 17 as implemeted by
Theodore C. Belding 18 In the documentation of its software, Mr Belding writes:

What is needed is a comparison operator that takes into account a certain
amount of uncertainty:

if (fabs(x - y) <= epsilon) {

/* code to be executed if x == y */

}

if (x - y > epsilon) {

/* code to be executed if x > y */

}

if (x - y < -epsilon) {

/* code to be executed if x < y */

}

In the above code, a neighborhood is defined that extends a distance epsilon
to either side of y on the real number line. If x falls within epsilon of y, x is
declared to be equal to y (the first case, above). If x is greater than y by an
amount that is greater than epsilon, x is declared to be greater than y (the
second case, above). If x is less than y by an amount that is greater than
epsilon, x is declared to be less than y (the third case, above).

The problem then becomes to determine an appropriate value of epsilon.
A fixed value of epsilon would not work for all x and y; epsilon should be
scaled larger or smaller depending on the magnitudes of the numbers to be
compared.

A floating point number is represented by two numbers, the significand
(also called the fraction or mantissa) and the exponent, and a sign, where

0 <= significand < 1

and
number = sign * significand * pow(2, exponent).
Knuth’s suggestion is to scale epsilon by the exponent of the larger of the

two floating point numbers to be compared:
∆ = epsilon×maxExponent
where maxExponent is the exponent of max(x, y). Delta can then be

substituted for epsilon in the code snippets above.

Determining epsilon
17Knuth, Donald E. (1998). The Art of Computer Programming. Volume 2: Seminumerical Algo-

rithms. Third edition. Section 4.2.2, p. 233. Reading, MA: Addison-Wesley. ISBN 0-201-89684-2.
18University of Michigan Center for the Study of Complex Systems
<mailto:Ted.Belding@umich.edu>
http://www-personal.umich.edu/~streak

5.13. Value arrays 231

Now that we have found a way to scale epsilon to work with a wide range
of x and y, we still need to choose an appropriate epsilon, before scaling.

If the number of binary digits of error, e, is known, then epsilon can be
calculated as follows:

epsilon = (pow(2, e) - 1) * FLT_EPSILON (for floats)

epsilon = (pow(2, e) - 1) * DBL_EPSILON (for doubles)

FLT_EPSILON and DBL_EPSILON are equivalent to 1 ulp for single- and double-
precision numbers, respectively; they are defined in the standard C header
file <float.h>. (An ulp is one unit in the last place of the significand, or
fraction part, of a floating point number; see Knuth for more details.)

Errors:
CONTAINER ERROR NOMEMORY . The given byte array argument was NULL but there
is no memory to allocate the result.
Returns:A pointer to the bitarray or NULL if an error occurs.

FillSequential

int (*FillSequential)(ValArray *a,

ElementType start,ElementType increment);

Description: Assigns to all members of the array a sequence that starts at start, and
is incremented by the given amount at each array position. The start and increment
arguments can hold any value without restrictions, unless they go beyond the maximum
value allowed for the given data type
Errors:
No errors.
Returns:A positive number.
Example:

ValARray *myValARray = iValArray.Create(6);

iValArray.FillSequential(myValArray,5,2);

// Now the contents of myValArray are:

5,7,9,11,13,15

Finalize

int (*Finalize)(ValArray *AL);

Description: Reclaims all memory used by the container, including the array header
object itself.
Errors:
None
Returns:A positive value means the operation completed.

232 Chapter 5. The containers

ForEach

int (*ForEach)(ValArray *src,ElementType (*ApplyFn)(ElementType));

Description: Applies the one argument ApplyFn to each element of the array and
stores the result in that element.

Returns:Always 119.

Fprintf

int (*Fprintf)(ValArray *src,FILE *out,const char *fmt);

Description: Prints in the indicated stream each element of the given array using the
indicated format string. If the array is empty nothing is printed and the result is zero.
There is a newline character appended to the output if the array wasn’t empty and no
error occurred.

Errors:

CONTAINER ERROR EOF An output error occurred: impossible to write to the stream.

Returns:The number of characters written to the stream, zero if the array was empty,
or a negative error code.

GetCapacity

size_t (*GetCapacity)(const ValArray *AL);

Description: Returns the number of elements the array can hold before it needs to
reallocate its data.

Errors:

None

Returns:The array capacity.

GetData

ElementType *(*GetData)(const ValArray *AL);

Description: Returns a pointer to the data area of the container, or NULL if an error
occurs.

Errors:

CONTAINER ERROR READONLY The container is read-only.

CONTAINER ERROR BADARG The given pointer is NULL

Returns:The pointer to the array’s data or NULL .

19The rationale for this API is to simplify the Apply function allowing full optimization for the
compiler. This function is used to implement all trigonometric/roots, and hyperbolic functions

5.13. Value arrays 233

GetElement

ElementType (*GetElement)(const ValArray *AL,size_t idx);

Description: Returns the value stored at the element with the given index.
Errors:
CONTAINER ERROR INDEX The given position is out of bounds.
Returns:The element’s value or the minimum value that can be stored in ElementType
if the index is out of bounds.

GetElementSize

size_t (*GetElementSize)(const ValArray *AL);

Description: Returns the size of the elements stored in the ValArray. The argument
is not used and can be NULL .
Errors:
None.

GetRange

ValArray *(*GetRange)(const ValArray *AL,size_t start,size_t end);

Description: Selects a series of consecutive elements starting at position start and
ending at position one less than end. If start > end or start > Size(ValArray), NULL is
returned. If end is bigger than the number of elements in the array, only elements up to
the number of elements will be used.

If a slice is active in the array, the arguments will be understood as indices in the
slice and not in the original array.

The selected elements are copied into a new array. The original array remains un-
changed.
Errors:
None
Returns:: A pointer to a new ValArray containing the selected elements or NULL if an
error occurs.

GetSlice

int (*GetSlice)(ValArray *array,size_t *start, size_t *length,

size_t *increment);

Description: Copies into the given pointers the contents of the current slice specifica-
tions for the given array. If any of the given pointers is NULL nothing is copied into it
and no error is issued. If the array has no slice specification all fields will be set to zero
if not NULL , and the result is zero.
Errors:
No errors

234 Chapter 5. The containers

Returns:Zero if there isn’t any slice specification, a positive number otherwise.
Example:

/* This expression allows you to determine if there

is a slice defined for a given array */

if (iValArray.GetSlice(myValArray,NULL,NULL,NULL)) {

/* The array has a slice defined into it */

}

IndexIn

ValArray *(*IndexIn)(const ValArray *source,ValArraySize_t *indices);

Description: Returns an array built from indexing the first argument (”source”) with
the array of indexes ”indices” that should be an array of size t elements. The number of
elements of the resulting array is equal to the number of elements of the indexes array.
Errors:

CONTAINER ERROR INDEX Any given position is out of bounds.
CONTAINER ERROR NOMEMORY There is not enough memory to complete the opera-
tion.
Returns:A new array or NULL if an error occurs. No partial results are returned. If
any index is out of bounds the whole operation fails.

IndexOf

int (*IndexOf)(const ValArray *l,ElementType data,size_t *result);

Description: Searches for an element in the array. If found its zero based index is
returned in the pointer ”result”. Otherwise the result of the search is CONTAINER -

ERROR NOTFOUND . The ”extraArgs” argument will be passed to the comparison func-
tion, that is used to compare elements.
Errors:

CONTAINER ERROR BADARG The given array pointer or the element given are NULL .
Returns:A positive number if the element is found, or a negative number containing
an error code or the negative constant CONTAINER ERROR NOTFOUND .

InitializeWith

ValArray *(*InitializeWith)(size_t n, ElementType *data);

Description: Creates and initializes a new ValArray with the given data table. The
first argument is the number of items in the table and the second is a pointer to a storage
area that should contain at least the given number of items. The data is copied into the
new array.
Errors:

5.13. Value arrays 235

CONTAINER ERROR NOMEMORY There is not enough memory to complete the opera-
tion.

Returns:A pointer to the new array or NULL if an error occurs.

InsertAt

int (*InsertAt)(ValArray *src,size_t idx,ElementType newData);

Description: Inserts the new element. The new element will have the given index,
that can go from zero to the vector count inclusive, i.e. one more than the number of
elements in the vector.

Errors:

CONTAINER ERROR INDEX The given position is out of bounds.

CONTAINER ERROR NOMEMORY There is not enough memory to complete the opera-
tion.

Returns:A positive value if the operation succeeded, or a negative error code if the
operation failed.

Inverse

int (*Inverse)(ValArray *src);

Description: Computes for each element the inverse (1/element) and stores it in-place.
If a slice definition is active only their elements will be used. If any of the elements is
zero the computation stops and the result is an error code.

This function is defined for the floating point types only20.

Errors:

CONTAINER ERROR DIVISION BY ZERO One of the elements is zero.

Returns:A positive number if successful, a negative error code otherwise.

Max

ElementType (*Max)(const ValArray *src);

Description: Returns the biggest element in the container. If the container is empty
it returns the smallest element that can be stored into the array’s data type21.

Memset

int (*Memset)(ValArray *dst,ElementType data,size_t length);

20For obvious reasons: using integers the inverse can have only a value of one for the integer one,
and zero for all others since we use integer division.

21The smallest element is the identity value for the operation Max since Max(a,smallest) ==> a

for all a

236 Chapter 5. The containers

Description: Assigns to each element of the argument the given data. Conceptually
this operation is: dst = data. If a slice is active in the destination array only the
elements described by the slice are modified. If the given length is bigger than the
number of elements in the array, the array will be expanded to accomodate the new
elements.
Errors:
CONTAINER ERROR NOMEMORY There is not enough ressources to expand the array to
the desired length.
Returns:A positive number for success, a negative error code otherwise.

Min

ElementType (*Min)(const ValArray *src);

Description: Returns the smallest element in the container. If the container is empty
it returns the biggest element that can be stored into the array’s data type22.

Mismatch

int (*Mismatch)(const ValArray *left,const ValArray *a2,

size_t *mismatch);

Description: Returns the index of the first element that is different when comparing
both arrays in the passed pointer mismatch. If one array is shorter than the other
the comparison stops when the last element from the shorter array is compared. The
comparison stops when the first difference is spotted.

If there are slice definitions in one or both arrays, they will be used.
Errors:
None
Returns:If a mismatch is found the result is greater than zero and the mismatch ar-
gument will contain the index of the first element that compared unequal. This will be
always the case for arrays of different length.

If both arrays are the same length and no differences are found the result is zero
and the value pointed to by the mismatch argument is one more than the length of the
arrays.

If an error occurs, a negative error code is returned. The mismatch argument contains
zero.

MultiplyWith

int (*MultiplyWith)(ValArray *left,ValArray *right);

Description: Multiplies each element of the right argument with the corresponding
element of the left argument. Conceptually this operation is: left *= right.

22The biggest element is the identity value for the operation Min since Min(a,biggest) ==> a for
all a

5.13. Value arrays 237

Errors:
CONTAINER ERROR INCOMPATIBLE The arrays have a different number of elements.
Returns:A positive number for success, or a negative error code.

MultiplyWithScalar

int (*MultiplyWithScalar)(ValArray *left, ElementType right);

Description: Multiplies each element of the left argument with the right argument.
Conceptually this operation is: left *= right.
Errors:
None. Some implementations could detect a bad pointer.
Returns:A positive number for success, or a negative error code.

Not

int (*Not)(ValArray *v);

Description: Performs a bitwise Not operation of each element of the argument. Con-
ceptually this operation is: v = ~v. This operation is allowed only between unsigned
integer types. For floating point data this operation has no meaning. If a slice is active,
only its elements will be affected.
Errors:
CONTAINER ERROR INCOMPATIBLE The arrays have a different number of elements.
Returns:A positive number for success, or a negative error code.

Or

int (*Or)(ValArray *left,const ValArray *right);

Description: Performs a bitwise or operation between each element of the right argu-
ment with the corresponding element of the left argument. Conceptually this operation
is: left |= right. This operation is allowed only between unsigned integer types. For
floating point data this operation has no meaning. This operation will only affect the
elements in the active slice, if a slice is active.
Errors:
CONTAINER ERROR INCOMPATIBLE The arrays have a different number of elements.
Returns:A positive number for success, or a negative error code.

OrScalar

int (*Or)(ValArray *left,ElementType right);

Description: Performs a bitwise or operation between each element of the left argu-
ment with the right argument. Conceptually this operation is: left |= right. This
operation is allowed only between unsigned integer types. For floating point data this
operation has no meaning.

238 Chapter 5. The containers

Errors:
CONTAINER ERROR INCOMPATIBLE The arrays have a different number of elements.
Returns:A positive number for success, or a negative error code.

PopBack

int (*PopBack)(ValArray *AL,ElementType *result);

Description: Copies the last element into the given result buffer and deletes the element
from the container. If the result buffer is NULL , no copy is performed. If a slice
specification is active, the element deleted will be the last element of the slice, and
the length of the slice will be reduced by one. If the slice becomes empty, the slice
specifications are reset.
Errors:
None
Returns:A negative value if an error occurs, zero if the array is empty or greater than
zero if the operation succeeded.

Product

ElementType (*Product)(ValArray *src);

Description: Calculates the product of all the elements of the given vector. If a slice
definition is active only the slice elements are considered.
Errors:
None are mandatory but implementations should check for overflow when possible.
Returns:The product of the elements.

Reverse

int (*Reverse)(ValArray *AL);

Description: Reverses the order of the elements of the given array.
Errors:
CONTAINER ERROR NOMEMORY Not enough memory for intermediate storage available
Returns:A negative error code if an error occurs, or a positive value if the operation
succeeded.

ResetSlice

int (*ResetSlice)(ValArray *array);

Description: Eliminates any slices specifications from the given array.
Errors:
None.
Returns:If a slice specification was removed returns 1, if no slice was defined in the
given array returns zero.

5.13. Value arrays 239

RotateLeft

int (*RotateLeft)(ValArray *src,size_t n);

Description: Rotates left the array by the indicated amount. The first n elements will
be written to the end of the array, and the rest will be shifted left to fill the empty n
places.
Errors:
None
Returns:A positive number if something was moved, zero otherwise (the input was zero
or a modulo of the array size).
Example:

#include "containers.h"

int main(void)

{

ValArrayInt * vInt = iValArrayInt.CreateSequence(24,0,1);

printf("Original array: \n");

iValArrayInt.Fprintf(vInt,stdout,"%d ");

printf("Rotating left by 4\n");

iValArrayInt.RotateLeft(vInt,4);

iValArrayInt.Fprintf(vInt,stdout,"%d ");

printf("Rotating left by 48\n");

iValArrayInt.RotateLeft(vInt,48);

iValArrayInt.Fprintf(vInt,stdout,"%d ");

printf("Rotating left by 55\n");

iValArrayInt.RotateLeft(vInt,55);

iValArrayInt.Fprintf(vInt,stdout,"%d ");

iValArrayInt.Finalize(vInt);

}

OUTPUT

Original array:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Rotating left by 4

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3

Rotating left by 48

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3

Rotating left by 55

11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10

240 Chapter 5. The containers

RotateRight

int (*RotateRight)(ValArray *src,size_t n);

Description: Rotates right the array by the indicated amount. The last n elements
will be written to the start of the array, and the rest will be shifted right.
Errors:
None
Returns:A positive number if something was moved, zero otherwise (the input was zero
or a modulo of the array size).

Save

int (*Save)(const ValArray *AL, FILE *out);

Description: The contents of the given ValArray are saved into the given stream. This
function is a simplified version of the Save function in the Vector container since it
doesn’t feature a save function. Since ValArrays hold primitive types they are saved in
a single write into the output stream. The output stream must be opened for writing
and must be in binary mode.
Errors:
EOF A disk input/output error occurred.
Returns:A positive value if the operation completed, a negative value or EOF otherwise.

SetCompareFunction

CompareFunction (*SetCompareFunction)(ValArray *AL,

CompareFunction f);

Description: This function does nothing and returns always NULL . It is retained for
compatibility purposes with other containers.
Errors:
None
Returns:Always NULL .

Select

int (*Select)(ValArray *va,Mask *m);

Description: Using the given mask, the elements where the corresponding mask ele-
ment is zero are eliminated, those with a mask value different of zero are retained. The
mask must have the same length as the array.
Errors:

CONTAINER ERROR INCOMPATIBLE The mask and the array are of different length.
Returns:A positive value for success, or a negative error code otherwise.
Example:

5.13. Value arrays 241

#include "containers.h"

int main(void)

{

Mask *m = iMask.Create(18);

ValArrayInt *va = iValArrayInt.CreateSequence(18,0,1);

size_t i;

for (i=0; i<18; i++) {

iMask.Set(m,i,(i&1) ? 0 : 1);

}

iValArrayInt.Fprintf(va,stdout,"%3d ");

iValArrayInt.Select(va,m);

iValArrayInt.Fprintf(va,stdout,"%3d ");

}

OUTPUT:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 2 4 6 8 10 12 14 16

SelectCopy

ValArray *(*SelectCopy)(ValArray *va,Mask *m);

Description: Using the given mask, the elements where the corresponding mask ele-
ment is different from zero are copied into a new array, those with a mask value different
of zero are ignored. The mask must have the same length as the array.

Errors:

CONTAINER ERROR INCOMPATIBLE The mask and the array are of different length.

Returns:A positive value for success, or a negative error code otherwise.

SetSlice

int (*SetSlice)(ValArray *s,size_t start,

size_t length,size_t increment);

Description: Defines a slice for the given array. The slice starts at the given index,
and has length elements. Between each element and the next there are increment

positions. All operations done with the array will be done to the elements defined by
the slice.

Constraints:

• The start argument can’t be greater or equal than the number of elements in the
array.

• The increment argument must be greater than zero

242 Chapter 5. The containers

• The length argument must be greater than zero. If it is greater than the number
of elements in the array or greater than the number of elements that would fit with
the given increment and start it will be adjusted accordingly.

If any slice specification was defined for the given array it will be replaced by the new
one.
Errors:
CONTAINER ERROR BADARG One of the arguments doesn’t meet the above constraints.
CONTAINER ERROR NOMEMORY . There is no memory to allocate the slice specifications.
Returns:Positive number if successful; negative error code otherwise.

Size

size_t (*Size)(const ValArray *AL);

Description: Returns the total number of elements stored in the array. If there is a
slice definition it will not be used. To know the size of a slice use theGetSlice API.

Sizeof

size_t (*Sizeof)(ValArray *AL);

Description: Returns the total size in bytes of the ValArray, including the header, and
all data stored in it. If the argument is NULL , the size of the header only is returned.
Returns:The number of bytes used by the vector or the size of the ValArray header if
the argument is NULL .

Sort

int (*Sort)(ValArray *AL);

Description: Sorts the given array. The order of the original array is destroyed. You
should copy it if you want to preserve it. If a slice specification is active only the elements
in the slice will be sorted.
Errors:
CONTAINER ERROR NOMEMORY Temporary storage for the operation is absent.
Returns:A positive number if sorting succeeded, a negative error code if not.

SubtractFrom

int (*SubtractFrom)(ValArray *left,const ValArray *right);

Description: Subtracts each element of the right argument from the corresponding
element of the left argument. Conceptually this operation is: left -= right.
Errors:
CONTAINER ERROR INCOMPATIBLE The arrays have a different number of elements.
Returns:A positive number for success, or a negative error code.

5.13. Value arrays 243

SubtractFromScalar

int (*SubtractFromScalar)(ElementType left,ValArray *right);

Description: Subtracts from the left argument the right argument. Conceptually this
operation is: right = left - right.
Errors:
None.
Returns:A positive number for success, or a negative error code.

SubtractScalarFrom

int (*SubtractScalarFrom)(ValArray *left,ElementType right);

Description: Subtracts from the left argument the right argument. Conceptually this
operation is: left -= right.
Errors:
None.
Returns:A positive number for success, or a negative error code.

SumTo

int (*SumTo)(ValArray *left,ValArray *right);

Description: Adds each element of the right argument to the corresponding element
of the left argument. Conceptually this operation is: left += right.
Errors:
CONTAINER ERROR INCOMPATIBLE The arrays have a different number of elements.
Returns:A positive number for success, or a negative error code.

SumToScalar

int (*SumTo)(ValArray *left,ElementType right);

Description: Adds each element of the left argument the right argument. Conceptually
this operation is: left += right.
Errors:
No errors.
Returns:A positive number for success, or a negative error code.

Xor

int (*Xor)(ValArray *left,ValArray *right);

Description: Performs a bitwise Xor operation between each element of the right argu-
ment with the corresponding element of the left argument. Conceptually this operation
is: left ^= right. This operation is allowed only between unsigned integer types. For
floating point data this operation has no meaning.

244 Chapter 5. The containers

Errors:
CONTAINER ERROR INCOMPATIBLE The arrays have a different number of elements.
Returns:A positive number for success, or a negative error code.

XorScalar

int (*XorScalar)(ValArray *left,ElementType right);

Description: Performs a bitwise Xor operation between each element of the left argu-
ment with the right argument. Conceptually this operation is: left ^= right. This
operation is allowed only between unsigned integer types. For floating point data this
operation has no meaning.
Errors:
Returns:A positive number for success, or a negative error code.

5.14. Buffers 245

5.14 Buffers

The buffers interface is greatly simplified compared to the interface of a general container.
The usage of a buffer as an intermediate storage means there is no sense in including all
the functionality of a container. The library provides two types:

1. Stream buffers provide linear storage that grows automatically as needed.

2. Circular buffers store the last n items of a stream

Other languages provide similar features:

• The Java language provides a typed buffer functionality. This buffers are not
resizable, have a cursor and other more sophisticated operations than the buffers
proposed here like slicing and compacting.Their place in the Java class hierarchy
is: Object→ Native I/O→ ByteBuffer. There are methods for viewing the buffer
as float, doubles, etc.

• The C# language provides also a typed buffer class of the primitive types (char,
float, int, etc). It is called System.Buffer and provides a few methods for deter-
mining its length and read/write a single byte. The language itself doesn’t provide
any circular buffers class but several implementations are available in the net. The
same situation applies for Java.

• The C++ STL doesn’t provide circular buffers directly but the boost C++ library
does provide an implementation. See:

http://www.boost.org/doc/libs/1 48 0/libs/circular buffer/doc/circular buffer.html

In the usual simplicity of that language, the class has around 60 entry points,
including specialized templates for some functions. Around 14 auxiliary types are
involved and the documentation for this component goes for around 50 pages.
That is the exact opposite of this proposal.

The design objective in this library is to keep buffers small and, while providing func-
tionality, reduce the interface to a minimum. Compacting is not feasible in C due to
the wide use of pointers. If there is a pointer to the data in the buffer, moving it would
invalidate the pointer making for hard to debug crashes 23.

23Keep in mind that in circular buffers new items can overwrite old items. Do not be surprised if
you keep pointers to data in a circular buffer, that your data changes as you add items into it

246 Chapter 5. The containers

5.14.1 Stream buffers

These objects are designed to store sequentially arbitrary data, resizing themselves
as necessary. There is a cursor, a pointer that indicates where the next data item will
be written. You can move the cursor, overwriting old data, or leaving holes in the buffer
structure 24 .

The interface

typedef struct tagStreamBufferInterface {

int (*Clear)(StreamBuffer *b);

StreamBuffer *(*Create)(size_t startsize);

StreamBuffer *(*CreateFromFile)(const char *FileName);

StreamBuffer *(*CreateWithAllocator)(size_t startsize,

int (*Finalize)(StreamBuffer *b);

char *(*GetData)(const StreamBuffer *b);

size_t (*GetPosition)(const StreamBuffer *b);

size_t (*Read)(StreamBuffer *b, void *data, size_t siz);

24Buffers exist in many languages. The C++ STL doesn’t explicitely provide them, but other STL
extensions do, like the one proposed by Matthew Wilson. In that implementation, buffers store only
objects of a single type. In contrast to that this library proposes no typed buffers: each buffer can store
objects of any type without any limitations, the buffer doesn’t care about the type of its objects.

5.14. Buffers 247

int (*ReadFromFile)(StreamBuffer *b,FILE *f);

int (*Resize)(StreamBuffer *b,size_t newSize);

int (*SetPosition)(StreamBuffer *b,size_t pos);

size_t (*Size)(const StreamBuffer *b);

size_t (*Write)(StreamBuffer *b,void *data, size_t siz);

int (*WriteToFile)(StreamBuffer *b,FILE *f);

} StreamBufferInterface;

The API

Noteworthy are the two functions that work with with buffers and files: ReadFromFile

and WriteToFile. The allow you to work with a buffer when the file can’t be read in
one buffer, allowing piecewise processing of portions of the file.

The function CreateFromFile allows you to read all the file contents into a buffer.

Clear

int (*Clear)(StreamBuffer *b);

Description: Sets the cursor at position zero and zeroes the whole buffer.
Errors:
CONTAINER ERROR BADARG The given buffer pointer is NULL

Returns:A positive value if successful, a negative error code otherwise.

Create

StreamBuffer *(*Create)(size_t startsize);

Description: Creates a new buffer with the given start size. If the size is zero it will
use a default start value. The allocator used is the current memory manager.
Errors:
CONTAINER ERROR NOMEMORY . There is no more memory to create the buffer.
Returns:A pointer to a newly created buffer or NULL if there is no more memory left.

CreateFromFile

StreamBuffer *(*CreateFromFile)(const char *FileName);

Description: Creates a new buffer with the contents of the given file. The allocator
used is the current memory manager. The file is read in binary mode.
Errors:
CONTAINER ERROR NOMEMORY . There is no more memory to create the buffer.
CONTAINER ERROR NOENT The file given can’t be found (or it exists but the current
user has no read permission).
Returns:A pointer to a newly created buffer or NULL if there is no more memory left
or the file can’t be opened.

248 Chapter 5. The containers

CreateWithAllocator

StreamBuffer *(*CreateWithAllocator)(size_t startsize,

ContainerAllocator *allocator);

Description: Creates a new buffer using the given allocator and start size. If the start
size is zero a default value is used.
Errors:
CONTAINER ERROR NOMEMORY There is no more memory to complete the operation.
Returns:A pointer to the new buffer or NULL if there is no memory left.

Finalize

int (*Finalize)(StreamBuffer *b);

Description: Releases all memory used by the buffer.
Errors:
CONTAINER ERROR BADARG The given buffer pointer is NULL .
Returns:A positive value if successful or anegative error code.

GetData

const char *(*GetData)(const StreamBuffer *b);

Description: Returns a pointer to the data stored in the buffer. The data is read-only
(const).
Errors:
CONTAINER ERROR BADARG The given buffer pointer is NULL

Invariants: The given buffer is not modified. The returned pointer should not be
modified.
Returns:A pointer to the buffer’s data or NULL, if an error occurs.

GetPosition

size_t (*GetPosition)(const StreamBuffer *b);

Description: Returns the current cursor position.
Errors:
CONTAINER ERROR BADARG The stream buffer pointer is NULL

Invariants: The stream buffer is not modified.
Returns:The cursor position or zero if there is an error. Note that zero is also a valid
cursor position.25

25Here, as in other APIs from the buffer interface it was preferred to have a friendly interface than
to cater for errors. In case of a zero return, you should test for a NULL pointer, but it is even better
to test for it before calling this function.

5.14. Buffers 249

Read

size_t (*Read)(StreamBuffer *b, void *data, size_t siz);

Description: Reads siz bytes from the given buffer, starting from the position of the
cursor. If the buffer finishes before siz characters are read, reading stops, and less
characters than requested are returned. It is assumed that the data buffer contains at
least siz characters.
Errors:
CONTAINER ERROR BADARG Either the stream buffer, the data buffer are NULL .
Invariants: None. The given buffer is modified since the cursor is updated to the new
position. The given buffer is modified since the data is copied into it.
Returns:The number of characters copied or zero if there is an error. Note that if the
number of requested characters is zero, this function will also return zero.

ReadFromFile

int (*ReadFromFile)(StreamBuffer *b,FILE *f);

Description: Fills the given buffer with data from the given file. The cursor is reset to
position zero.
Errors:
CONTAINER ERROR BADARG The stream buffer pointer is NULL

Returns:The number of bytes read or a negative error code.

Resize

int (*Resize)(StreamBuffer *b,size_t newSize);

Description: Resizes the buffer to the requested size. The new size can be bigger or
smaller than the current size. All pointers to the data in the buffer are invalid after this
operation.
Errors:
CONTAINER ERROR BADARG The stream buffer pointer is NULL .
CONTAINER ERROR NOMEMORY There is not enough memory to satisfy the request.
Returns:A negative error code if an error occurs, zero if the requested size is equal to
the current size, or a positive number if the request was satisfied.

SetPosition

int (*SetPosition)(StreamBuffer *b, size_t pos);

Description: Sets the cursor at the given position. If the position is bigger than the
size of the buffer the cursor is moved to the end of the buffer.
Errors:
CONTAINER ERROR BADARG The given buffer pointer is NULL

Returns:A positive value if successful, a negative error code otherwise.

250 Chapter 5. The containers

Size

size_t (*Size)(const StreamBuffer *b);

Description: Returns the allocated size of the buffer. If the buffer pointer is NULL

returns the size of the buffer header.
Errors:
None
Invariants: The given buffer is not modified.
Returns:The size of the buffer.

Write

size_t (*Write)(StreamBuffer *b,void *data, size_t siz);

Description: Writes into the buffer siz characters from the passed pointer data. The
characters are written starting at the cursor position. If the buffer is too small to hold
the data, it will be enlarged using its allocator.
Errors:
CONTAINER ERROR NOMEMORY . There is no more memory to enlarge the buffer.
CONTAINER ERROR BADARG The stream buffer pointer or the data pointer is NULL .
Returns:The number of characters written.
Example:

#include <containers.h>

int main(void)

{

StreamBuffer *sb = iStreamBuffer.Create(10);

int i;

char buf[20],*p;

for (i=0; i<10; i++) {

sprintf(buf,"item %d",i+1);

iStreamBuffer.Write(sb,buf,1+strlen(buf));

}

buf[0]=0;

iStreamBuffer.Write(sb,&buf,1);

printf("Buffer size is: %d, position is %d\n",

(int)iStreamBuffer.Size(sb),

(int) iStreamBuffer.GetPosition(sb));

iStreamBuffer.SetPosition(sb,0);

p = iStreamBuffer.GetData(sb);

while (*p) {

printf("%s\n",p);

p += 1 + strlen(p);

}

5.14. Buffers 251

iStreamBuffer.Finalize(sb);

return 1;

}

OUTPUT:

Buffer size is: 82, position is 72

item 1

item 2

item 3

item 4

item 5

item 6

item 7

item 8

item 9

item 10

This example does the following:

• Creates a stream buffer. It assumes success and does not test the return value
of the creation function. The buffer is dimensioned too small for the data it will
contain so it has to resize several times.

• Prepares a string buffer with sprintf and writes the resulting string including its
terminating zero in the stream buffer. Note that zeroes have no special significance
in buffers. It loops ten times doing this operation.

• It ends the buffer with a terminating double zero.

• It prints the buffer size and the number of characters it has written. Note that
they are not the same. The buffer has been resized several times, and at each time
the new capacity is determined by an internal algorithm. Since we did not move
the cursor the position of the cursor give us the number of characters written.

• It obtains a pointer to the data in the buffer

• It prints all the strings in the buffer to standard output. Each character string
from 1 to 9 is 7 bytes long, including its terminating zero. The tenth string is 9
bytes, also including the terminating zero. We have then: (7*9)+9 = 72.

• It destroys the buffer.

WriteToFile

int (*WriteToFile)(StreamBuffer *b,FILE *outfile);

252 Chapter 5. The containers

Description: Writes all the contents of the given buffer to the given file. The cursor is
reset to the begin of the buffer.
Errors:

CONTAINER ERROR BADARG The stream buffer pointer or the file pointer isNULL re-
turns The number of bytes written.

5.14.2 Circular buffers

This objects are designed to store the last n items of a stream. When they are full,
the new items are stored in the same place as the oldest item 26.

The interface: iCircularBuffer

typedef struct tagCircularBufferInterface {

int (*Add)(CircularBuffer * b, const void *data_element);

int (*Clear)(CircularBuffer *cb);

CircularBuffer *(*CreateWithAllocator)(size_t sizElement,

size_t sizeBuffer,

const ContainerAllocator *allocator);

CircularBuffer *(*Create)(size_t sizElement,size_t sizeBuffer);

int (*Finalize)(CircularBuffer *cb);

int (*PopFront)(CircularBuffer *b,void *result);

int (*PeekFront)(CircularBuffer *b,void *result);

size_t (*Size)(const CircularBuffer *cb);

DestructorFunction SetDestructor(CircularBuffer *cb,

DestructorFunction NewFn);

} CircularBufferInterface;

26The sample implementation allocates all the memory necessary for the container when creating it.
This means that all n × ElementSize are allocated, copying the elements into it as they are added.
This simplifies the management of circular buffers but is wasteful when the buffer is half empty.

5.14. Buffers 253

The API

Add

int (*Add)(CircularBuffer * b, const void *data_element);

Description: Adds the given data element to the circular buffer. If the buffer is full, the
oldest element’s place will be overwritten with the new data and the container remains
full with the same number of elements.
Errors:
CONTAINER ERROR BADARG One or both arguments are NULL .
Invariants: The given data element is not modified but copied into the container.
Returns:A negative error code if an error occurs. If the container is full zero is returned.
If a new element was added a positive number is returned.

Clear

int (*Clear)(CircularBuffer *cb);

Description: Resets the number of elements inside the container to empty without
freeeing the memory used by the buffer.
Errors:
CONTAINER ERROR BADARG The buffer pointer b is NULL .
Returns:A negative error code if an error occurs, or a positive number when the con-
tainer is reset.

CreateWithAllocator

CircularBuffer *(*CreateWithAllocator)(size_t ElementSize,

size_t sizeBuffer, ContainerAllocator *allocator);

Description: Creates an empty circular buffer that can hold at most sizeBuffer
elements, each element being of size ElementSize. Uses the given allocator to allocate
memory.
Errors:
CONTAINER ERROR BADARG One or both sizes are zero, or the allocator pointer is
NULL .
CONTAINER ERROR NOMEM There is no memory left.
Returns:A pointer to a new circular buffer or NULL if an error occurs.

Create

CircularBuffer *(*Create)(size_t ElementSize, size_t sizeBuffer);

Description: Creates an empty circular buffer that can hold at most sizeBuffer
elements, each element being of size ElementSize. Uses the CurrentAllocator to allocate
memory.

254 Chapter 5. The containers

Errors:
CONTAINER ERROR BADARG One or both arguments are zero.
CONTAINER ERROR NOMEM There is no memory left.
Returns:A pointer to a new circular buffer or NULL if an error occurs.

Finalize

int (*Finalize)(CircularBuffer *cb);

Description: Reclaims all memory used by the given buffer.
Errors:
CONTAINER ERROR BADARG The buffer pointer is NULL .
Returns:A positive value if the container is destroyed, a negative error code otherwise.

PeekFront

int (*PeekFront)(CircularBuffer *b,void *result);

Description: Copies one item from the front of the circular buffer into the given buffer
without removing the item from the container.
Errors:
CONTAINER ERROR BADARG The buffer pointer or the result buffer are NULL .
Returns:A negative error code if an error occurs, zero if the buffer was empty, or a
positive number if an item was copied.

PopFront

int (*PopFront)(CircularBuffer *b,void *result);

Description: Copies one item from the front of the circular buffer into the given buffer
and removes the item from the container. If the result pointer is NULL the item is
removed but nothing is copied.
Errors:
CONTAINER ERROR BADARG The buffer pointer is NULL .
Returns:A negative error code if an error occurs, zero if the buffer was empty, or a
positive number if an item was removed.
Example:

#include <containers.h>

int main(void)

{

CircularBuffer *cb = iCircularBuffer.Create(sizeof(int),10);

int i,integer;

for (i=0; i<20;i++) {

iCircularBuffer.Add(cb,&i);

}

5.14. Buffers 255

printf("There are %d elements\n",iCircularBuffer.Size(cb));

printf("The container uses %d bytes\n",iCircularBuffer.Sizeof(cb));

printf("The size of the header is %d\n",

iCircularBuffer.Sizeof(NULL));

/* Print all elements */

while (iCircularBuffer.PopFront(cb,&integer) > 0) {

printf("%d ",integer);

}

return 0;

}

OUTPUT:

There are 10 elements

The container uses 88 bytes

The size of the header is 48

10 11 12 13 14 15 16 17 18 19

Size

size_t (*Size)(const CircularBuffer *cb);

Description: Computes the number of items in the given circular buffer.
Errors:
CONTAINER ERROR BADARG The buffer pointer is NULL .
Invariants: The given buffer is not modified.
Returns:The number of items in the buffer.

Sizeof

size_t (*Sizeof)(const CircularBuffer *cb);

Description: Computes the number of bytes used by given circular buffer. If the
pointer is NULL returns the size of the circular buffer header structure.
Invariants: the given buffer is not modified.
Returns:The number of bytes used by the buffer.

256 Chapter 5. The containers

5.15 The generic interfaces

This interface allows the user to use containers in a generic way, ignoring its specific
type. Note that there is no ”GenericContainer” object; you can’t create any generic
container. Once a specific container is created, it can be used as a generic container
at any time since all containers comply with the generic interface. This interface just
dispatches internally to the actual container and therefore incurs in a slight performance
cost. 27

Conceptually, the generic interfaces represent a base class (GenericContainer) and
two derived classes: Sequential and Associative containers. It would be possible to derive
more classes, for instance a numeric container class that could be implemented in the
future, This is left open for future releases of this specification. 28

5.15.1 Generic containers

The general generic interface that encloses associative and sequential containers is as
follows:

typedef struct GenericContainer GenericContainer;

typedef struct tagGenericContainerInterface {

size_t (*Size)(const GenericContainer *Gen);

unsigned (*GetFlags)(GenericContainer *Gen);

unsigned (*SetFlags)(GenericContainer *Gen,unsigned flags);

int (*Clear)(GenericContainer *Gen);

int (*Contains)(GenericContainer *Gen,void *Value);

int (*Erase)(GenericContainer *Gen,void *objectToDelete);

int (*Finalize)(GenericContainer *Gen);

void (*Apply)(GenericContainer *Gen,

int (*Applyfn)(void *,void * arg),

void *arg);

int (*Equal)(GenericContainer *Gen1,GenericContainer *Gen2);

GenericContainer *(*Copy)(GenericContainer *Gen);

ErrorFunction (*SetErrorFunction)(GenericContainer *Gen,

ErrorFunction fn);

size_t (*Sizeof)(GenericContainer *Gen);

27The Objective-C language has a similar constructs with its ”Protocols”. Several classes can share a
common interface without any inheritance between them. Obviously in C there is no compiler support
for this kind of programming, what forces your implementation to be careful about the order of the
function pointers within all objects. A change in the order of those function pointers makes the object
incompatible with the protocol specifications, and this can’t be checked by the compiler. All of this can
be avoided, of course, if you just use the protocols designed and implemented by someone else.

28Two special cases of specialized arrays have been presented: an array of strings and an array of
bits. Many other arrays are possible and surely necessary for numeric work, and they could be used as
basis for vector extensions with hardware support. Another subject not mentioned in this specification
is multi-dimensional arrays.

5.15. The generic interfaces 257

Iterator *(*NewIterator)(GenericContainer *Gen);

int (*deleteIterator)(Iterator *);

int (*Save)(GenericContainer *Gen,FILE *stream,

SaveFunction saveFn,void *arg);

GenericContainer *(*Load)(FILE *stream,

ReadFunction readFn,void *arg);

size_t GetElementSize(GenericContainer *Gen);

} GenericContainerInterface;

extern GenericContainerInterface iGenericContainer;

This functions return the obvious results already described in the documentation of their
container-specific counterparts and not repeated here. We only note the absence of a
creation function, or any means to add an object. 29

Based on the generic interface, we have generic sequential and associative interfaces.
They contain generic functions for adding and removing objects.

5.15.2 Sequential containers

These containers include all the functions of the GenericContainer interface, adding
functions to use any sequential container as a stack, and functions for managing object
replacement or addition.

typedef struct SequentialContainer SequentialContainer;

typedef struct tagSequentialContainerInterface {

GenericContainerInterface Generic;

int (*Add)(SequentialContainer *SC,void *Element);

void *(*GetElement)(SequentialContainer *SC,size_t idx);

int (*Push)(SequentialContainer *Gen,void *Element);

int (*Pop)(SequentialContainer *Gen,void *result);

int (*InsertAt)(SequentialContainer *SC,size_t idx, void *newval);

int (*EraseAt)(SequentialContainer *SC,size_t idx);

int (*ReplaceAt)(SequentialContainer *SC,

size_t idx, void *element);

int (*IndexOf)(SequentialContainer *SC,

void *ElementToFind,size_t *result);

int (*Append)(SequentialContainer *SC1,SequentialContainer *SC2);

} SequentialContainerInterface;

extern SequentialContainerInterface iSequentialContainer;

29The ”Erase” function has been added to the generic interface because it has the same interface
both in associative and sequential containers.The ”Add” function was left out because in associative
containers you need a key argument to add data. This could have been fixed by defining a structure
with two fields that would be passed as a single argument, but that would make things more complex
than they need to be

258 Chapter 5. The containers

5.15.3 Associative containers

These containers include all the functions of the GenericContainer interfaces and add
functions for inserting and removing objects.

typedef struct AssociativeContainer AssociativeContainer;

typedef struct tagAssociativeContainerInterface {

GenericContainerInterface Generic;

int (*Add)(SequentialContainer *SC,void *key,void *Element);

void *(*GetElement)(AssociativeContainer *SC,void *Key);

int (*Replace)(AssociativeContainer *SC, void *Key, void *element);

} AssociativeContainerInterface;

extern AssociativeContainerInterface iAssociativeContainer;

6 Enhancing the library

No design can ever cover all special cases that can arise during development. The advan-
tage of the interface design is that you can enhance the library by subclassing functions
that add functionality you need when absent. Subclassing means in this context that
you replace a function of the library with a new function written by you that either
replaces completely the functionality of the library or that either before or after the
library function adds some code that implements an enhancement.

There are several ways to enhance the library in this way:

1. Replace the function in the container interface object. This affects all containers
of this type, including those that are already created. This involves simply assign-
ing to the function you want to replace a new function pointer that points to a
compatible function. You can save the old value and add some functionality, call
the old function pointer to do what the library does, then you can add code that
runs after the old library function has finished.

2. Replace the function in a copy of the functions table of a single object. This way is
less intrusive than the former, since only one container is affected: the one where
you modify the function table. The downside is that instead of using the simple
syntax:

iList.Add

you have to use the container’s table:

Container->VTable->Add(...)

This represents quite a different syntax, but this can be less of a problem if you
hide it under some convenient macros 1.

On the up side, another advantage of this syntax is that you do not need to change
your source code if you change the type of the container. If you write:

myContainer->Vtable->Add(myContainer,object);

this will stay the same for lists, arrays, string collections or whatever sequential
container you are using. You can then change completely the type of the container
just by changing the declaration.

1For instance you can use iList Add for iList.Add, or similar conventions. The specifications of
the library do not define those macros to avoid invasion of the user’s name space

259

260 Chapter 6. Enhancing the library

6.1 Adding conversions between containers

Converting one type of container into another, or creating a new container with some or
all the data of an existing one are routine operations not specified in the core library.

The reason is that there is a downside to the interface definitions as presented here:
all functions within an interface module are declared static to avoid polluting the user
name space with those names. This has the consequence that interfaces are a monolithic
piece of code that can’t be splitted.

Converting an object from type ”A” to another of type ”B” implies then that we
have both interfaces present. If for every container we would define a conversion into
all others, the function table of each container would need all other interfaces and if a
user uses just a single container it would need to link with the whole library. To avoid
this problem, no conversions are specified even when surely converting a ValArrayInt
into a ValArrayDouble is an operation that will be needed sooner or later.

There are many solutions to this problem using the existing APIs:

1. Using a simple loop:

ValArrayDouble *CastToDouble(ValArrayInt *src)

{

size_t siz = iValArrayInt.Size(src);

ValArrayDouble *result = iValArrayDouble.Create(siz);

size_t i;

for (i=0; i<siz;i++) {

double d = iValArrayInt.GetElement(src,i);

int r = iValArrayDouble.Add(result,d);

if (r < 0)

break;

}

return result;

}

This function stops at an error returning a partial result. Other error handling
strategies could be to finalize the incomplete container and return NULL , or call
the iError interface and then do a long jump to a recovery point, etc.

2. Using iterators:

ValArrayDouble *CastToDouble(ValArrayInt *src)

{

size_t siz = iValArrayInt.Size(src);

ValArrayDouble *result = iValArrayDouble.Create(siz);

Iterator *it = iValArrayInt.NewIterator(src);

int *ip;

6.2. Infinite arrays 261

for (ip = it->GetFirst(src); ip;ip = it->GetNext(it)) {

int r = iValArrayDouble.Add(result,*ip);

if (r < 0)

break;

}

iValArrayInt.DeleteIterator(it);

return result;

}

3. Using the Apply API. There are surely more complex requirements for conversions.
For instance we could need to extract only certain parts of the input container. In
that case writing a special function to be called by Apply is justified. For instance
if we have an array of structures representing customers we could want to make a
string collection with the names of all of them.

// We want to extract the second field of this structure

struct customer {

long long NumericID;

char *Name;

long double Balance;

};

int ApplyFn(void *data,void *container)

{

struct customer *pData = (struct customer *)data;

strCollection *Collection = (strCollection *)container;

return istrCollection.Add(Collection,pData->Name);

}

strCollection *GetAllNames(Vector *CustomerDB)

{

size_t siz = iVector.Size(CustomerDB);

strCollection *result = istrCollection.Create(siz);

iVector.Apply(CustomerDB,ApplyFn,result);

return result;

}

6.2 Infinite arrays

We can conceptually define an array as a function that maps an input value index into
some output that is the value of the array at that position.

262 Chapter 6. Enhancing the library

In this context, an infinite array is a function that maps any member from the set of
positive natural numbers (a size_t) into some resulting value. This function must have
a value for all possible input values of its size_t argument. For instance the function
value = (index + 5)/(index− 5) is not usable since it would provoke a division by zero
at index = 5.

Infinite arrays exist in many computer languages.

• In APL they were proposed by McDonnel and Shallit in their paper ”Extending
APL to Infinity” 2.

• Common lisp has the ”Series” construct that is similar to infinite arrays.

• The Translucid computer language features each variable as an infinite array of all
its values 3

Since in the C language arrays must contain elements of the same type, obvious
restrictions apply: all C types have specific bounds (defined in the appropiate headers) so
that a conceptually correct function like the Fibonacci function for instance, is not usable
beyond a certain value of the input index because of output overflow: the Fibonacci
numbers grow without limit.

To implement an infinite array using the library is relatively easy. The iVector

interface has the necessary hooks for doing this. When an index error occurs, the library
calls the error function of the given vector passing it the name of the function, the integer
constant CONTAINER_ERROR_INDEX and a pointerto the array and the requested index.
If the error function returns any other value than NULL , the Library will assume that
it is a valid pointer to some result where the real value of the array at that position is
stored.

Using this information we can write this first simple implementation of an infinite
array. The array function will be the identity function i.e. the array will contain the
value of the index at each position.

1 #include <stdarg.h>

2 #include <stdlib.h>

3 #include "containers.h"

4 static ErrorFunction oldErrorFn;

5

6 static void *Fn(const char *msg,int errorCode,...)

7 {

8 va_list ap;

9 size_t idx;

10 static int value;

11 Vector *v;

12 if (errorCode != CONTAINER_ERROR_INDEX)

13 return oldErrorFn(msg,errorCode);

2http://www.jsoftware.com/papers/eem/infinity.htm
3http://cartesianprogramming.com/2012/05/22/programming-with-infinite-arrays-factorial/

6.2. Infinite arrays 263

14 va_start(ap,errorCode);

15 v = va_arg(ap,Vector *);

16 idx = va_arg(ap,size_t);

17 value = idx;

18 va_end(ap);

19 return &value;

20 }

21

22 Vector *CreateInfiniteArray(void)

23 {

24 VectorInterface *ivct;

25 Vector *result = iVector.Create(sizeof(int),1);

26 if (result == NULL) return result;

27 oldErrorFn = iVector.SetErrorFunction(result, Fn);

28 return result;

29 }

30

31 int main(void)

32 {

33 Vector *v = CreateInfiniteArray();

34 int i;

35

36 for (i=20; i<30;i++) {

37 printf("%d ",*(int *)iVector.GetElement(v,i));

38 }

39 printf("\n");

40 iVector.Finalize(v);

41 }

42

The central piece of the implementation is the Fn function (lines 6 to 20) that will be
our replacement of the default vector error function. This function will only return
something if the error is an error index (line 12). Otherwise it calls the default function
stored in a static pointer.

If the error is the expected index error, we fetch the arguments (lines 15 and 16) and
we set the value. The address of the static area is returned.

We have to write a special creation function (lines 22 to 29) that creates a vector
and replaces its error function with our own, saving the old value in a global variable.
This value will be used if the error is not an index error.

We can now write our test program that returns 10 integers from our array. Its
output is

20 21 22 23 24 25 26 27 28 29

Note that our ”infinite” array is still a perfectly valid vector object and if you use it
in a ”normal” way it will store the data you give it and return that data when you index

264 Chapter 6. Enhancing the library

it as any array. What it is shown in the example above is just how we can change the
return value of the functions when an index error is detected by the library. All other
uses are untouched and the vector will still behave as a normal vector.

Note also that if the error is something different than the error the software wants
to modify the old procedure is called. This means that this type of changes can be built
in a cascade, each one handling only a definite type of error.

We have used here the generic interface using void pointers. Obviously we could use
an integer vector instead of the generic one. To do that it would be necessary to change
all lines that contain Vector into intVector and then call the iintVector.Create

function instead of the plain iVector.Create.

6.2.1 Zero extensible arrays

To make a zero extensible array (used in signal processing) you would just change the
line 17 above and instead of writing

value = idx;

you would write:
value = 0;

This type of array would return always zero for any index outside the limits of the
array.

6.2.2 Arrays extensible by insert

Within the error procedure it is possible to call any function of the library. For instance,
we can detect that the index error is the result of the ”InsertAt” API, and decide to
enlarge the array automatically. To do this we should return a non NULL value from
within our error procedure.

As you can see, that is already the case! That is why the next section is called:

6.2.3 Pitfalls

When you change the default procedure you must be careful to ensure that the only
situations where you modify the library’s behavior are the ones you want to modify.

7 Applications

7.1 Unique

The main point in using the C containers library is the increase in program abstraction.
In this example we will see how the library can be used to solve in a few lines a classroom
problem.

Task description

Given a text file, print in standard output the lines that are unique in it, i.e. filtering
all duplicated lines.

Algorithm

Normally this involves keeping a sorted list/array of lines and testing if a line is in the
set or not.

Solution using the CCL

1 #include <containers.h>

2 int main(int argc,char *argv[])

3 {

4 FILE *f;

5 int i=1,r;

6 Dictionary *dict;

7 char buf[8192];

8 if (argc < 2) {

9 fprintf(stderr,"%s <file name>\n",argv[0]);

10 return -1;

11 }

12 f = fopen(argv[1],"r");

13 if (f == NULL)

14 return -1;

15 dict = iDictionary.Create(0,500);

16 if (dict == NULL)

17 return -1;

265

266 Chapter 7. Applications

18 while (fgets(buf,sizeof(buf),f)) {

19 r= iDictionary.Add(dict,buf,NULL);

20 if (r > 0)

21 printf("[%3d] %s",i,buf);

22 else if (r < 0) break;

23 i++;

24 }

25 iDictionary.Finalize(dict);

26 fclose(f);

27 }

Algorithm

A hash table will be used to determine if a line is a duplicate or not.

Commentary

We use the following local variables (lines 4-7):
Name Usage
f Input stream bound to the file to read
i Counter for lines read
r Result of adding a line
dict Dictionary (Hash table)
buf Line buffer limited to 8K per line

Lines 9-15 are concerned with opening the input file, with some error checking.
In line 16 we create a dictionary, requesting a size of zero for the data associated with

the key since we aren’t storing any data, just the key, and we suppose that the table
will contain more or less 500 entries. If the file contains much more lines performance
could suffer but the algorithm would still work.

Lines 19-25 are the main loop of the program. We read each line into the buffer and
add it to then dictionary. If the ”Add” API returns a positive number the line wasn’t
there, if it returns zero the line was already in the dictionary. If the result is negative it
is an error code and we stop the loop aborting the operation. Failure can be provoked
only by lack of memory.

If the result is positive we print the line.
Cleanup is performed in lines 26 and 27: we dispose of the dictionary and close the

file.

7.2 Paste

Task description

Given two text files, print each line of them in the same line separated by a tab character.
If files have a different number of lines stop when the first file is exhausted.

7.2. Paste 267

Note that this specifications may be different from the Unix utility of the same name.

Solution

1 #include "containers.h"

2 int main(int argc,char *argv[])

3 {

4 FILE *f1,*f2;

5 char *line1,*line2;

6 strCollection *file1,*file2;

7 Iterator *it1,*it2;

8

9 if (argc < 3) {

10 fprintf(stderr,"%s: file1 file2\n",argv[0]);

11 return -1;

12 }

13 file1 = istrCollection.CreateFromFile(argv[1]);

14 file2 = istrCollection.CreateFromFile(argv[2]);

15 if (file1 != NULL && file2 != NULL) {

16 it1 = istrCollection.NewIterator(file1);

17 it2 = istrCollection.NewIterator(file2);

18 line2 = it2->GetFirst(it2); line1 = it1->GetFirst(it1);

19 for (; line1; line1 = it1->GetNext(it1)) {

20 if (line2) {

21 printf("%s\t%s\n",line1,line2);

22 line2 = it2->GetNext(it2);

23 }

24 else printf("%s\n",line1);

25 }

26 istrCollection.deleteIterator(it1);

27 istrCollection.deleteIterator(it2);

28 }

29 istrCollection.Finalize(file1);

30 istrCollection.Finalize(file2);

31 return 0;

32 }

Commentary

We create two string collections containing the text (lines 13-14). Two iterators are
used to get each line of both files(lines 16 17). The rest is just cleanup: we delete the
iterators (lines 26-27) and finalize the string collections (lines 29 30).

This solution using the library is shorter and easier to write than a solution reading
each line with fgets() but needs enough memory to hold both files in memory at the

268 Chapter 7. Applications

same time.

7.3 Mapcar

The lisp function ”mapcar” produces a map by applying a given function to each element
of a list.

(mapcar #’abs ’(3 -4 2 -5 -6)) => (3 4 2 5 6)

We can reproduce this function by using ”Apply”. In the extra argument we pass a
structure of two members:

• A function to call (in the above example it would be a function to calculate the
absolute value)

• A list container where the result would be stored

Our function receives then (as all functions called by Apply) two arguments, the element
and a pointer to our structure. Here is a sketch of how could it be done:

#include <containers.h>

struct MapcarArgs {

void *(*fn)(void *);

List *Result;

};

We keep some generality by using a general prototype and definition for the function we
are using. We could have defined the callback as:

int (*fn)(int *);

That prototype would have been unusable for lists that use doubles, for instance. With
the current definition we can use this ”MapcarArgs” structure with any other list.

The actual function we are calling encapsulates all knowledge about the data stored
in the list and the operation we perform with that data. The other parts of the software
do not need to know anything about it. It returns a static pointer to the result of the
operation it performs using the given element as data that will be overwritten at each
call. The intended usage is to save that result before making the next call. It can be
defined as follows:

void *DoAbsValue(void *element)

{

static int result = *(int *)element;

if (result < 0)

result = -result;

return &result;

}

7.3. Mapcar 269

/* This function will be directly called by "Apply". */

static int Applyfn(void *element, struct MapcarArgs *args)

{

void *result = args->fn(element);

int r = iList.Add(args->Result,result);

return r;

}

List *mapcar(List *li,void *(*fn)(void *))

{

struct MapcarArgs args;

args.fn = fn;

args.Result = iList.Create(iList.GetElementSize(li));

if (args.Result == NULL)

return NULL;

iList.Apply(li,Applyfn,(void *)&args);

return args.Result;

}

int main(void)

{

List *li = iList.Create(sizeof(int));

List *newList;

int i;

int tab[] = {3,-4,2,-5,6};

for (i=0; i<5;i++) {

iList.Add(li,&tab[i]);

}

newList = mapcar(li,DoAbsValue);

}

Still, our version of mapcar is still specific to lists. A more general version would use
a sequential container to make a mapcar function that would be able to work with any
type of sequential container.

The basic idea is to provide an empty container of the desired result type as an extra
argument to mapcar. We use an iterator instead of ”Apply”, obtaining a single compact
function that will take any sequential container as input an add the result of the function
to any type of sequential container.

int mapcar(SequentialContainer *src, /* The source container */

void *(*fn)(void *),/* Function to call with each element */

SequentialContainer *result) /* The resulting container */

{

Iterator *it = iSequentialContainer.NewIterator(src);

270 Chapter 7. Applications

int r=1;

void *obj;

if (it == NULL)

return CONTAINER_ERROR_NOMEMORY;

for (obj = it->GetFirst(it);

obj != NULL;

obj = it->GetNext(it)) {

void *tmp = fn(obj);

int r = iSequentialContainer.Add(result,tmp);

if (r < 0) {

/* In case of any error return a partial result

and the error code */

break;

}

}

deleteIterator(it);

return r;

}

Other similar functions can be built from this model. For instance ”mapcon”, a function
that needs two containers to build a resulting container. The result is made out of the
results of a binary function that will receive one element from each container.

Its implementation is trivially deduced from the above function:

int mapcon(SequentialContainer *src1,

SequentialContainer *src2, /* The input containers */

void *(*fn)(void *,void *), /* Function with 2 arguments */

SequentialContainer *result) /* The resulting container */

{

Iterator *it1 = iSequentialContainer.NewIterator(src1);

Iterator *it2 = iSequentialContainer.NewIterator(src2);

int r=1;

void *obj1,*obj2;

if (it == NULL)

return CONTAINER_ERROR_NOMEMORY;

if (iSequentialContainer.GetElementSize(src1) !=

iSequentialContainer.GetElementSize(src2)) {

return CONTAINER_ERROR_INCOMPATIBLE;

}

for (obj1 = it1->GetFirst(it1),obj2 = it2->GetFirst(it2);

obj1 != NULL && obj2 != NULL;

obj2 = it2->GetNext(it2),

obj1 = it1->GetNext(it1)) {

void *tmp = fn(obj1,obj2);

7.3. Mapcar 271

int r = iSequentialContainer.Add(result,tmp);

if (r < 0) {

/* In case of any error return a partial result

and the error code */

break;

}

}

deleteIterator(it1);

deleteIterator(it2);

return r;

}

We can use it with a function that adds its two arguments to add two containers:

void *DoAdd(void *element1,void *element2)

{

static int result = *(int *)element1 + *(int *)element2;

return &result;

}

Note that not all errors are detected, and we stop at the smallest container, producing
a result compatible with the smallest of both arguments. Note too that we make a very
superficial compatibility test to see if the arguments contain the same type of object,
using their size as an indication. This test would ignore elements of the same size
but incompatible, for instance floats and 32 bit integers, or 64 bit integers and double
precision elements, etc.

The standard answer to the above problems is to point out that C has a tradition of
keeping things simple and expecting programmers that take care of low level details. If
you want more error support, you will find out with minimal research a lot of languages
ready to make all kinds of hand holding for you.

8 The sample implementation

The objective of the sample implementation is to serve as a guide for the implementors
of this proposal. It is not the fastest implementation and it is not the most efficient or
compact one. As any other software, it contains bugs, that I hope to iron out with time.

Please note that all the decisions done for the sample implementation are not part of
the specifications of the containers library. Other implementations could do completely
different things.

8.1 The different source files

The sample implementation has two types of files:

1. Source files that implement a specific container: list.c vector.c, etc. This contain-
ers use a void pointer to receive thir arguments and return a void pointer when
retrieving their data.

2. Source files that implement a templated container, i.e. the file needs a parameter
file and a templated implementation file. In this type of files we have a small file
that defines the templated file parameters (in the form of pre-processor macros)
and then just includes the templated implementation file. This containers receive
data of a concrete type passed by value and return the same data passed by value.

File Description

bitstrings.c The bitstring container.

bloom.c The bloom filter container

buffer.c Growable buffers and circular buffers

ccl internal.h Definitions of all the types defined internally by the library.

containers.h Main header file of the library. It defines all the user visible inter-
faces.

deque.c The deque container

dlistgen.h Generic definition of the double linked list data-type specific con-
tainers.

dictionary.c Hash tables using ASCII text as key. This is just a small file that
sets the parameters for the dictionarygen.c file

dictionarygen.c Common code for the dictionary container using either ASCII or
wide characters keys

273

274 Chapter 8. The sample implementation

dlist.c Double linked list container using void pointers to store the data.

dlistgen.c Double linked list container using a specific data type. Needs a
parameter file

dlistgen.h Double linked list container data definitions and interface defini-
tions using a specific data type. Needs a parameter file

doubledlist.c Double linked list for double data. This is a parameter file for
dlistgen.c

doubledlist.h Single linked list header file for double data. This is a parameter
file for dlistgen.h

doublelist.c Parameter file for listgen.c producing the doubleList container

doublelist.h Parameter file for listgen.h for doubleList container

error.c The error interface

fgetline.c Reads a line of text from a file. Used in the string container

generic.c The generic container interface

hashtable.c Hash table featuring binary keys

heap.c Small object allocator

iMask.c Mask interface implementation

intdlist.c Parameter file for dlistgen.c defining the intDlist container

intdlist.h Parameter header for dlistgen.h declaring intDlist container

intlist.c Parameter file for listgen.c defining intList container

intlist.h Parameter header for listgen.h declaring intList container

list.c Generic type list container using void pointers

listgen.c Template file for List container

longlongdlist.c Parameter file for dlistgen.c defining longlongDlist container.

longlonglist.c Parameter file for listgen.c

malloc debug.c Debug implementation of malloc

Makefile Make file for Unix systems using the gcc compiler

Makefile.lcc Make file for windows systems using the 32 bit lcc compiler

Makefile.lcc64 Make file for windows systems using the 64 bit lcc compiler

Makefile.msvc Make file for windows systems using the Microsoft compiler

memoryanager.c Very short file describing the CurrentAllocator mechanism.

observer.c The implementation of the observer pattern

pool.c Pooled memory manager

pooldebug.c Debug version of the pool memory manager

priorityqueue.c Priority queues implementation

qsortex.c Quick sort algorithm

queue.c Queue container

redblacktree.c Red black tree implementation. Not yet documented

scapegoat.c ”Scapegoat” trees implementation

searchtree.c AVL trees. Not documented

sequential.c Implementation of the general sequential container interface

smallpool.c Not documented yet

strcollection.c Specialized vector for ascii character strings. This is a parameter
file for strcollectiongen.c.

8.2. Partitioning 275

stringlist.c Specialized version of single linked lists using strings

stringlistgen.c Common code for ascii and wide character strings specialized vec-
tor

valarraydouble.c Value array of double data. Parameter file for valarraygen.c

valarrayfloat.c Value array of float data. Parameter file for valarraygen.c

valarrayint.c Value array of int data. Parameter file for valarraygen.c

valarraylongdouble.c Value array of long double data. Parameter file for valarraygen.c

valarraylonglong.c Value array of long long data. Parameter file for valarraygen.c

valarrayshort.c Value array of short data. Parameter file for valarraygen.c

valarraysize t.c Value array of size t data. Parameter file for valarraygen.c

valarrayuint.c Value array of unsigned int data. Parameter file for valarraygen.c

valarrayulonglong.c Value array of unsigned long long data. Parameter file for valar-
raygen.c

valarraygen.c Common code for all val array implementations.

valarraygen.h Common header file for all val array implementations. Needs a
parameter file

vector.c Code for the vector container

vectorgen.h Header file for the template form of the vector container

vectorgen.c Implementation of the template form of the vector container

wdictionary.c Dictionary for a dictionary using wide character strings

wstrcollection.c String collection using wide character data. Parameter file for
strcollectiongen.c

8.1.1 Building the software

The library comes with several ”makefiles” to build it automatically. Those makefiles
build a library called libccl.a under Unix systems, or ccl.lib under windows.

• Type make for building the files under Unix

• Type make -f Makefile.lcc for building under windows 32 bit with the lcc com-
piler

• Type make -f Makefile.lcc64 for building under windows 64 bit with the lcc64
compiler

• Type nmake -f Makefile.msvc for building under windows with the Microsoft
MSVC compiler

8.2 Partitioning

An interface is a table of functions. This tables are a monolithic construct: if you use
only one of the functions of the interface you will have to link with all of the interface
functions, whether you use them or not.

It is important then, that each interface doesn’t ”pull in” other interfaces since then
you would end up linking with the whole library even if you use a small fraction of it.

276 Chapter 8. The sample implementation

Some of this is inevitable though. All interfaces use the observer interface, so if you
use any interface the observer interface will be pulled in. It is important then, that
the dependencies of the observer interface be kept to a minimum 1. Problem is, it is
necessary for the observer interface to set the flags of the container being registered as
an observed object. This means that the generic interface is needed.

Go avoid pulling in the whole generic interface, the observer functions use the vTable.
In the sample implementation all containers have a table of functions as first interface
field. Since the description of the generic container object is published in ”containers.h”
it can use the generic notation.

GenericContainer *gen = (GenericContainer *)InputObject;

unsigned flags = gen->vTable->GetFlags(gen);

This works because the sample implementation has carefully designed all interface
to be binary compatible, allowing an easy implementation of the generic interface. All
vTables have the GetFlags function at the same place, so we always call the correct
function.

Another interface that is used by all other interfaces is the error interface. It has
been kept as small as possible to avoid pulling in too much data into the fixed overhead.

8.3 Data structures

All container data structures are composed of two parts:

1. A header part, containing a pointer to the functions table and some other fields.
This ’generic’ part is at the start of all container header structures.

2. A container specific part, containing auxiliary structures and data needed for the
specific container at hand.

8.3.1 The generic part

The first part of all container data structures is the same for each container. This allows
to implement conceptually an abstract class of objects: the ’generic’ container.

struct GenericContainer {

GenericContainerInterface *vTable;

size_t Size;

unsigned Flags;

size_t ElementSize;

};

1Early versions of the library used the vector interface to maintain the association between an object
and its callbacks. That meant that the vector interface would be pulled in too. And since the vector
interface uses the heap interface object, that one would be pulled in also.

8.3. Data structures 277

1. Vtable. All containers in the sample implementation contain a pointer to the
table of functions of their interface.

2. Size. The number of elements this container stores.

3. Flags. Stores the state of the container. The only flag the sample implementation
uses is the READ ONLY FLAG but many others are possible, for instance a ’locked’
flag for multi-threading access, or a ’copy on write’ flag for lazy copy, etc.

4. ElementSize. All containers in the sample implementation can store objects of the
same size. This is not really a limitation since you can store objects of ANY size
by storing a pointer in the container. An alternative design would store objects of
any size but it would need to store the size of each object in addition to the data
used by the object. The specialized containers like bitstrings, string collections or
integer/double arrays do not need this field obviously, and its presence is optional.

8.3.2 Lists

Single linked lists use a single pointer to the next element. The data for the element
comes right behind that pointer to avoid the overhead that yet another pointer would
represent.

typedef struct _list_element {

struct _list_element *Next;

char Data[MINIMUM_ARRAY_INDEX]; // See below

} list_element;

The list header uses this structure to store the elements2. As you can see, there is no
space wasted in a pointer to the element stored. The element stored is placed just behind
the Next pointer. The downside of this decision is that we can’t recycle this object to
store other different objects of different size.

2The constant MINIMUM ARRAY INDEX is defined as 1 if we are compiling in C90 mode or as nothing
if we are compiling in C99 mode. In C99 mode we have a flexible structure, that consists of a fixed and
a variable part. The fixed part is the pointer to the next element. The variable part is the object we
are storing in the list.

278 Chapter 8. The sample implementation

8.3.3 Source files

The figure shows the files associated with the two implementations of the list con-
tainer. The generic pointers implementation is list.c and the templated implemen-
tation is in listgen.c. The files depending on listgen.c are parameter files for
listgen.c.

Alignment

Some machines require that data be stored at particular addresses, always a multiple
of two. For instance SPARC machines require that doubles be aligned at a multiple of
8. The structure for our list element above would provoke a crash when used to store
doubles 3.

In those machines the list element structure is defined as follows:

typedef struct _ListElement {

struct _ListElement *Next;

#ifdef SPARC32

void *alignment;

#endif

char Data[MINIMUM_ARRAY_INDEX];

} ListElement;

This assumes that sizeof(void *) is 4.

In machines that handle unaligned data gracefully without crashing alignment re-
quirements aren’t useless, since in most cases they provoke a performance loss.

3Modern versions of the operating systems that use SPARC catch the exception, load the data with
several instructions and return control to the program transparently. This wasn’t the case in the older
versions, and anyway the SPARC example is an example for a whole class of machines that require
alignment.

8.3. Data structures 279

struct _List {

ListInterface *VTable;

size_t count;

unsigned Flags;

unsigned timestamp;

size_t ElementSize;

list_element *Last;

list_element *First;

CompareFunction Compare;

ErrorFunction RaiseError;

ContainerHeap *Heap;

ContainerAllocator *Allocator;

};

In the public containers.h header file we refer always to an abstract structure List.
We define it here. This schema allows other implementation to use the same header
with maybe radically different implementations of their data structure.

1. Vtable, count, Flags, ElementSize. This fields were described in the generic
container section.

2. timestamp. This field is incremented at each modification of the list, and allows
the iterators to detect if the container changes during an iteration: they store
the value of this field at the start of the iteration, and before each iteration they
compare it with its current value. If there are any changes, they return NULL .

3. Last. Stores a pointer to the last element of the list. This allows the addition
of an element at the end of the list to be fast, avoiding a complete rescan of the
list. This field is an optimization, all algorithms of a single linked list would work
without this field.

4. First. The start of the linked list.

5. Compare. A comparison function for the type of elements stored in the list.

6. RaiseError. A function that will be called when an error occurs. This field is
necessary only if you want to keep the flexibility of having a different error function
for each list that the client software builds. An alternative implementation would
store a pointer to an error function in the interface.

7. Allocator. A set of functions that allocates memory for this list. In an imple-
mentation that needs less flexibility and is more interested in saving space it could
be replaced by the default allocator.

The sample implementation has certainly a quite voluminous header because of a design
decision to keep things very flexible. Other implementations could trim most of the fields,
and an absolute minimal implementation would trim Last, Compare, RaiseError, Heap,

280 Chapter 8. The sample implementation

and Allocator. If the implementation assumes that only one iterator per container is
allowed, the timestamp field could be replace by a single bit (’changed’) in the Flags

field.4

8.3.4 Double linked lists

This container has a very similar structure to the single linked ones

typedef struct _dlist_element {

struct _dlist_element *Next;

struct _dlist_element *Previous;

char Data[MINIMUM_ARRAY_INDEX]; /* (1) */

} dlist_element;

(1): In the templated versions of the container this field is defined as: TYPE Data;

where TYPE is a type definition passed to the file as a parameter.
We have now two pointers followed by the stored data. All other fields are exactly

identical to the ones in the single linked list. The single difference is the existence of a
free list. This could have been done in the single linked list implementation too.

struct Dlist {

DlistInterface *VTable;

size_t count;

unsigned Flags;

unsigned timestamp;

size_t ElementSize;

dlist_element *Last;

dlist_element *First;

dlist_element *FreeList;

CompareFunction Compare;

ErrorFunction RaiseError;

ContainerHeap *Heap;

ContainerAllocator *Allocator;

};

8.3.5 Vector

Arrays are the containers that use the smallest overhead per element: zero. The only
overhead is the header structure, whose cost is amortized since it is fixed for all elements
that the array can hold.

4The function newContainer would clear the ’changed’ bit, and the iterator functions would test
if it is still clear. All modifications function would set it to one. This simple schema becomes prob-
lematic when you consider what happens when an invalid iterator is used again. In the simple one bit
schema if the flag has been cleared, the iterator goes on, in the more expensive schema of the sample
implementation, the stalled iterators are never restartable until the counter wraps around to the same
value.

8.3. Data structures 281

This is a ’flexible’ array however, what means that there is some spare space allocated
for allowing further growth, and that different allocation strategies can be followed when
allocating a new chunk of array space when the existing array is full.

struct _Vector {

VectorInterface *VTable;

size_t count;

unsigned int Flags;

size_t ElementSize;

void *contents;

size_t capacity;

unsigned timestamp;

CompareFunction CompareFn;

ErrorFunction RaiseError;

ContainerAllocator *Allocator;

} ;

1. Vtable, count, Flags, ElementSize. This fields were described in the generic
container section.

2. CompareFn, RaiseError, timestamp and Allocator were described in the List

container.

3. capacity. Stores the number of elements (of ElementSize bytes each) this con-
tainer can hold without resizing.

4. contents. Points to an array of capacity elements, each of size ElementSize.

8.3.6 Dictionary

This container consists of an array of single linked lists. It could have been done with
an Vector of List containers but a dedicated implementation is justified because of
a greater efficiency. The advantages of the Vector container (secured access, flexible
expansion) are not needed since the array has a fixed length that never changes.

struct _Dictionary {

DictionaryInterface *VTable;

size_t count;

unsigned Flags;

size_t size;

ErrorFunction RaiseError;

unsigned timestamp;

size_t ElementSize;

ContainerAllocator *Allocator;

unsigned (*hash)(const char *Key);

struct DataList {

282 Chapter 8. The sample implementation

struct DataList *Next;

char *Key; /* (1) */

char *Value;

} **buckets;

};

(1): In the wide character version of this structure, this field will be defined as:
wchar_t *Key;

1. Vtable, count, Flags, ElementSize. This fields were described in the generic
container section.

2. RaiseError, timestamp and Allocator were described in the List container.

3. size. The number of different lists that the hash table can contain. This is
normally a prime number.

4. hash. A hash function for character strings.

5. buckets. A table of pointers to lists of DataList structures.

8.3.7 String collection

String collections are just flexible arrays of pointers to C character strings. They share
all the fields of the Vector container, the only specific field is a context that is passed to
the string comparison function. This context can contain flags or other information to
use with special text encodings (wide characters for instance) or other data like regular
expressions, etc.

struct strCollection {

strCollectionInterface *VTable;

size_t count;

unsigned int Flags;

char **contents; /* (1) */

size_t capacity;

size_t timestamp;

ErrorFunction RaiseError;

StringCompareFn strcompare;

CompareInfo *StringCompareContext;

ContainerAllocator *Allocator;

};

(1): In the wide character version of this structure this field is defined as:

wchar_t ** contents;

8.3. Data structures 283

8.3.8 Masks

There were two alternatives for implementing masks:

• Bit strings. Each bit position can hold a boolean value.

• A character array. Each position can hold more values, for instance -1, 0, and
1, to hold the results of comparisons. This solution was retained for the sample
implementation. Item access is simplified and faster, at the expense of course of
more memory.

struct _Mask {

size_t length;

const ContainerAllocator *Allocator;

char data[];

};

8.3.9 Bit strings

Bit strings do not need the ElementSize field obviously. The BIT_TYPE macro is defined
as unsigned char. In general it should be an unsigned integer type that could be different
from char, maybe a 32 bit type or even larger.

struct _BitString {

BitStringInterface *VTable; /* The table of functions */

size_t count; /* number of bits in the array */

BIT_TYPE *contents; /* The contents of the collection */

size_t capacity; /* allocated space in the contents vector */

unsigned timestamp; /* Modifications counter */

unsigned int Flags; /* Read-only or other flags */

const ContainerAllocator *Allocator;

} ;

8.3.10 The iterator implementation

This data structure has two main parts:

• A public part:

typedef struct _Iterator {

void *(*GetNext)(struct _Iterator *);

void *(*GetPrevious)(struct _Iterator *);

void *(*GetFirst)(struct _Iterator *);

void *(*GetCurrent)(struct _Iterator *);

void *(*GetLast)(struct _Iterator *);

void *(*Seek)(struct _Iterator *,size_t);

284 Chapter 8. The sample implementation

int (*Replace)(struct _Iterator *,void *data,int direction);

} Iterator;

This part contains only the functions that the interface offers. It is defined in the
public header containers.h.

• A private, container specific part that comes right behind the public part and
stores additional information that is needed for each container. For instance the
list container will add following fields:

struct ListIterator {

Iterator it; // Includes the public part

List *L; // List this iterator is going through

size_t index; // The position where we are in the list

list_element *Current;// The current element

size_t timestamp; // The timestamp of the list when this

// iterator was created

char ElementBuffer[1];// The current element if needed

};

User code should only see and use the public part, as if the iterator was only the
public part. Internally all iterator functions are completely different functions,
specific for the container they should iterate. It looks like from user code, as you
were always calling the same function because the syntax and name is the same.
This allows for a certain abstraction in the source code that uses this functions,
allowing to express a whole range of algorithms in terms of general concepts.

Each of the functions that implement GetNext GetFirst, etc starts with a cast
of the input argument that is declared as an Iterator structure to a concrete
container iterator like our ListIterator above.

In all those structures there is a common ground. They have:

1. A pointer to the container the iterator is using.

2. Some fields for storing the current position within the container, i.e. a cursor.

3. A timestamp field to detect if the container has changed during the iteration.

4. A buffer that allows the iterator to store an element of the container. This
area contains a copy of the current element. Normally the iterators return a
pointer to the data of each element, but in the case of read only containers a
pointer to this area will be returned. This allows to maintain the read only
semantics.

8.4. The code 285

8.3.11 The timestamp field

This field will be incremented by each modification of the list. When an iterator is cre-
ated it will copy the current value of the time stamp, and for each subsequent operation
it will compare the value of the container with its saved copy. They should be always
equal, otherwise the iterator will return always NULL . The only exception to this rule
is the iterator Replace function that will modify the container without invalidating the
iterator that calls it. Other iterators to the same container will be invalidated.

The timestamp field should be incremented in all operations that somehow modify
the container, not only in the operations that modify the number of elements.
Notes:
Implementation issues

• There is currently no way to know when you delete a container if there are iterators
that are still pointing to it. This could be detected by simply having a counter of
the number of iterators a container has, but that would mean more overhead for
the already fat header objects...

• The current interface requires that the user calls the deleteIterator function
when you are done using the iterator. This is a source of memory leaks if you
forget to do it. An easier way to do this would be to maintain a list of current
iterators, to be freed automatically when the container is destroyed. Obviously
this supposes that you do not create thousands of iterators but that you reuse the
iterators for different loops.

8.4 The code

Only one container will be shown here in full: the List container. For the others, only
some functions will be explained to save space. You are invited to read the distributed
code of course that is part of this work.

8.4.1 List

Add

1 static int Add_nd(List *l,void *elem)

2 {

3 list_element *newl;

4

5 newl = new_link(l,elem,"iList.Add");

6 if (newl == 0)

7 return CONTAINER_ERROR_NOMEMORY;

8 if (l->count == 0) {

9 l->First = newl;

286 Chapter 8. The sample implementation

10 }

11 else {

12 l->Last->Next = newl;

13 }

14 l->Last = newl;

15 l->timestamp++;

16 ++l->count;

17 return 1;

18 }

19

20 static int Add(List *l,void *elem)

21 {

22 int r;

23 if (l == NULL || elem == NULL) return NullPtrError("Add");

24 if (l->Flags &CONTAINER_READONLY) return ErrorReadOnly(l,"Add");

25 r = Add_nd(l,elem);

26 if (r && (l->Flags & CONTAINER_HAS_OBSERVER))

27 iObserver.Notify(l,CCL_ADD,elem,NULL);

28 return r;

29 }

This function adds one element at the end. The Add entry point performs the error
checking and calls Add_nd an internal function that does the actual work. This is needed
because other functions call internally Add after they have already performed the error
checking.

The Add_nd function requests a new list element (5). If that suceeds the new element
must be inserted in the list. If the list is empty it just establishes the start of the list
(9), if not, it adds it after the last element (12). The new list element is the last one
(14). Errors leave the list unchanged. Exclusive access to the list is needed between the
line 8 and the line 16 in the code. This operation is a modification of the list, and it
needs to update the timestamp value to notify possible iterators that they are invalid.

If the Add_nd function was successfull and this container has a registered observer
we notify the observer of this event.

AddRange

1 static int AddRange(List * AL,size_t n, void *data)

2 {

3 unsigned char *p;

4 list_element *oldLast;

5

6 if (AL == NULL) return NullPtrError("AddRange");

7 if (AL->Flags & CONTAINER_READONLY) {

8 AL->RaiseError("iList.AddRange",CONTAINER_ERROR_READONLY);

8.4. The code 287

9 return CONTAINER_ERROR_READONLY;

10 }

11 if (n == 0) return 0;

12 if (data == NULL) {

13 AL->RaiseError("iList.AddRange",CONTAINER_ERROR_BADARG);

14 return CONTAINER_ERROR_BADARG;

15 }

16 p = data;

17 oldLast = AL->Last;

18 while (n > 0) {

19 int r = Add_nd(AL,p);

20 if (r < 0) {

21 AL->Last = oldLast;

22 if (AL->Last) {

23 list_element *removed = oldLast->Next;

24 while (removed) {

25 list_element *tmp = removed->Next;

26 if (AL->Heap)

27 iHeap.FreeObject(AL->Heap,removed);

28 else AL->Allocator->free(removed);

29 removed = tmp;

30 }

31 AL->Last->Next = NULL;

32 }

33 return r;

34 }

35 p += AL->ElementSize; /* Point to the next element */

36 n--; /* Count the items added so far */

37 }

38 AL->timestamp++;

39 if (AL->Flags & CONTAINER_HAS_OBSERVER)

40 iObserver.Notify(AL,CCL_ADDRANGE,data,(void *)n);

41 return 1;

42 }

This function calls repeatedly Add_nd for each element of the given array. Any error
provokes an abort and the original list is left unchanged.

Error checking is done in lines 6 to 15, testing for NULL for the list and the data. If
the number of elements is zero the function does nothing and returns zero. The code
accepts data as NULL if the number of elements is zero. If n is zero this code still checks
that the list is not NULL , and that the list is not read only, considering both to be
errors. Nothing is specified for those cases and you can’t rely on this behavior for other
implemetations.

288 Chapter 8. The sample implementation

Note that at compile time we do not know the size of each element and we can’t index
into this array. We just setup a generic pointer to the start of the data area (16), and
increment it by the size of each element at each iteration (line 35). This implementation
supposes that the size of the elements as assumed by the list is the same as the size of
then element as assumed by the calling program.

If an error occurs when adding elements the new elements are discarded, the list is
reset to its previous state and an error code is returned. (lines 20-33). The eventually
added elements are discarded (lines 24-30).
Notes:
It would be far more efficient to test at the start of the loop if there is enough space
for the n list elements than doing it within the loop. That would eliminate the code for
reclaiming the already allocated items. This isn’t done because the list allocator could
be the default malloc function that doesn’t allow queries of this type.

Append

1 static int Append(List *l1,List *l2)

2 {

3

4 if (l1 == NULL || l2 == NULL) {

5 if (l1)

6 l1->RaiseError("iList.Append",CONTAINER_ERROR_BADARG);

7 else

8 iError.RaiseError("iList.Append",CONTAINER_ERROR_BADARG);

9 return CONTAINER_ERROR_BADARG;

10 }

11 if ((l1->Flags & CONTAINER_READONLY)

12 || (l2->Flags & CONTAINER_READONLY)) {

13 l1->RaiseError("iList.Append",CONTAINER_ERROR_READONLY);

14 return CONTAINER_ERROR_READONLY;

15 }

16 if (l2->ElementSize != l1->ElementSize) {

17 l1->RaiseError("iList.Append",CONTAINER_ERROR_INCOMPATIBLE);

18 return CONTAINER_ERROR_INCOMPATIBLE;

19 }

20 if (l1->Flags & CONTAINER_HAS_OBSERVER)

21 iObserver.Notify(l1,CCL_APPEND,l2,NULL);

22

23 if (l2->Flags & CONTAINER_HAS_OBSERVER)

24 iObserver.Notify(l2,CCL_FINALIZE,NULL,NULL);

25

26 if (l1->count == 0) {

27 l1->First = l2->First;

28 l1->Last = l2->Last;

8.4. The code 289

29 }

30 else if (l2->count > 0) {

31 if (l2->First)

32 l1->Last->Next = l2->First;

33 if (l2->Last)

34 l1->Last = l2->Last;

35 }

36 l1->count += l2->count;

37 l1->timestamp++;

38 l2->Allocator->free(l2);

39 return 1;

40 }

This function adds the second argument list to the first one. The second list is destroyed
because all its elements are inserted into the first one. The result is obtained by pointer
manipulation: no data is moved at all, and any pointers to the objects in the second list
remain valid.

Error checking is done in lines 4 to 19. Then, the observer interface is considered.
Since the second list will be destroyed a notification is sent to any observers that listen
to events in that list. A notification is sent to the first list also, informing the observers
of this event.

The actual work can then begin (lines 26 to 36): l2 is appended to l1 and the list
header of l2 is freed.

Notes:

The test for compatibility between both lists is done with the size of an element, assuming
elements of the same size are of the same type. This could very well be false but there
is no portable way of test this at run time. Anyway, since a container doesn’t care what
is inside the objects it manages you can store elements of different types but the same
size in a single container.

Apply

1 static int Apply(List *L,int (Applyfn)(void *,void *),void *arg)

2 {

3 list_element *le;

4 void *pElem=NULL;

5

6 if (L == NULL || Applyfn == NULL) {

7 if (L)

8 L->RaiseError("iList.Apply",CONTAINER_ERROR_BADARG);

9 else

10 iError.RaiseError("iList.Apply",CONTAINER_ERROR_BADARG);

11 return CONTAINER_ERROR_BADARG;

12 }

290 Chapter 8. The sample implementation

13 le = L->First;

14 if (L->Flags&CONTAINER_READONLY) {

15 pElem = L->Allocator->malloc(L->ElementSize);

16 if (pElem == NULL) {

17 L->RaiseError("iList.Apply",CONTAINER_ERROR_NOMEMORY);

18 return CONTAINER_ERROR_NOMEMORY;

19 }

20 }

21 while (le) {

22 if (pElem) {

23 memcpy(pElem,le->Data,L->ElementSize);

24 Applyfn(pElem,arg);

25 }

26 else Applyfn(le->Data,arg);

27 le = le->Next;

28 }

29 if (pElem)

30 L->Allocator->free(pElem);

31 return 1;

32 }

This function calls the given function for each element. If the container is read only,
a copy of each element is passed to the called function. This copy is allocated with
”malloc” because it is used for internal purposes, and the standard allocator for the list
could be a heap based, i.e. one that doesn’t really free any memory. That could be a
problem if repeated calls to Apply are done.

This function does not pass any pointer to the called function to mark the list as
changed if the data passed to it is rewritten. This means that there is no way to let the
called function inform the rest of the software of any modifications. This can be justified
by the fact that only the data, not the container itself can be modified, but this can be
tricky in multi-threaded environments. Other implementations could pass some pointer
or away to inform the rest of the software that a modification has been done.

Clear

1 static int Clear_nd(List *l)

2 {

3 if (l->Flags & CONTAINER_HAS_OBSERVER)

4 iObserver.Notify(l,CCL_CLEAR,NULL,NULL);

5 #ifdef NO_GC

6 if (l->Heap)

7 iHeap.Finalize(l->Heap);

8 else {

9 list_element *rvp = l->First,*tmp;

8.4. The code 291

10

11 while (rvp) {

12 tmp = rvp;

13 rvp = rvp->Next;

14 if (l->DestructorFn)

15 l->DestructorFn(tmp);

16 l->Allocator->free(tmp);

17 }

18 }

19 #endif

20 l->count = 0;

21 l->Heap = NULL;

22 l->First = l->Last = NULL;

23 l->Flags = 0;

24 l->timestamp = 0;

25 return 1;

26 }

27

28 static int Clear(List *l)

29 {

30 if (l == NULL) {

31 return NullPtrError("Clear");

32 }

33 if (l->Flags & CONTAINER_READONLY) {

34 l->RaiseError("iList.Clear",CONTAINER_ERROR_READONLY);

35 return CONTAINER_ERROR_READONLY;

36 }

37 return Clear_nd(l);

38 }

This function should clear all stored elements and reset some fields of the header structure
so that the resulting list header is almost the same as when it was created. The only
difference is that any functions like the comparison function or the error function are
not cleared. If they were changed by the user they still remain changed.

Like in other functions we have a no-debug function (named Clear_nd) that assumes
all its parameters are correct, and the official entry point that checks its arguments. If
we are compiling with a garbage collector in mind we can save us all the work of releasing
each element since the collector will do that automatically.

Copy

1 static List *Copy(List *l)

2 {

3 List *result;

292 Chapter 8. The sample implementation

4 list_element *elem,*newElem;

5

6 if (l == NULL) {

7 NullPtrError("Copy");

8 return NULL;

9 }

10 result = iList.CreateWithAllocator(l->ElementSize,l->Allocator);

11 if (result == NULL) {

12 l->RaiseError("iList.Copy",CONTAINER_ERROR_NOMEMORY);

13 return NULL;

14 }

15 result->Flags = l->Flags;

16 result->VTable = l->VTable;

17 result->Compare = l->Compare;

18 result->RaiseError = l->RaiseError;

19 elem = l->First;

20 while (elem) {

21 newElem = new_link(result,elem->Data,"iList.Copy");

22 if (newElem == NULL) {

23 l->RaiseError("iList.Copy",CONTAINER_ERROR_NOMEMORY);

24 result->VTable->Finalize(result);

25 return NULL;

26 }

27 if (elem == l->First) {

28 result->First = newElem;

29 result->count++;

30 }

31 else {

32 result->Last->Next = newElem;

33 result->count++;

34 }

35 result->Last = newElem;

36 elem = elem->Next;

37 }

38 if (l->Flags & CONTAINER_HAS_OBSERVER)

39 iObserver.Notify(l,CCL_COPY,result,NULL);

40 return result;

41 }

42

This function requires a non null list pointer. It creates a header structure, and fills
some of it fields with the corresponding fields of the source list:

1. The allocator

8.4. The code 293

2. The flags.

3. The table of functions. This is necessary in case some of those functions have been
sub-classed.

4. The comparison function

5. The error function

Note that the timestamp is not copied, and starts in the copy with zero.
If an error occurs during the copy, probably because of lack of memory, the new list

is destroyed and the result is NULL . Otherwise elements are added at the growing end
of the list.

Contains

1 static int Contains(List *l,void *data)

2 {

3 size_t idx;

4 return (IndexOf(l,data,NULL,&idx) < 0) ? 0 : 1;

5 }

The Contains function is just a cover function for IndexOf.

CopyElement

1 static int CopyElement(List *l,size_t position,void *outBuffer)

2 {

3 list_element *rvp;

4

5 /* Error checking ellided */

6 rvp = l->First;

7 while (position) {

8 rvp = rvp->Next;

9 position--;

10 }

11 memcpy(outBuffer,rvp->Data,l->ElementSize);

12 return 1;

13 }

After the error checking, this function positions at the given element and copies its
contents into the given buffer. Other designs are obviously possible.

• This function could return a newly allocated buffer. This poses other problems like
the type of allocator to use. If we use the list allocator we could run into problems
if it is a specialized allocator that is designed for allocating list elements from a
pool where no ’free’ operation exists. Another, more important problem with that

294 Chapter 8. The sample implementation

solution is that it forces an allocation when none is necessary if the buffer you use
is stack based.

• The function could require the buffer length to be sure there are no buffer overflows.
This solution was discarded because it actually increases the chances of errors: you
have to pass the size of the buffer, and if you pass the wrong one more problems
arise. Is it an error if you pass more space than is actually needed? It could be
an error if the passed size differs from the size of the elements stored or it could
be just a consequence that you used the sizeof(buffer) expression with a bigger
buffer than necessary.

Create

1 static List *Create(size_t elementsize)

2 {

3 return CreateWithAllocator(elementsize,CurrentAllocator);

4 }

This function just calls CreateWithAllocator using the current memory manager.

CreateWithAllocator

1 static List *CreateWithAllocator(size_t elementsize,

2 ContainerAllocator *allocator)

3 {

4 List *result;

5

6 if (elementsize == 0) {

7 iError.RaiseError("iList.Create",CONTAINER_ERROR_BADARG);

8 return NULL;

9 }

10 result = allocator->malloc(sizeof(List));

11 if (result == NULL) {

12 iError.RaiseError("iList.Create",CONTAINER_ERROR_NOMEMORY);

13 return NULL;

14 }

15 memset(result,0,sizeof(List));

16 result->ElementSize = elementsize;

17 result->VTable = &iList;

18 result->Compare = DefaultListCompareFunction;

19 result->RaiseError = iError.RaiseError;

20 result->Allocator = allocator;

21 return result;

22 }

8.4. The code 295

After doing some error checking, the creation function allocates and initializes the new
container with its default values.

A big question is the alignment problem for the given size. This can’t be checked
and could lead to problems if you pass to this function any argument that is not the
product of a sizeof expression.

DefaultListCompareFunction

1 static int DefaultListCompareFunction(const void *left,

2 const void *right,

3 CompareInfo *ExtraArgs)

4 {

5 size_t siz=((List *)ExtraArgs->Container)->ElementSize;

6 return memcmp(left,right,siz);

7 }

The default element compare function is just a cover for memcmp. It is assumed that the
user will replace it with a comparison function of its own if necessary.

DefaultListLoadFunction

1 static size_t DefaultLoadFunction(void *element,void *arg, FILE *Infile)

2 {

3 size_t len = *(size_t *)arg;

4

5 return fread(element,1,len,Infile);

6 }

This function just reads an element from the disk file. Returns the result value of fread,
what is OK for our purposes.

DefaultSaveFunction

1 static size_t DefaultSaveFunction(const void *element,void *arg,

2 FILE *Outfile)

3 {

4 const unsigned char *str = element;

5 size_t len = *(size_t *)arg;

6

7 return fwrite(str,1,len,Outfile);

8 }

This function just writes the given element to the disk. Together with the default load
function they allow for a very effective serialization package for containers. Obviously
here we have a shallow copy, and all this will never work for recursive saves, i.e. for
elements that contain pointers.

296 Chapter 8. The sample implementation

deleteIterator

1 static int deleteIterator(Iterator *it)

2 {

3 struct ListIterator *li;

4 List *L;

5

6 if (it == NULL) {

7 iError.RaiseError("deleteIterator",CONTAINER_ERROR_BADARG);

8 return CONTAINER_ERROR_BADARG;

9 }

10 li = (struct ListIterator *)it;

11 L = li->L;

12 L->Allocator->free(it);

13 return 1;

14 }

This routine retrieves the list header object from the hidden part of the iterator and
uses its allocator object to free the memory used by the iterator.

The functions NewIterator and deleteIterator should occur in pairs like many
others in C: malloc and free, fopen and fclose, etc. It would be very easy to have in the
header object a counter of iterators that should be zero when the list is destroyed or
cleared.

Equal

1 static int Equal(List *l1,List *l2)

2 {

3 list_element *link1,*link2;

4 CompareFunction fn;

5 CompareInfo ci;

6

7 if (l1 == l2)

8 return 1;

9 if (l1 == NULL || l2 == NULL)

10 return 0;

11 if (l1->count != l2->count)

12 return 0;

13 if (l1->ElementSize != l2->ElementSize)

14 return 0;

15 if (l1->Compare != l2->Compare)

16 return 0;

17 if (l1->count == 0)

18 return 1;

19 fn = l1->Compare;

8.4. The code 297

20 link1 = l1->First;

21 link2 = l2->First;

22 ci.Container = l1;

23 ci.ExtraArgs = NULL;

24 while (link1 && link2) {

25 if (fn(link1->Data,link2->Data,&ci))

26 return 0;

27 link1 = link1->Next;

28 link2 = link2->Next;

29 }

30 if (link1 || link2)

31 return 0;

32 return 1;

33 }

If two null pointers are passed to the Equal function it returns true. This is a design
decision: Equal doesn’t have any error result. Either the two objects are equal or not.

A redundant test is done at the end of the function: if the lists have the same count
and all elements are equal, link1 and link2 should be NULL . If they aren’t that means
there is a memory overwrite problem somewhere...

Erase

1 static int Erase(List *l,void *elem)

2 {

3 size_t idx;

4 int i;

5

6 if (l == NULL) {

7 iError.RaiseError("iList.Erase",CONTAINER_ERROR_BADARG);

8 return CONTAINER_ERROR_BADARG;

9 }

10 if (elem == NULL) {

11 l->RaiseError("iList.Erase",CONTAINER_ERROR_BADARG);

12 return CONTAINER_ERROR_BADARG;

13 }

14 if (l->count == 0) {

15 return CONTAINER_ERROR_NOTFOUND;

16 }

17 i = IndexOf(l,elem,NULL,&idx);

18 if (i < 0)

19 return i;

20 return RemoveAt(l,idx);

21 }

298 Chapter 8. The sample implementation

This is a very inefficient implementation. The list will be traversed twice, the first by
IndexOf, and the second by RemoveAt. The obvious solution is to merge both into one
function.

EraseRange

1 static int EraseRange(List *l,size_t start,size_t end)

2 {

3 list_element *rvp,*start_pos,*tmp;

4 size_t toremove;

5 if (end > l->count)

6 end = l->count;

7 if (start >= l->count)

8 return 0;

9 if (start >= end)

10 return 0;

11 toremove = end - start+1;

12 rvp = l->First;

13 while (rvp && start > 1) {

14 rvp = rvp->Next;

15 start--;

16 }

17 start_pos = rvp;

18 rvp = rvp->Next;

19 while (toremove > 1) {

20 tmp = rvp->Next;

21 if (l->Heap)

22 iHeap.FreeObject(l->Heap,rvp);

23 else {

24 l->Allocator->free(rvp);

25 }

26 rvp = tmp;

27 toremove--;

28 l->count--;

29 }

30 start_pos->Next = rvp;

31 return 1;

This function positions the cursor 5 at the element before the one where the range starts,
and then erases until it reaches the end of the range.

Finalize

5Very often I use the name ”rvp” for roving pointer

8.4. The code 299

1 static int Finalize(List *l)

2 {

3 int t=0;

4

5 t = Clear(l);

6 if (t < 0)

7 return t;

8 l->Allocator->free(l);

9 return 1;

10 }

This function should free the memory used by the header object. It is fundamental that
this will never be done with an object not allocated with that iterator in the first place,
i.e. when the user has called Init instead of Create. This can’t be tested in a portable
manner since there is no function to verify that a given memory space belongs or not to
a given allocator.6

GetCurrent

1 static void *GetCurrent(Iterator *it)

2 {

3 struct ListIterator *li = (struct ListIterator *)it;

4

5 if (li->L->count == 0)

6 return NULL;

7 if (li->index == (size_t)-1) {

8 li->L->RaiseError("GetCurrent",CONTAINER_ERROR_BADARG);

9 return NULL;

10 }

11 if (li->L->Flags & CONTAINER_LIST_READONLY) {

12 return li->ElementBuffer;

13 }

14 return li->Current->Data;

15 }

Returns the current object pointed by the given iterator. This function should be called
only after GetFirst is called. It verifies this by testing if a correct value is stored in the
index field. This value is stored by the NewIterator function. This simple algorithm
avoids the usage of an uninitialized iterator at the cost of one integer comparison per
call.

GetFirst

6This has been discussed several times in the comp.lang.c discussion group, but the committee never
followed any of those proposals

300 Chapter 8. The sample implementation

1 static void *GetFirst(Iterator *it)

2 {

3 struct ListIterator *li = (struct ListIterator *)it;

4 List *L;

5

6

7 L = li->L;

8 if (L->count == 0)

9 return NULL;

10 if (li->timestamp != L->timestamp) {

11 L->RaiseError("iList.GetFirst",CONTAINER_ERROR_OBJECT_CHANGED);

12 return NULL;

13 }

14 li->index = 0;

15 li->Current = L->First;

16 if (L->Flags & CONTAINER_LIST_READONLY) {

17 memcpy(li->ElementBuffer,L->First->Data,L->ElementSize);

18 return li->ElementBuffer;

19 }

20 return L->First->Data;

21 }

This function should set the iteration at the first element of the container, ready to get
the iteration started. After the error checking phase it returns a pointer to the data in
the first element, or a pointer to a copy of that data if the container is read only.

GetFlags

1 static unsigned GetFlags(List *l)

2 {

3 if (l == NULL) {

4 iError.RaiseError("iList.GetFlags",CONTAINER_ERROR_BADARG);

5 return (unsigned)CONTAINER_ERROR_BADARG;

6 }

7 return l->Flags;

8 }

Just returns the value of the flags.

GetNext

1 static void *GetNext(Iterator *it)

2 {

3 struct ListIterator *li = (struct ListIterator *)it;

4 List *L;

8.4. The code 301

5 void *result;

6

7

8 if (li == NULL) {

9 iError.RaiseError("iList.GetNext",CONTAINER_ERROR_BADARG);

10 return NULL;

11 }

12 L = li->L;

13 if (li->index >= (L->count-1) || li->Current == NULL)

14 return NULL;

15 if (li->L->count == 0)

16 return NULL;

17 if (li->timestamp != L->timestamp) {

18 L->RaiseError("GetNext",CONTAINER_ERROR_OBJECT_CHANGED);

19 return NULL;

20 }

21 li->Current = li->Current->Next;

22 li->index++;

23 if (L->Flags & CONTAINER_LIST_READONLY) {

24 memcpy(li->ElementBuffer,li->Current->Data,L->ElementSize);

25 return li->ElementBuffer;

26 }

27 result = li->Current->Data;

28 return result;

29 }

Advances the cursor to the next element and returns either a pointer to it or a pointer to
a copy if the list is read only. The test for the cursor being NULL avoids using GetNext

with an uninitialized iterator.

GetPrevious

1 static void *GetPrevious(Iterator *it)

2 {

3 struct ListIterator *li = (struct ListIterator *)it;

4 List *L;

5 list_element *rvp;

6 size_t i;

7

8 L = li->L;

9 if (li->index >= L->count || li->index == 0)

10 return NULL;

11 if (li->timestamp != L->timestamp) {

12 L->RaiseError("GetPrevious",CONTAINER_ERROR_OBJECT_CHANGED);

302 Chapter 8. The sample implementation

13 return NULL;

14 }

15 rvp = L->First;

16 i=0;

17 li->index--;

18 if (li->index > 0) {

19 while (rvp && i < li->index) {

20 rvp = rvp->Next;

21 i++;

22 }

23 }

24 li->Current = rvp;

25 return rvp->Data;

26 }

There were heated discussions about this function. In single linked lists it is necessary to
go through the whole list at each call to this function. This is extremely inefficient and its
usage should be avoided, it is much better to use double linked lists if you are interested
in bi-directional cursor positioning. In the other hand this should be a required iterator
feature, and rather than filling this function pointer with a function that just returns an
error, the user is better served with a function that actually returns the previous item.
Besides for short lists the performance lost is quite small, and would justify using lists
with smaller overhead per item.7.

GetRange

1 static List *GetRange(List *l,size_t start,size_t end)

2 {

3 size_t counter;

4 List *result;

5 list_element *rvp;;

6

7 result = iList.Create(l->ElementSize);

8 result->VTable = l->VTable;

9 if (l->count == 0)

10 return result;

11 if (end >= l->count)

12 end = l->count;

13 if (start > end || start > l->count)

14 return NULL;

15 if (start == l->count-1)

16 rvp = l->Last;

7But then, if the lists are small, the greater overhead of the double linked lists is small too. You
see, there were a lot of good arguments from both sides

8.4. The code 303

17 else {

18 rvp = l->First;

19 counter = 0;

20 while (counter < start) {

21 rvp = rvp->Next;

22 counter++;

23 }

24 }

25 while (start < end && rvp != NULL) {

26 int r = result->VTable->Add(result,&rvp->Data);

27 if (r < 0) {

28 Finalize(result);

29 result = NULL;

30 break;

31 }

32 rvp = rvp->Next;

33 start++;

34 }

35 return result;

36 }

A new list is constructed from the given range of elements. The elements are copied.
Any error during the construction of the new list provokes a NULL result: the copied
elements are destroyed. Only correctly constructed ranges are returned. A recurring
problem arises because it is impossible to report any details about the error that stops
the copy. The result is actually boolean, either everything worked and there is a non
NULL result, or something didn’t.

An alternative design would have an integer return code, and a pointer to a result.
This option was discarded because it is cumbersome and the most likely reason for Add
to fail is lack of memory.

IndexOf

1 static int IndexOf(List *l,void *ElementToFind,

2 void *ExtraArgs,size_t *result)

3 {

4 list_element *rvp;

5 int r,i=0;

6 CompareFunction fn;

7 CompareInfo ci;

8

9 if (l == NULL || ElementToFind == NULL) {

10 if (l)

11 l->RaiseError("iList.IndexOf",CONTAINER_ERROR_BADARG);

304 Chapter 8. The sample implementation

12 else

13 iError.RaiseError("iList.IndexOf",CONTAINER_ERROR_BADARG);

14 return CONTAINER_ERROR_BADARG;

15 }

16 rvp = l->First;

17 fn = l->Compare;

18 ci.Container = l;

19 ci.ExtraArgs = ExtraArgs;

20 while (rvp) {

21 r = fn(&rvp->Data,ElementToFind,&ci);

22 if (r == 0) {

23 *result = i;

24 return 1;

25 }

26 rvp = rvp->Next;

27 i++;

28 }

29 return CONTAINER_ERROR_NOTFOUND;

30 }

The design of this function went through several iterations. The big problem was the
result type: a size t, that in most cases is an unsigned quantity. A negative error result
then was out of the question. But then, how would you indicate an error? 8

A first solution was to return a 1 based index and reserve zero for the ’not found’
value. That could work, but was the source of many bugs in the rest of the software
when the value was used without decrementing it first.

A second solution was to reserve a value within the size t range to represent the ’not
found’ result. That works, and it is doable, but produced other, more subtle, problems
in the rest of the sofwtare since in all checks of a size t, it could be that this size t has
a value that is actually the sentinel value of IndexOf: the tests tended to multiply and
the handling of those tests started to become a problem.

Here you see the third iteration: the function receives a pointer to a size t that will
be set if the function returns with a result greater than zero.

Another, completely different issue is the fact that in lists, this function is inefficient
since it forces the function that uses the result to restart a list traversal to access the nth
element. Much more efficient would be to do something immediately with the result,
or to return a list element that allows the calling software to use it without going again
through the list.

Problems with those solutions is that they are not portable, and that they would
expose the inner workings of the list container to the users. The list element structure
is not even mentioned in the public containers.h.

InitWithAllocator

8The function Contains started its life as a way of avoiding all this problems

8.4. The code 305

1 static List *InitWithAllocator(List *result,size_t elementsize,

2 ContainerAllocator *allocator)

3 {

4 if (elementsize == 0) {

5 iError.RaiseError("iList.Init",CONTAINER_ERROR_BADARG);

6 return NULL;

7 }

8 memset(result,0,sizeof(List));

9 result->ElementSize = elementsize;

10 result->VTable = &iList;

11 result->Compare = DefaultListCompareFunction;

12 result->RaiseError = iError.RaiseError;

13 result->Allocator = allocator;

14 return result;

15 }

This function initializes a piece of storage to a list container. This allows the user to
use stack storage for the list container, saving an allocation from the heap, and the
corresponding need to free that storage.

Init

1 static List *Init(List *result,size_t elementsize)

2 {

3 return InitWithAllocator(result,elementsize,CurrentAllocator);

4 }

Uses the current memory manager to call InitWithAllocator.

InsertAt

1 static int InsertAt(List *l,size_t pos,void *pdata)

2 {

3 list_element *elem;

4 if (l == NULL || pdata == NULL) {

5 if (l)

6 l->RaiseError("iList.InsertAt",CONTAINER_ERROR_BADARG);

7 else

8 iError.RaiseError("iList.InsertAt",CONTAINER_ERROR_BADARG);

9 return CONTAINER_ERROR_BADARG;

10 }

11 if (pos > l->count) {

12 l->RaiseError("iList.InsertAt",CONTAINER_ERROR_INDEX);

13 return CONTAINER_ERROR_INDEX;

14 }

306 Chapter 8. The sample implementation

15 if (l->Flags & CONTAINER_LIST_READONLY) {

16 l->RaiseError("iList.InsertAt",CONTAINER_ERROR_READONLY);

17 return CONTAINER_ERROR_READONLY;

18 }

19 if (pos == l->count) {

20 return l->VTable->Add(l,pdata);

21 }

22

23 elem = new_link(l,pdata,"iList. InsertAt");

24 if (elem == NULL) {

25 l->RaiseError("iList.InsertAt",CONTAINER_ERROR_NOMEMORY);

26 return CONTAINER_ERROR_NOMEMORY;

27 }

28 if (pos == 0) {

29 elem->Next = l->First;

30 l->First = elem;

31 }

32 else {

33 list_element *rvp = l->First;

34 while (--pos > 0) {

35 rvp = rvp->Next;

36 }

37 elem->Next = rvp->Next;

38 rvp->Next = elem;

39 }

40 l->count++;

41 l->timestamp++;

42 return 1;

43 }

This inserts before the given index. It would have been equally possible to insert after,
that is a more or less random decision.

InsertIn

1 static int InsertIn(List *l, size_t idx,List *newData)

2 {

3 size_t newCount;

4 list_element *le,*nle;

5

6 if (idx > l->count) {

7 l->RaiseError("iList.InsertIn",CONTAINER_ERROR_INDEX);

8 return CONTAINER_ERROR_INDEX;

9 }

8.4. The code 307

10 if (l->ElementSize != newData->ElementSize) {

11 l->RaiseError("iList.InsertIn",CONTAINER_ERROR_INCOMPATIBLE);

12 return CONTAINER_ERROR_INCOMPATIBLE;

13 }

14 if (newData->count == 0)

15 return 1;

16 newData = Copy(newData);

17 if (newData == NULL) {

18 l->RaiseError("iList.InsertIn",CONTAINER_ERROR_NOMEMORY);

19 return CONTAINER_ERROR_NOMEMORY;

20 }

21 newCount = l->count + newData->count;

22 if (l->count == 0) {

23 l->First = newData->First;

24 l->Last = newData->Last;

25 }

26 else {

27 le = l->First;

28 while (le && idx > 1) {

29 le = le->Next;

30 idx--;

31 }

32 nle = le->Next;

33 le->Next = newData->First;

34 newData->Last->Next = nle;

35 }

36 newData->Allocator->free(newData);

37 l->timestamp++;

38 l->count = newCount;

39 return 1;

40 }

Inserts the given list at the specified position.

1. Error checking. First argument must be non NULL and read/write. Second must
be non NULL .

2. If the position given is exactly the same as the length of the receiving list, the
second list is just appended to the first one.

3. Otherwise search the position and insert a copy of the elements in the second list.

Load

308 Chapter 8. The sample implementation

1 static List *Load(FILE *stream, ReadFunction loadFn,void *arg)

2 {

3 size_t i,elemSize;

4 List *result,L;

5 char *buf;

6 int r;

7 guid Guid;

8

9 if (loadFn == NULL) {

10 loadFn = DefaultLoadFunction;

11 arg = &elemSize;

12 }

13 if (fread(&Guid,sizeof(guid),1,stream) <= 0) {

14 iError.RaiseError("iList.Load",CONTAINER_ERROR_FILE_READ);

15 return NULL;

16 }

17 if (memcmp(&Guid,&ListGuid,sizeof(guid))) {

18 iError.RaiseError("iList.Load",CONTAINER_ERROR_WRONGFILE);

19 return NULL;

20 }

21 if (fread(&L,1,sizeof(List),stream) <= 0) {

22 iError.RaiseError("iList.Load",CONTAINER_ERROR_FILE_READ);

23 return NULL;

24 }

25 elemSize = L.ElementSize;

26 buf = malloc(L.ElementSize);

27 if (buf == NULL) {

28 iError.RaiseError("iList.Load",CONTAINER_ERROR_NOMEMORY);

29 return NULL;

30 }

31 result = iList.Create(L.ElementSize);

32 if (result == NULL) {

33 iError.RaiseError("iList.Load",CONTAINER_ERROR_NOMEMORY);

34 return NULL;

35 }

36 result->Flags = L.Flags;

37 r = 1;

38 for (i=0; i < L.count; i++) {

39 if (loadFn(buf,arg,stream) <= 0) {

40 r = CONTAINER_ERROR_FILE_READ;

41 break;

42 }

43 if ((r=Add(result,buf)) < 0) {

44 break;

8.4. The code 309

45 }

46 }

47 free(buf);

48 if (r < 0) {

49 iError.RaiseError("iList.Load",r);

50 iList.Finalize(result);

51 result = NULL;

52 }

53 return result;

54 }

The load function is long and complex. As always, the process starts with error
checking. All streams written to by its counterpart Save are marked with a container
specific globally unique identifier (GUID). This ensures that a load function from the
list container will not crash if passed a file that belongs to an array or a dictionary, or
a totally unrelated file. The guids can be changed to mark the versions of the software
and allow more advanced versions to read older versions.

Then, the header object is read, what gives the data to continue the process, since
we now know the number of elements and the size of each element.

A new list is created with the given element size, and we start reading count elements
from the stream. Any error provokes the destruction of the elements read so far and a
result of NULL.

NewIterator

1 static Iterator *NewIterator(List *L)

2 {

3 struct ListIterator *result;

4

5 if (L == NULL) {

6 iError.RaiseError("iList.NewIterator",CONTAINER_ERROR_BADARG);

7 return NULL;

8 }

9 result = L->Allocator->malloc(sizeof(struct ListIterator));

10 if (result == NULL) {

11 L->RaiseError("iList.NewIterator",CONTAINER_ERROR_NOMEMORY);

12 return NULL;

13 }

14 result->it.GetNext = GetNext;

15 result->it.GetPrevious = GetPrevious;

16 result->it.GetFirst = GetFirst;

17 result->it.GetCurrent = GetCurrent;

18 result->L = L;

19 result->timestamp = L->timestamp;

310 Chapter 8. The sample implementation

20 result->index = (size_t)-1;

21 result->Current = NULL;

22 return &result->it;

23 }

The creation of a new iterator involves just allocating and initializing values to their
defaults.

PopFront

1 static int PopFront(List *l,void *result)

2 {

3 list_element *le;

4

5 if (l->count == 0)

6 return 0;

7 le = l->First;

8 if (l->count == 1) {

9 l->First = l->Last = NULL;

10 }

11 else l->First = l->First->Next;

12 l->count--;

13 if (result)

14 memcpy(result,&le->Data,l->ElementSize);

15 if (l->Heap) {

16 iHeap.FreeObject(l->Heap,le);

17 }

18 else l->Allocator->free(le);

19 l->timestamp++;

20 return 1;

21 }

Contrary to most versions of this function, PopFront does not return the data of the
element but stores it in a pointer that it receives. If the pointer is NULL , the data is
just discarded.

The problem with returning a pointer to the first element, is that the user code
should remember to discard it when no longer needed, and it should discard it using
the same allocator that the list used to allocate it. That would be a very error prone
interface.

PushFront

1 static int PushFront(List *l,void *pdata)

2 {

3 list_element *rvp;

8.4. The code 311

4

5 rvp = new_link(l,pdata,"Insert");

6 if (rvp == NULL)

7 return CONTAINER_ERROR_NOMEMORY;

8 rvp->Next = l->First;

9 l->First = rvp;

10 if (l->Last == NULL)

11 l->Last = rvp;

12 l->count++;

13 l->timestamp++;

14 return 1;

15 }

Lists are a good base to implement a stack. PushFront and PopFront take a constant
and small time to complete and they would be much smaller if we would eliminate the
error checking.

RemoveAt

1 static int RemoveAt(List *l,size_t position)

2 {

3 list_element *rvp,*last,*removed;

4

5

6 rvp = l->First;

7 if (position == 0) {

8 removed = l->First;

9 if (l->count == 1) {

10 l->First = l->Last = NULL;

11 }

12 else {

13 l->First = l->First->Next;

14 }

15 }

16 else if (position == l->count - 1) {

17 while (rvp->Next != l->Last)

18 rvp = rvp->Next;

19 removed = rvp->Next;

20 rvp->Next = NULL;

21 l->Last = rvp;

22 }

23 else {

24 last = rvp;

25 while (position > 0) {

312 Chapter 8. The sample implementation

26 last = rvp;

27 rvp = rvp->Next;

28 position --;

29 }

30 removed = rvp;

31 last->Next = rvp->Next;

32 }

33 if (l->Heap) {

34 iHeap.FreeObject(l->Heap,removed);

35 }

36 else l->Allocator->free(removed);

37 l->timestamp++;

38 --l->count;

39 return 1;

40 }

The operation when RemoveAt is called with the index of the last element is equivalent
to the PopBack function, that is absent in the single linked list interface. After much
discussions, we decided that the generic interface would have only Push and Pop, and
that each container would fill those functions with the most efficient implementation
available for it. For lists, the most efficient implementation is PopFront and PushFront.
For arrays, the most efficient is PushBack and PopBack. For double linked lists is either.

ReplaceAt

1 static int ReplaceAt(List *l,size_t position,void *data)

2 {

3 list_element *rvp;

4

5 if (position == l->count-1)

6 rvp = l->Last;

7 else {

8 rvp = l->First;

9 while (position) {

10 rvp = rvp->Next;

11 position--;

12 }

13 }

14 memcpy(&rvp->Data , data,l->ElementSize);

15 l->timestamp++;

16 return 1;

17 }

8.4. The code 313

After error checking (not shown), position the cursor at the right item, then copy from
the given data pointer the element size bytes needed.

An open issue is whether the ”timestamp” field should be changed. Nothing in the
list structure has been changed, only the data stored in the container. Any iterators
will go on working as advertised even if this function is called to replace many items in
the list. In the other hand, if user programs were making assumptions about the data
(for instance a search function doesn’t always look again at past items to see if they
have been changed) this could bad consequences. As a rule, any change will provoke the
incrementing of the ”timestamp” counter.

Reverse

1 static int Reverse(List *l)

2 {

3 list_element *New,*current,*old;

4

5 if (l->count < 2)

6 return 1;

7 old = l->First;

8 l->Last = l->First;

9 New = NULL;

10 while (old) {

11 current = old;

12 old = old->Next;

13 current->Next = New;

14 New = current;

15 }

16 l->First = New;

17 l->Last->Next = NULL;

18 l->timestamp++;

19 return 1;

20 }

After the error checking, the list is reversed in place if the count of its element is bigger
than 1.9

RotateLeft

1 static int RotateLeft(List *l, size_t n)

2 {

3 ListElement *rvp,*oldStart,*last=NULL;

4 if (l == NULL) return NullPtrError("RotateLeft");

9Looks easy isn’t it? It isn’t. It took me a while to arrive at the code above. Even worst is the
reversing of a double linked list

314 Chapter 8. The sample implementation

5 if (l->Flags & CONTAINER_READONLY)

6 return ErrorReadOnly(l,"RotateLeft");

7 if (l->count < 2 || n == 0)

8 return 0;

9 n %= l->count;

10 if (n == 0) return 0;

11 rvp = l->First;

12 oldStart = rvp;

13 while (n > 0) {

14 last = rvp;

15 rvp = rvp->Next;

16 n--;

17 }

18 l->First = rvp;

19 last->Next = NULL;

20 l->Last->Next = oldStart;

21 l->Last = last;

22 return 1;

23 }

The RotateLeft and the RotateRightfunctions can be implemented without any move-
ment of the stored objects themselves. It suffices to make the list start at another place:
n places after the start for left rotates, or n places before the end for right rotates.

RotateRight

1 static int RotateRight(List *l, size_t n)

2 {

3 ListElement *rvp,*oldStart,*last=NULL;

4 if (l == NULL) return NullPtrError("RotateRight");

5 if (l->Flags & CONTAINER_READONLY)

6 return ErrorReadOnly(l,"RotateRight");

7 if (l->count < 2 || n == 0)

8 return 0;

9 n %= l->count;

10 if (n == 0) return 0;

11 rvp = l->First;

12 oldStart = rvp;

13 n = l->count - n;

14 while (n > 0) {

15 last = rvp;

16 rvp = rvp->Next;

17 n--;

18 }

8.4. The code 315

19 l->First = rvp;

20 if (last == NULL) {

21 iError.RaiseError("RotateRight",CONTAINER_INTERNAL_ERROR);

22 return CONTAINER_INTERNAL_ERROR;

23 }

24 last->Next = NULL;

25 l->Last->Next = oldStart;

26 l->Last = last;

27 return 1;

28 }

The RotateRight/RotateLeft functions check their arguments to the contrary of
their ValArray counterparts that do not. This implementation shows also a checking
of values that should be non-null but could be NULL if there is a memory overwrite or
another similar problem.

Save

1 static int Save(List *L,FILE *stream, SaveFunction saveFn,void *arg)

2 {

3 size_t i;

4 list_element *rvp;

5

6 if (saveFn == NULL) {

7 saveFn = DefaultSaveFunction;

8 arg = &L->ElementSize;

9 }

10

11 if (fwrite(&ListGuid,sizeof(guid),1,stream) <= 0)

12 return EOF;

13

14 if (fwrite(L,1,sizeof(List),stream) <= 0)

15 return EOF;

16 rvp = L->First;

17 for (i=0; i< L->count; i++) {

18 char *p = rvp->Data;

19

20 if (saveFn(p,arg,stream) <= 0)

21 return EOF;

22 rvp = rvp->Next;

23 }

24 return 1;

25 }

The format of the saved list container is:

316 Chapter 8. The sample implementation

1. The GUID of the list container: 128 bytes

2. The Header object

3. The data for all the elements of the list. This is the siz of the container times the
element size.

Seek

1 static void *Seek(Iterator *it,size_t idx)

2 {

3 struct ListIterator *li = (struct ListIterator *)it;

4 list_element *rvp;

5

6

7 if (li->L->count == 0)

8 return NULL;

9

10 rvp = li->L->First;

11 if (idx >= li->L->count-1) {

12 li->index = li->L->count-1;

13 li->Current = li->L->Last;

14 }

15 else if (idx == 0) {

16 li->index = 0;

17 li->Current = li->L->First;

18 }

19 else {

20 li->index = idx;

21 while (idx > 0) {

22 rvp = rvp->Next;

23 idx--;

24 }

25 li->Current = rvp;

26 }

27 return li->Current;

28 }

This function positions the given iterator at the desired position. Several alternatives
are possible, for instance position the iterator at a given item. This can be obtained
now only by calling first IndexOf, then Seek, what forces to go through the list twice.

SetCompareFunction

8.4. The code 317

1 static CompareFunction SetCompareFunction(List *l,CompareFunction fn)

2 {

3 CompareFunction oldfn = l->Compare;

4

5 if (l == NULL) {

6 iError.RaiseError("iList.SetCompareFunction",

7 CONTAINER_ERROR_BADARG);

8 return NULL;

9 }

10 if (fn != NULL) {

11 if (l->Flags&CONTAINER_LIST_READONLY) {

12 l->RaiseError("iList.SetCompareFunction",

13 CONTAINER_LIST_READONLY);

14 }

15 else l->Compare = fn;

16 }

17 return oldfn;

18 }

This function returns the old value of the comparison function and sets it to the new
one, if the new one is not NULL . This allows to query the comparison function without
changing it, avoiding yet another trivial function like GetComparisonFunction. This is
just what in other languages like Objective C or others is called a property of the iList
object. Objective C makes all this automatic with its synthetise directive.

In C there isn’t any such hand holding and you have to write that code yourself.
There are several other functions in the same style like SetErrorFunction, Size (that
returns the count field) and SetFlags. They aren’t listed here but you can look at the
code by browsing through the list.c file distributed with this software.

Sizeof

1 static size_t Sizeof(List *l)

2 {

3 if (l == NULL) {

4 return sizeof(List);

5 }

6

7 return sizeof(List) +

8 l->ElementSize * l->count +

9 l->count *sizeof(list_element);

10 }

Returns the number of bytes used by the given list, including the data, and all overhead.
For lists, tghis is the size of the header object, and for each element the overhead of a
pointer to the next element and the size of each stored object. With a NULL list pointer

318 Chapter 8. The sample implementation

returns the size of the list header object, what allows you to allocate buffers containing
a header object and use the Init function.

Sort

1 static int Sort(List *l)

2 {

3 list_element **tab;

4 size_t i;

5 list_element *rvp;

6 CompareInfo ci;

7

8 if (l == NULL) {

9 iError.RaiseError("iList.Sort",CONTAINER_ERROR_BADARG);

10 return CONTAINER_ERROR_BADARG;

11 }

12 if (l->count < 2)

13 return 1;

14 if (l->Flags&CONTAINER_LIST_READONLY) {

15 l->RaiseError("iList.Sort",CONTAINER_ERROR_READONLY);

16 return CONTAINER_ERROR_READONLY;

17 }

18 tab = l->Allocator->malloc(l->count * sizeof(list_element *));

19 if (tab == NULL) {

20 l->RaiseError("iList.Sort",CONTAINER_ERROR_NOMEMORY);

21 return CONTAINER_ERROR_NOMEMORY;

22 }

23 rvp = l->First;

24 for (i=0; i<l->count;i++) {

25 tab[i] = rvp;

26 rvp = rvp->Next;

27 }

28 ci.Container = l;

29 ci.ExtraArgs = NULL;

30 qsortEx(tab,l->count,sizeof(list_element *),lcompar,&ci);

31 for (i=0; i<l->count-1;i++) {

32 tab[i]->Next = tab[i+1];

33 }

34 tab[l->count-1]->Next = NULL;

35 l->Last = tab[l->count-1];

36 l->First = tab[0];

37 l->Allocator->free(tab);

38 return 1;

39

8.4. The code 319

40 }

This function basically builds an array and calls quicksort, nothing really fancy. Note
that it calls a modified version of the library function quicksort, since it needs to pass
a context to it for the comparison function. The default comparison function is listed
below:

1 static bool lcompar (const void *elem1, const void *elem2,

2 CompareInfo *ExtraArgs)

3 {

4 list_element *Elem1 = *(list_element **)elem1;

5 list_element *Elem2 = *(list_element **)elem2;

6 List *l = (List *)ExtraArgs->Container;

7 CompareFunction fn = l->Compare;

8 return fn(Elem1->Data,Elem2->Data,ExtraArgs);

9 }

The default comparison function pulls the list compare function and calls it with the
extra arguments needed to pass a context to it.

SplitAfter

1 1 static List *SplitAfter(List *l, ListElement *pt)

2 2 {

3 3 ListElement *pNext;

4 4 List *result;

5 5 size_t count=0;

6 6

7 7 if (pt == NULL || l == NULL) {

8 8 iError.NullPtrError("iList.SplitAfter");

9 9 return NULL;

10 10 }

11 11 if (l->Flags&CONTAINER_READONLY) {

12 12 ErrorReadOnly(l,"SplitAfter");

13 13 return NULL;

14 14 }

15 15 pNext = pt->Next;

16 16 if (pNext == NULL) return NULL;

17 17 result = CreateWithAllocator(l->ElementSize, l->Allocator);

18 18 if (result) {

19 19 result->First = pNext;

20 20 while (pNext) {

21 21 count++;

22 22 if (pNext->Next == NULL) result->Last = pNext;

23 23 pNext = pNext->Next;

320 Chapter 8. The sample implementation

24 24 }

25 25 result->count = count;

26 26 }

27 27 else return NULL;

28 28 pt->Next = NULL;

29 29 l->Last = pt;

30 30 l->count -= count;

31 31 l->timestamp++;

32 32 return result;

33 33 }

After the normal error checking of arguments, this function gets the next element after
the given one. If there is none, it is impossible to split the list after after the given
element since it is the last. We return NULL (lines 15-16).

If there is an element, it will be the head of the new list. We create a new list (line
17) using the source list allocator and we set the given element (argument pt) as the
first one of the new list. We then count the elements (lines 20 to 24) in the new list
since we need to fill the ”count” field in the new list. This makes this operation much
more expensive than it would be if we didn’t maintain a ”count” field10. In lines 27-31
we set the correct fields in the new list, decrease the ”count” field in the source list by
the number of elements in the new list, and we note the fact that the input list has been
modified in line 31.

RotateLeft

1 1 static int RotateLeft(List * l, size_t n)

2 2 {

3 3 ListElement *rvp, *oldStart, *last = NULL;

4 4 if (l == NULL)

5 5 return NullPtrError("RotateLeft");

6 6 if (l->Flags & CONTAINER_READONLY)

7 7 return ErrorReadOnly(l, "RotateLeft");

8 8 if (l->count < 2 || n == 0)

9 9 return 0;

10 10 n %= l->count;

11 11 if (n == 0)

12 12 return 0;

13 13 rvp = l->First;

14 14 oldStart = rvp;

15 15 while (n > 0) {

10This is an exception however, most of the time the ”count” field will save us a lot of work when
we can return a precalculated field instead of going through all elements of the list each time we need
to know that count. Besides we need to set the pointer to the last element, so we would need to count
anyway.

8.4. The code 321

16 16 last = rvp;

17 17 rvp = rvp->Next;

18 18 n--;

19 19 }

20 20 l->First = rvp;

21 21 last->Next = NULL;

22 22 l->Last->Next = oldStart;

23 23 l->Last = last;

24 24 return 1;

25 25 }

Rotating a list is very simple: Cut the list at the desired place, and append the list
elements from the start up to the cut point at the end of the list.

After the error checking is done (lines 3-12) we start a first loop where we find the
place to cut: lines 15-19. Then, we cut (set the previous element’s Next pointer toNULL

in line 21) and append the elements we cutted to the end of the list, updating the list’s
header.

UseHeap

1 static int UseHeap(List *L, ContainerAllocator *m)

2 {

3 if (L == NULL) {

4 iError.RaiseError("iList.UseHeap",CONTAINER_ERROR_BADARG);

5 return CONTAINER_ERROR_BADARG;

6 }

7 if (L->Heap || L->count) {

8 L->RaiseError("UseHeap",CONTAINER_ERROR_NOT_EMPTY);

9 return CONTAINER_ERROR_NOT_EMPTY;

10 }

11 if (m == NULL)

12 m = CurrentAllocator;

13 L->Heap = iHeap.Create(L->ElementSize+sizeof(list_element), m);

14 return 1;

15 }

This function installs a heap to be used by the list. This is very important for huge lists,
since performance goes quickly down if you call malloc for each element you add to the
list. Basically, the heap is just a way to allocate memory in blocks so that malloc calls
are reduced.

8.4.2 Queues

Queues are, to use the C++ terminology, adaptor containers, i.e. containers based
on other containers, in this case a list. We describe here an implementation with the

322 Chapter 8. The sample implementation

objective to show how those adaptors can be implemented, and how you can restrain
the interface of the underlying container with a small cost.

The data structure used is very simple:

typedef struct _Queue {

QueueInterface *VTable;

List *Items;

} _Queue;

Just two fields: the interface and the underlying list. We do not document here some
functions of the queue interface that trivially call the corresponding List functions.

Back

1 static int Back(Queue *Q,void *result)

2 {

3 size_t idx;

4 if (Q == NULL) {

5 iError.RaiseError("iQueue.Front",CONTAINER_ERROR_BADARG);

6 return CONTAINER_ERROR_BADARG;

7 }

8 idx = iList.Size(Q->Items);

9 if (idx == 0)

10 return 0;

11 return iList.CopyElement(Q->Items,idx-1,result);

12 }

Returns the last element of the queue. We do not want to have any errors issued by the
underlying list, so we test for NULL . We use the size as an index, except of course when
the queue is empty.

CreateWithAllocator

1 static Queue *CreateWithAllocator(size_t ElementSize,

2 ContainerAllocator *allocator)

3 {

4 Queue *result = allocator->malloc(sizeof(Queue));

5

6 if (result == NULL)

7 return NULL;

8 result->Items = iList.CreateWithAllocator(ElementSize,allocator);

9 if (result->Items == NULL) {

10 allocator->free(result);

11 return NULL;

12 }

13 result->VTable = &iQueue;

8.4. The code 323

14 return result;

15 }

Using the given allocator, we get memory for the Queue object, then for the list using
the given allocator.

Finalize

1 static int Finalize(Queue *Q)

2 {

3 ContainerAllocator *allocator = iList.GetAllocator(Q->Items);

4 iList.Finalize(Q->Items);

5 allocator->free(Q);

6 return 1;

7 }

We should free the queue header object with the same allocator we used for the list. We
obtain it first, before we free the list.

Front

1 static int Front(Queue *Q,void *result)

2 {

3 size_t idx;

4 if (Q == NULL) {

5 iError.RaiseError("iQueue.Front",CONTAINER_ERROR_BADARG);

6 return CONTAINER_ERROR_BADARG;

7 }

8 idx = iList.Size(Q->Items);

9 if (idx == 0)

10 return 0;

11 return iList.CopyElement(Q->Items,0,result);

12 }

Same as Back. We make the error checking to avoid errors when accessing the list.

Sizeof

1 static size_t Sizeof(Queue *q)

2 {

3 if (q == NULL) return sizeof(Queue);

4 return sizeof(*q) + iList.Sizeof(q->Items);

5 }

If passed a NULL queue, we return the size of the Queue header object. Note that we
do not return the size of the underlying list even if it has been allocated and uses up

324 Chapter 8. The sample implementation

space. An alternative design would have required to take into account the list header as
it would have been part of the overhead of the Queue object. But in that case we could
never know the size of the Queue itself...

8.4.3 The dictionary

Dictionary is an instance of a hash table where the key is supposed to contain character
strings (names) that are associated with some data. Hash tables are normal tables that
are indexed by a hash function, i.e. a function that maps character strings into some
integer that is used to index the table. At each slot of the table we find a linked list of
elements that were classified by the hash function into the same slot. If we have a good
hash function, i.e. one that spreads evenly the elements across the table, we can have a
speed up for searching an element of the order of the table size, in the best case.

Hashing

One of the important aspects of a dictionary implementation is to use a good hash
function, i.e. one that distributes evenly the keys. I have picked up for this work one of
the most used functions of this type. Here is the documentation I found for this function
in the Apache runtime:

This is the popular ‘times 33’ hash algorithm which is used by perl and
that also appears in Berkeley DB. This is one of the best known hash func-
tions for strings because it is both computed very fast and distributes very
well.

The originator may be Dan Bernstein but the code in Berkeley DB cites
Chris Torek as the source. The best citation I have found is ”Chris Torek,
Hash function for text in C, Usenet message <27038@mimsy.umd.edu> in
comp.lang.c , October, 1990.” in Rich Salz’s USENIX 1992 paper about INN
which can be found at http://citeseer.nj.nec.com/salz92internetnews.html.

The magic of number 33, i.e. why it works better than many other
constants, prime or not, has never been adequately explained by anyone. So
I try an explanation: if one experimentally tests all multipliers between 1
and 256 (as I did while writing a low-level data structure library some time
ago) one detects that even numbers are not useable at all. The remaining
128 odd numbers (except for the number 1) work more or less all equally
well. They all distribute in an acceptable way and this way fill a hash table
with an average percent of approx. 86%.

If one compares the chi2 values of the variants (see Bob Jenkins “Hashing
FAQ” at http://burtleburtle.net/bob/hash/hashfaq.html for a description

of chi2), the number 33 not even has the best value.
But the number 33 and a few other equally good numbers like 17, 31, 63,

127 and 129 have nevertheless a great advantage to the remaining numbers in

8.4. The code 325

the large set of possible multipliers: their multiply operation can be replaced
by a faster operation based on just one shift plus either a single addition or
subtraction operation. And because a hash function has to both distribute
good and has to be very fast to compute, those few numbers should be
preferred.

– Ralf S. Engelschall <rse@engelschall.com>

Julienne Walker has another twist to this story. She says:11

Bernstein hash
Dan Bernstein created this algorithm and posted it in a newsgroup. It

is known by many as the Chris Torek hash because Chris went a long way
toward popularizing it. Since then it has been used successfully by many,
but despite that the algorithm itself is not very sound when it comes to
avalanche and permutation of the internal state. It has proven very good
for small character keys, where it can outperform algorithms that result in
a more random distribution.

Bernstein’s hash should be used with caution. It performs very well in
practice, for no apparently known reasons (much like how the constant 33
does better than more logical constants for no apparent reason), but in theory
it is not up to snuff. Always test this function with sample data for every
application to ensure that it does not encounter a degenerate case and cause
excessive collisions.

hash

1 static unsigned int hash(const unsigned char *key)

2 {

3 unsigned int Hash = 0;

4 const unsigned char *p;

5

6 for (p = key; *p; p++) {

7 Hash = Hash * 33 + scatter[*p];

8 }

9 return Hash;

10 }

Note that I have slightly modified the algorithm by using a scatter table of 256 positions
filled with random numbers. The objective is to avoid that letters that appear frequently
in the text would tend to cluster the keys in the same position.

11In the very interesting web page
http://eternallyconfuzzled.com/tuts/algorithms/jsw tut hashing.aspx
In that page she also proposes to replace the addition operation with an XOR operations. She says
that that improves the algorithm.

326 Chapter 8. The sample implementation

This default function may not be the best for the data in the user’s application.
The library has reserved a field in the dictionary header object for a pointer to a hash
function that can be changed by the user.

Creation

Another important aspect of the dictionary implementation is the decision of how many
slots the table should have. I have followed the recommendations of Dave Hanson in his
Book ”C interfaces and Implementations”12, and I use a small table of primes to decide
what size the table should have:

Init

1 static Dictionary *Init(Dictionary *Dict,

2 size_t elementsize,size_t hint)

3 {

4 size_t i,allocSiz;

5 static unsigned primes[] = { 509, 509, 1021, 2053, 4093, 8191,

6 16381, 32771, 65521, 131071, 0 };

7 for (i = 1; primes[i] < hint && primes[i] > 0; i++)

8 ;

9 allocSiz = sizeof (Dictionary);

10 memset(Dict,0,allocSiz);

11 allocSiz = primes[i-1]*sizeof (Dict->buckets[0]);

12 Dict->buckets = CurrentAllocator->malloc(allocSiz);

13 if (Dict->buckets == NULL) {

14 return NULL;

15 }

16 memset(Dict->buckets,0,allocSiz);

17 Dict->size = primes[i-1];

18 Dict->hash = hash;

19 Dict->VTable = &iDictionary;

20 Dict->ElementSize = elementsize;

21 Dict->Allocator = CurrentAllocator;

22 Dict->RaiseError = iError.RaiseError;

23 return Dict;

24 }

The primes in the table are the nearest primes to the regular powers of two. Table
sizes can range from 509 to more than 130000, what gives a really wide range of table
sizes. Obviously, bigger tables could be necessary, and other specialized implementations
could use the hint parameter to extend this algorithm or to use a completely different
algorithm altogether.

12C Interfaces and Implementations, David R. Hanson, Addison Wesley. ISBN 0-201-49841-3 3rd
printing June 2001 page 149

8.4. The code 327

Adding elements

This operation consists of:

• hash the key to find a slot

• go through the list at that slot to see if the key is already there

• if key is already there replace

• if key is absent add it in a new list item

Add

1 static int Add(Dictionary *Dict,const unsigned char *Key,void *Value)

2 {

3 size_t i;

4 struct DataList *p;

5 unsigned char *tmp;

6

7 if (Dict == NULL)

8 return NullPtrError("Add");

9 if (Dict->Flags & CONTAINER_READONLY)

10 return ReadOnlyError(Dict,"Add");

11 if (Key == NULL || Value == NULL)

12 return BadArgError(Dict,"Add");

13 i = (*Dict->hash)(Key) % Dict->size;

14 for (p = Dict->buckets[i]; p; p = p->Next) {

15 if (strcmp(Key, p->Key) == 0)

16 break;

17 }

18 Dict->timestamp++;

19 if (p == NULL) {

20 p = Dict->Allocator->malloc(sizeof(*p)+Dict->ElementSize);

21 tmp = Dict->Allocator->malloc(1+strlen((char *)Key));

22 if (p == NULL || tmp == NULL) {

23 if (p) Dict->Allocator->free(p);

24 if (tmp) Dict->Allocator->free(tmp);

25 return NoMemoryError(Dict,"Add");

26 }

27 p->Value = (void *)(p+1);

28 strcpy(tmp,Key);

29 p->Key = tmp;

30 p->Next = Dict->buckets[i];

31 Dict->buckets[i] = p;

328 Chapter 8. The sample implementation

32 Dict->count++;

33 }

34 memcpy((void *)p->Value,Value,Dict->ElementSize);

35 return 0;

36 }

Following the logical steps outlined above, we:

1. Call the hash function and use its result modulo the size of the slot table to fetch
the list at the indicated slot.

2. See if the key was absent. If that is the case, we need to add a new key. We copy
the key and allocate memory for a new list element that is initialized afterwards
with the copied value of the key and inserted into the list.

3. Copy in the value. If it was a new key, its value is initialized, if the key was already
present we overwrite the old contents.

This function uses strcmp for comparing keys. This has the advantage of simplicity and
speed, but in many other contexts a key comparison function would be necessary, to
allow for keys in Unicode for instance, or for binary keys, for instance a GUID or similar
binary data.

An important design decision was to replace the data associated with a key if the key
is already there. This is a decision that has consequences for all associative containers,
since it must be coherent in all of them. Since the ”Insert” function allows for non-
destructive insertions, Add was allowed to replace contents since this is a very common
operation for instance in some symbol tables, where ”Insert if absent or replace if present”
is used to ensure that a symbol is associated with a certain value. 13. At the same time
we need a Replace function since we want to get an error if the element we want to
replace was not found. A small table makes this clearer

Add Insert or replace an item for a key
Insert Insert, error if the key was present
Replace Replace, error if key was absent

Implementing iterators

Iterators in sequential containers are conceptually easy: just start at the first and stop
at the last. In associative containers however things are more complicated since there
is no obvious way to order them. The solution retained in the sample implementation
involves going through all elements starting at the first element of the slots table, and for
each slot go through the linked list of items if any. This guarantees to visit all elements
in a fixed order. As an example of this here is the Apply function that should go through
all elements calling the given function for each one of them.

13Note that the C++ map::insert does not replace an element

8.4. The code 329

Apply

1 static int Apply(Dictionary *Dict,

2 int (*apply)(const char *Key,

3 const void *Value,

4 void *ExtraArgs),

5 void *ExtraArgs)

6 {

7 size_t i;

8 unsigned stamp;

9 struct DataList *p;

10

11 if (Dict == NULL) {

12 return NullPtrError("Apply");

13 }

14 if (apply == NULL)

15 return BadArgError(Dict,"Apply");

16 stamp = Dict->timestamp;

17 for (i = 0; i < Dict->size; i++) {

18 for (p = Dict->buckets[i]; p; p = p->Next) {

19 apply(p->Key,p->Value, ExtraArgs);

20 if (Dict->timestamp != stamp)

21 return 0;

22 }

23 }

24 return 1;

25 }

As we outlined above, we start at slot zero, going upwards. If we find a non-empty
slot, we go through the linked list of items.

Iterators are implemented using the same algorithm, and need conceptually two
indexes to remember their position: a first index for the slots table, and another for the
position in the list of items at that slot.

The implementation of the dictionary iterator is as follows:

struct DictionaryIterator {

Iterator it;

Dictionary *Dict;

size_t index;

struct DataList *dl;

size_t timestamp;

unsigned long Flags;

};

The index field remembers the position in the slot table, and the dl field is just a small
structure that contains a link to the next item in the linked list and a pointer to the key.

330 Chapter 8. The sample implementation

Storing the list element itself spare us the work of going through all the list to position
ourselves at each advance of the cursor in the list.

8.4.4 The bloom filter

This container is a completely different beast as all other ones we have in the library. It
is a probabilistic data structure. It was conceived by Mr Burton Howard Bloom in 1970
according to D. E Knuth in his Art of Computer Programming.

Bloom filters are designed to cheaply test if a given element is in a large set. It is
possible that the filter says that an element is there when in fact, it is not. But if the
filter says it is not there you can be ceratin that the element is not in the set.

You can add elements to the set but not remove them. The more elements you add
to the filter, the larger the posibility of getting false positives, i.e. getting an answer of
”yes, the element is there” when in fact it is not.

8.4.5 Debugging malloc

The library provides a sample of how a malloc used for debugging allocation problems
could look like. It is designed to be enhanced and even if it has several important
features like detection of double free and buffer overflows, it is not a competitor for the
professional versions you can find in the market like valgrind or similar.

Malloc

1 static void *Malloc(size_t size)

2 {

3 register char *r;

4 register size_t *ip = NULL;

5

6 size = ALIGN_DEFAULT(size);

7 size += 3 * sizeof(size_t);

8 r = malloc(size);

9 if (r == NULL)

10 return NULL;

11 AllocatedMemory += size;

12 ip = (size_t *) r;

13 *ip++ = SIGNATURE;

14 *ip++ = size;

15 memset(ip, 0, size - 3*sizeof(size_t));

16 ip = (size_t *) (&r[size - sizeof(size_t)]);

17 *ip = MAGIC;

18 return (r + 2 * sizeof(size_t));

19 }

The algorithm is as follows:

8.4. The code 331

• The given size will be aligned to a multiple of size t. It is assumed that this
size is the size of a register, and will be good for any type of allocation. In some
machines this may be completely wrong, for instance for some quantities the Intel
processors need an alignment of 16 bytes, and there is no implementation of size t

with that size.

• We reserve three words more than the requested size to store:

1. The ”magic number”. This is just an integer that will enable us to ensure
that we are dealing with a valid block. Blocks that have this number two
words below the address passed to our Free function will be assumed to be
real blocks. There is of course a chance that the memory could contain that
number for other reasons, but choosing a value that can’t be a pointer and
that is high above 100 millions give us a fighting chance that the probablity
of hitting a bad positive is fairly low.

2. The length of the block. This will allow us to verify that nothing was written
beyond the required length of the block.

3. A guard at the end of the block. We will ensure that we can read this quantity
when freeing the block.

• We obtain memory using malloc. If not available we just return NULL .

• We keep a counter of all memory allocated so far. This counter should be zero at
program exit. It helps to detect the leaks between two operations: it suffices to
note the value of the counter before some part of the software and then see if the
counter returns to the same value after the module has finished.

• We write the two different integers at the start and at the end of the block, together
with its size.

• We set to zero all memory even if the program didn’t ask us. This ensures that any
error that accesses uninitialized memory will always have the same consequences.

The other functions that complete this memory manager (free, realloc calloc) are not
shown here (they are available in the source code of the library). They just undo what
Malloc has built, calling the error functions if they detect a problem.

This simple system has several drawbacks.

• If a buffer ”underflow” happens, i.e. something is written to memory before the
start of the block, our field ”length” could be wrong. Depending on the resulting
contents of the length field after the overwrite we could have a bogus length and
access some invalid memory.

• Memory overwrites after the magic number that guards the end of the block are
not detected. This is obviously impossible to detect unless we would just inspect
each memory write, but a few words more after the end of the block could give us
some extra security.

332 Chapter 8. The sample implementation

For completeness here is the code of the free function for the debugging malloc sample:

Free

1 1 static void Free(void *pp)

2 2 {

3 3 size_t *ip = NULL;

4 4 size_t s;

5 5 register char *p = pp;

6 6 if (p == NULL)

7 7 return;

8 8 p -= 2 * sizeof(size_t);

9 9 ip = (size_t *) p;

10 10 if (*ip == SIGNATURE) {

11 11 *ip++ = 0;

12 12 s = *ip;

13 13 ip = (size_t *) (&p[s - sizeof(size_t)]);

14 14 if (*ip != MAGIC) {

15 15 /* overwritten block size */

16 16 iError.RaiseError("Free",

17 CONTAINER_ERROR_BUFFEROVERFLOW);

18 17 return;

19 18 }

20 19 *ip = 0;

21 20 AllocatedMemory -= s;

22 21 memset(p,66,s);

23 22 free(p);

24 23 }

25 24 else {

26 25 /* Wrong block passed to Free */

27 26 iError.RaiseError("Free",CONTAINER_ERROR_BADPOINTER);

28 27 }

29 28 }

• Line 6: If we receive a NULL argument is not an error (C99 standard).

• Line 8: We seek to the start of the real block and we point to it with a pointer to
int (line 9).

• If we find the signature we erase the signature immediately (line 11). This avoids
that we ever process this block again. We get in line 12 the size of the block and
we point to the end of it. If we do not find our magic number it has been erased
because our block was somehow overwritten. We report that and stop any further
processing.

8.4. The code 333

• If we find our magic number all is OK and we free the block. We set it to zero
before to avoid that its data is used again (line 21).

• If we do not find the signature after we seek for it we do nothing but report an
error: the block has been overwritten or we have been handed a bogus pointer
to our free function. Since our data is written before the start of the block, the
software assumes that it is a bad pointer since in most cases buffer overflows go
beyond the end of the block. It could be that it is actually a buffer overflow error
however.

8.4.6 The observer interface

This interface allows arbitrary functions to be called when some interesting event hap-
pens. It supposes several actors that play together:

• An object that wants to be notified when some event occurs. This object will be
represented by its callback function.

• An object that emits events and necessary calls the interface to announce them.

• An associative interface that associates objects with their corresponding observer
functions.

The observer interface has three entry points:

1. Subscribe. This operation is started by an object that wants to be notified of
events happening in a specific container. It calls the associative interface to be
notified when those events occur.

2. Notify. The container sends events descriptions to the interface. The interface
searches the observer list and if an interested object exists, its associated function
is called.

3. Unsubscribe Either the container is going out of scope or the object that receives
the notifications is going out of scope and wants to stop the process. The associa-
tive interface is called to break the event stream. It can be that an either object is
no longer interested in receiving notifications for a specific container without any
change in scope: One of the objects desires to break the relationship.

The observer object then, is very simple:

typedef struct _tagObserver {

void *ObservedObject;

ObserverFunction Callback;

unsigned Flags;

} Observer;

334 Chapter 8. The sample implementation

The association is between an observed object (the container) and another unspecified
object represented by its callback here. The flags contain in each bit an event code14. If
an observer wants to subscribe to several events it sets different bits in this field.

Note that we do not characterize further the observed object: it is just a void *. This
is not a great idea since the InitObserver function assumes it is a generic container.

We need a table of this objects because several containers could have several observers
defined.

static Observer *ObserverVector;

static size_t vsize;

Now we can start describing the functions themselves

Subscribe

1 static int Subscribe(void *ObservedObject,

2 ObserverFunction callback, unsigned flags)

3 {

4 Observer result;

5 int r = InitObserver(&result,ObservedObject,callback,flags);

6 if (r > 0)

7 r = AddObject(&result);

8 return r;

9 }

We initialize an observer object, and if that succeeds we add it to the association tables.
We use temporary storage for the initialization because the ”AddObserver” function
copies the contents into the table15.

InitObserver

1 static int InitObserver(Observer *result,void *ObservedObject,

2 ObserverFunction callback, unsigned flags)

3 {

4 GenericContainer *gen = ObservedObject;

5 unsigned Subjectflags = gen->Flags;

6 Subjectflags |= CONTAINER_HAS_OBSERVER;

7 gen->Flags=Subjectflags;

8 memset(result,0,sizeof(Observer));

9 result->ObservedObject = ObservedObject;

14According to the C99 standard, an unsigned int is at least 16 bits what gives up to 16 different
events.

15In the first versions the Vector interface was used to implement the table. This had several
advantages, but since the observer interface is used by all containers, the vector interface would be also
included by all other containers, what would mean too much code bloat. The solution was to replicate
a subset of the functionality of the vector interface here

8.4. The code 335

10 result->Callback = callback;

11 result->Flags = flags;

12 if (ObserverVector == NULL && initVector() == 0) {

13 return CONTAINER_ERROR_NOMEMORY;

14 }

15 return 1;

16 }

This function assumes that it receives a container that follows the requirements of generic
containers, i.e. it has a Get/Set flags field. It sets a bit in the flags field that is tested
at each function that modifies the number of elements within the container logic. This
means in most machines a bit test, a very fast operation that should not really affect
the speed of the library code in a significant way.

A far more important consideration is that the interface is called with a notification
for many functions that the user hasn’t subscribed at all. This could be speeded up
simply by storing the flags somewhere in the container, but the sample implementation
doesn’t go that far. The reason is that it is assumed that observers are seldom used,
and the objects that have an observer defined are surely heavyweight objects where the
slow down caused by the observer interface is not that significant.

Of course this assumptions could be very wrong: other, better implementations could
decide otherwise.

AddObject

1 static int AddObject(Observer *ob)

2 {

3 size_t i;

4 Observer *tmp;

5

6 1: for (i=0; i<vsize;i++) {

7 if (ObserverVector[i].ObservedObject==NULL) {

8 memcpy(ObserverVector+i,ob,sizeof(Observer));

9 return 1;

10 }

11 }

12 2: tmp = realloc(ObserverVector,(vsize+CHUNK_SIZE)*sizeof(Observer));

13 if (tmp == NULL) {

14 iError.RaiseError("iObserver.Subscribe",

15 CONTAINER_ERROR_NOMEMORY);

16 return CONTAINER_ERROR_NOMEMORY;

17 }

18 ObserverVector = tmp;

19 memset(ObserverVector+vsize+1,0,(CHUNK_SIZE-1)*sizeof(Observer));

20 memcpy(ObserverVector+vsize,ob,sizeof(Observer));

336 Chapter 8. The sample implementation

21 vsize+= CHUNK_SIZE;

22 return 1;

23 }

The AddObject function is responsible for inserting a new association in the existing
table. First (in 1: above) it searches for a free slot. If a free slot is available it copies
the new association into it and returns.

If there isn’t any free slot it attempts to enlarge the table (2:). If an error occurs,
the original table is still valid but no more elements can’t be added. It reports the error
and returns with the error code.

Otherwise all went well, and a new element is inserted.

Notify

1 static int Notify(void *ObservedObject,unsigned operation,

2 void *ExtraInfo1,void *ExtraInfo2)

3 {

4 int count=0;

5 size_t idx = 0;

6 void *ExtraInfo[2];

7

8 ExtraInfo[0] = ExtraInfo1;

9 ExtraInfo[1] = ExtraInfo2;

10 for (idx=0; idx < vsize;idx++) {

11 if (ObserverVector[idx].ObservedObject == ObservedObject) {

12 if (ObserverVector[idx].Flags & operation) {

13 ObserverVector[idx].Callback(ObservedObject,

14 operation,ExtraInfo);

15 count++;

16 }

17 }

18 }

19 return count;

20 }

This is a simple linear search function. We search for an association that has the same
observed object and in the flags field has a bit set that indicates that is interested in
this operation. If both conditions are true we call the registered function.

Unsubscribe

1 static size_t Unsubscribe(void *ObservedObject,

2 ObserverFunction callback)

3 {

4 size_t idx,count=0;

8.4. The code 337

5

6 1: if (ObservedObject == NULL) {

7 if (callback == NULL)

8 return 0;

9 for (idx=0; idx<vsize;idx++) {

10 if (ObserverVector[idx].Callback == callback) {

11 memset(ObserverVector+idx,0,sizeof(Observer));

12 count++;

13 }

14 }

15 return count;

16 }

17 2: if (callback == NULL) {

18 for (idx=0;idx<vsize;idx++) {

19 if (ObserverVector[idx].ObservedObject == ObservedObject) {

20 memset(ObserverVector+idx,0,sizeof(Observer));

21 count++;

22 }

23 }

24 return count;

25 }

26 3: for (idx=0; idx<vsize;idx++) {

27 if (ObserverVector[idx].ObservedObject == ObservedObject &&

28 ObserverVector[idx].Callback == callback) {

29 memset(ObserverVector+idx,0,sizeof(Observer));

30 count++;

31 }

32 }

33 return count;

34 }

Unsubscribe should handle three different situations:

• The observer object wishes to stop observing. This case is represented by a NULL

ObservedObject argument meaning that all observed objects for this callback
should be affected. This is handled in the code marked 1: above.

• The observed object (the container) wishes to stop being observed. This case is
represented by a NULL callback argument, meaning that all callbacks are affected.
This is handled in the code marked 2: above.

• Only a single relationship should be stopped between a single object and a single
callback. This is handled in the code marked 3: above.

To erase an item we just set it to zero, supposing that the next time an object subscribes
the empty slot will be found and used. Obviously this method could waste some space

338 Chapter 8. The sample implementation

in case we ever do only a single relationship in the whole program. The number of slots
that is reserved in the sample implementation is small, to avoid wasting memory in case
there are few observers. More sophisticated implementations can add features here.

8.4.7 ValArrays

All ValArrays are implemented using a template file that receives its parameters from a
small c file. The same is done for the header files, that are also controlled by a header
file. Since header files do not contain any definitions, only declarations, the different
headers are grouped into a single header file that includes the templated file several
times. Here is an excertp of valarray.h:

1 /** *

2 * ValArraySize_t *

3 ***/

4 #undef ElementType

5 #undef ValArrayInterface

6 #undef ElementType

7 #undef ValArray

9 #undef _ValArray

10 #define ValArray ValArraySize_t

11 #define ElementType size_t

12 #define ValArrayInterface ValArraySize_tInterface

13 #define __IS_UNSIGNED__

14 #define __IS_INTEGER__

15 #include "valarraygen.h"

16 #undef __IS_UNSIGNED__

17 #undef __IS_INTEGER__

18 extern ValArraySize_tInterface iValArraySize_t;

Lines 4-9 remove a possible previous definition of the parameters we are going to use for
valarraygen.h. Then we start defining the parameters:

• _ValArray is ValArraySize_t (line 10)

• The ElementType parameter is the actual type of the elements to be stored into
each ValArray.

• Lines 13 and 14 define symbols used to test for certain attributes within valarray-
gen.h. Some functions are defined in types that correspond to those attributes and
omitted in the types where they are not. The attributes defined are:

– Unsigned. This encloses all unsigned types. In these types bitwise operations
are legal.

8.4. The code 339

– Integer. This encloses all integer types. The mod operation is defined for these
types.

– Not Integer implies float. Operations like fcmp are defined only for floats.

• All parameters defined, we can include the valarraygen.h file. This file uses the
defines above to define the interface data structure.

• The really end user visible name is at line 19: the name of the interface.

The valarraygen.h (gen for generic) defines the interfaces for all the parameter types.
Here is a small part of it so that you get the idea:

typedef struct _ValArray ValArray;

typedef struct tagValArray {

size_t (*Size)(const ValArray *AL);

int (*Contains)(ValArray *AL,ElementType data);

int (*Erase)(ValArray *AL,ElementType elem);

// ... snip

} ValArrayInterface;

In a very similar way, the generic ValArray containers for all basic types are organized
in a small parameter file ”valarrayint.c”, ”valarraydouble.c” and others that make the
necessary defines so that the underlying valarraygen.c defines a function for each required
basic type. Programming in valarraygen.c is fairly simple. Here is a function that is
parametrized by the ElementType macro:

static ElementType GetElement(const ValArray *AL,size_t idx)

{

size_t start=0,incr=1,top=AL->count;

if (AL->Slice) {

start = AL->Slice->start;

incr = AL->Slice->increment;

top = AL->Slice->length;

}

if (idx >=top) {

IndexError("GetElement");

return MinElementType;

}

idx = start+idx*incr;

return AL->contents[idx];

}

We see here:

340 Chapter 8. The sample implementation

• Slice management. All operations in a ValArray are constrained by the current
slice, that starts with a slice that encloses the whole array (the start is zero, the
increment is one, and the length of the slice is the length of the array). When a
slice is defined for an array, it will be used, if not, an implicit slice is used that
includes the whole array.

• Error analysis is simplified for ValArrays, and no NULL checking is done. However
hard errors like an index error (trying to index an aray beyond its bounds) are
always reported.

• Contrary to the GetElement function in the vector container we do not return a
pointer to the element but the element itself. For the basic types this can always be
done and is very efficient. For more complex types use vector instead of ValArray.

The valarraygen.c file can be used to provide for an array of actually any data struc-
ture that is small enough to be returned by value. It suffices to change the ElementType

to the concerned structure whose definition must be visible to the compiler. In the next
chapter we see how this could be done.

9 Building generic components

9.1 Pre processing a generic file

If you take the source code of a container like ”arraylist”, for instance, you will notice
that all those ”void *”are actually a single type, i.e. the type of the objects being stored
in the container. All generic containers use ”void *” as the type under which the objects
are stored so that the same code works with many different types.

Obviously another way is possible. You could actually replace the object type within
that code and build a family of functions and types that can be specialized by its type
parameter. For instance:

struct tag$(TYPE)ArrayInterface;

typedef struct _$(TYPE)Array {

struct tag$(TYPE)ArrayInterface *VTable;

size_t count;

unsigned int Flags;

$(TYPE) *contents;

size_t capacity;

size_t ElementSize;

unsigned timestamp;

CompareFunction CompareFn;

ErrorFunction RaiseError;

} $(TYPE)_Array ;

Now, if we just substitute $(TYPE) with ”double” in the code above, we obtain:

struct tagdoubleArrayInterface;

typedef struct _doubleArray {

struct tagdoubleArrayInterface *VTable;

size_t count;

unsigned int Flags;

double *contents;

size_t capacity;

size_t ElementSize;

unsigned timestamp;

CompareFunction CompareFn;

341

342 Chapter 9. Building generic components

ErrorFunction RaiseError;

} double_Array ;

We use the name of the parameter to build a family of names, and we use the name
of the type parameter to declare an array of elements of that specific type as the contents
of the array. This double usage allows us to build different name spaces for each different
array type, so that we can declare arrays of different types without problems.

Using the same pattern, we can build a family of functions for this container that is
specialized to a concrete type of element. For instance we can write:

static int EraseAt($(TYPE)_Array *AL,size_t idx)

{

$(TYPE) *p;

if (idx >= AL->count)

return CONTAINER_ERROR_INDEX;

if (AL->Flags & AL_READONLY)

return CONTAINER_ERROR_READONLY;

if (AL->count == 0)

return -2;

p = AL->contents+idx;

if (idx < (AL->count-1)) {

memmove(p,p+1,(AL->count-idx)*sizeof($(TYPE)));

}

AL->count--;

AL->timestamp++;

return AL->count;

}

when transformed, the function above becomes:

static int EraseAt(double_Array *AL,size_t idx)

{

double *p;

if (idx >= AL->count)

return CONTAINER_ERROR_INDEX;

if (AL->Flags & AL_READONLY)

return CONTAINER_ERROR_READONLY;

if (AL->count == 0)

return -2;

p = AL->contents+idx;

if (idx < (AL->count-1)) {

memmove(p,p+1,(AL->count-idx)*sizeof(double));

}

AL->count--;

9.1. Pre processing a generic file 343

AL->timestamp++;

return AL->count;

}

Now we can build a simple program in C that will do the substitution work for us.
To make things easier, that program should build two files:

• The header file, that will contain the type definitions for our array.

• The C source file, containing all the parametrized function definitions.

We separate the commands to change the name of the file from the rest of the text by
introducing in the first positions of a line a sequence of three or more @ signs. Normally
we will have two of those ”commands”: one for the header file, another for the c file.

Besides that, our program is just a plain text substitution. No parsing, nor anything
else is required. If we write "$(TYPE)" within a comment or a character string, it will
be changed too.

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

#define MAXLINE_LEN 2048

#define MAX_FNAME 1024

#define EXPANSION_LENGTH 256

int main(int argc,char *argv[])

{

FILE *input,*output=NULL;

char buf[MAXLINE_LEN],

tmpLine[MAXLINE_LEN+EXPANSION_LENGTH];

char tmpBuf[MAX_FNAME];

char outputFile[MAX_FNAME];

char *TypeDefinition;

unsigned lineno = 1;

if (argc < 3) {

fprintf(stderr,

"Usage: %s <template file to expand> <type name>\n",

argv[0]);

return EXIT_FAILURE;

}

input = fopen(argv[1],"r");

if (input == NULL) {

fprintf(stderr,"Unable to open file ’%s’\n",argv[1]);

344 Chapter 9. Building generic components

return EXIT_FAILURE;

}

TypeDefinition = argv[2];

while (fgets(buf,sizeof(buf)-1,input)) {

if (buf[0]==’@’ && buf[1] == ’@’ && buf[2] == ’@’) {

int i=0,j=0;

while (buf[i] == ’@’)

i++;

while (buf[i] != 0 &&

buf[i] != ’\n’ &&

i < MAX_FNAME-1) {

tmpBuf[j++] = buf[i];

i++;

}

tmpBuf[j] = 0;

if (strrepl(tmpBuf,"$(TYPE)",TypeDefinition,NULL)) {

fprintf(stderr,"File name ’%s’ too long\n",

tmpBuf);

return EXIT_FAILURE;

}

strrepl(tmpBuf,"$(TYPE)",TypeDefinition,outputFile);

if (output != NULL)

fclose(output);

output = fopen(outputFile,"w");

if (output == NULL) {

fprintf(stderr,

"Impossible to open ’%s’\n",outputFile);

return(EXIT_FAILURE);

}

}

else if (lineno == 1) {

fprintf(stderr,

"Error: First line should contain the file name\n");

exit(EXIT_FAILURE);

}

else {

/* Normal lines here */

if (strrepl(buf,"$(TYPE)",TypeDefinition,NULL)

>= sizeof(tmpLine)) {

fprintf(stderr,

"Line buffer overflow line %d\n",lineno);

break;

}

strrepl(buf,"$(TYPE)",TypeDefinition,tmpLine);

9.1. Pre processing a generic file 345

fwrite(tmpLine,1,strlen(tmpLine),output);

}

lineno++;

}

fclose(input);

fclose(output);

return EXIT_SUCCESS;

}

The heart of this program is the ”strrepl” function that replaces a given character string
in a piece of text. If you call it with a NULL output parameter, it will return the number
of characters that the replacement would need if any. For completeness, here is the code
for strrepl:

int strrepl(const char *InputString, const char *StringToFind,

const char *StringToReplace, char *output)

{

char *offset = NULL, *CurrentPointer = NULL;

int insertlen;

int findlen = strlen(StringToFind);

int result = 0;

if (StringToReplace)

insertlen = strlen(StringToReplace);

else

insertlen = 0;

if (output) {

if (output != InputString)

memmove(output,InputString,strlen(InputString)+1);

InputString = output;

}

else

result = strlen(InputString)+1;

while (*InputString) {

offset = strstr (!offset ? InputString : CurrentPointer,

StringToFind);

if (offset == NULL)

break;

CurrentPointer = (offset + (output ? insertlen : findlen));

if (output) {

strcpy (offset, (offset + findlen));

memmove (offset + insertlen,

offset, strlen (offset) + 1);

346 Chapter 9. Building generic components

if (insertlen)

memcpy (offset, StringToReplace, insertlen);

result++;

}

else {

result -= findlen;

result += insertlen;

}

}

return result;

}

And now we are done. The usage of this program is very simple:

expand <template file> <type name>

For instance to substitute by ”double” in the template file ”arraylist.tpl” we would
use:

expand arraylist.tpl double

We would obtain doublearray.h and doublearray.c
BUG: Obviously, this supposes that the type name does NOT contain any spaces

or other characters like ’*’ or ”[]”. If you want to use types with those characters you
should substitute them with a ” ” for instance, and make a typedef:

typedef long double long double;

And use that type (”long double”) as the substitution type.

9.2 Using the pre-processor

Instead of using a separate program we can try to use the pre-processor to make the
grunt of the editing work. This is the path taken by the sample implementation. We
will describe here the listgen.c and listgen.h files that implement a type-generic list
container.

Each type needs two files:

1. A header file where the data structures are declared. The name of this file is
composed from the name of the type and the name of the container. For instance
for a double linked list of integers we would have: intdlist.h.

2. An implementation file where the code for the data type resides. The name is the
same as the header file but with a .c extension 1.

1The same constraint applies here to types composed of two words or including characters that
should not appear in file names, for instance the character *. A typedef should be used in these cases.

9.2. Using the pre-processor 347

In the sample implementation the different files (intlist.h, doublelist.h, etc) are
very small files that mainly define a single macro, including afterwards a generic file
with the bulk of the code. For instance here is the intlist.h file:

#include "containers.h"

#undef DATA_TYPE

#define DATA_TYPE int // The name of the type

#include "listgen.h" // The generic header file

#undef DATA_TYPE

#undef LIST_TYPE

#undef LIST_TYPE_

#undef INTERFACE

#undef ITERATOR

#undef ITERFACE_NAME

#undef LIST_ELEMENT

#undef LIST_ELEMENT_

The #undef statements allow to include several files of the same type in a source file.

The generic header file

The generic list file above (listgen.h) has the following tasks:

1. Define the container data type: [type][container] in this case intList. Since
we are defining a list, we define a list element component:

typedef struct LIST_ELEMENT {

struct LIST_ELEMENT *Next;

DATA_TYPE Data;

} LIST_ELEMENT;

This will be expanded by the pre processor to:

typedef struct intListElement {

struct intListElement *Next;

int Data;

} intListElement;

2. Define the interface structure (the function table) using generic notation:

struct INTERFACE_STRUCT_INTERNAL_NAME(DATA_TYPE) {

size_t (*Size)(const LIST_TYPE *L);

unsigned (*GetFlags)(const LIST_TYPE *L);

unsigned (*SetFlags)(LIST_TYPE *L,unsigned flags);

int (*Contains)(const LIST_TYPE *L,const DATA_TYPE element);

348 Chapter 9. Building generic components

int (*Erase)(LIST_TYPE *L,const DATA_TYPE);

int (*EraseAll)(LIST_TYPE *l,const DATA_TYPE);

// ...

};

This will be translated into:

struct __intListInterface {

size_t (*Size)(const intList *L);

unsigned (*GetFlags)(const intList *L);

unsigned (*SetFlags)(intList *L,unsigned flags);

int (*Clear)(intList *L);

int (*Contains)(const intList *L,const int element);

int (*Erase)(intList *L,const int);

int (*EraseAll)(intList *l,const int);

// ...

};

The implementation file

There are two posibilities:

• Replicate all code of the container. This has the advantage of sparing an extra
call instruction at run time and making possible use of specialized code tailored
to the specific data type being compiled.

• Make a thin translation layer to reuse the code of the container. This has the
advantage of minimizing the source code, making bug fixing easier since the bugs
will be fixed in only one place and not in many different specializations.

This first edition of the sample implementation has chosen the second strategy since
the code is new, and probably a lot of changes will be necessary before it stabilizes. In
general we have three types of functions:

• Functions where the signature has changed: instead of working with a void *

they receive the concrete data type of the container specialization. This allows for
compile time checking of arguments, what is a very good improvement over the
generic void * functions. An example of those functions looks like this:

static int Add(LIST_TYPE * l, const DATA_TYPE elem)

{

return iList.Add((List *)l,&elem);

}

• Functions that have the same signature and are replaced by the equivalent func-
tions of the generic container at the creation of the new container.

9.2. Using the pre-processor 349

• Functions that for performance reasons are rewritten in a generic way, i.e. their
body is present in the specialized container. An example is the quick sort function,
that receives an expression parameter in the form of a compile time macro that
is expanded in the body of the function. This enables a big performance boost:
Instead of the sorting function calling a function that does a memcmp of the data,
the comparison expression is used, avoiding two function calls of overhead at each
comparison.

The implementation file receives several other optional parameters.

#define COMPARE_EXPRESSION(a, b) \

((*b)->Data > (*a)->Data ? -1 : (*b)->Data != (*a)->Data)

This expression is used to return -1 for a < b, zero for equality and 1 for a > b2.

2The reason for using this expression instead of the simpler a > b is that it is coherent with the
other uses of the comparison function in other APIs

10 API Overview

Here is a table of all functions of the library. It indicates which functions are implemented
in each container. Some containers are fused together since they implement exactly
the same functions: all the ValArray containers are displayed in a single column, the
containers StringList and wStringList share the same column also.

351

Function List Dlist Vector Val Bit- String Queue Deque Dict. Hash Tree Priority Stream
Name array string collection table map queue buffer

Abs 5
Accumulate 5
Add 5 5 5 5 5 5 5 5 5 5
AddRange 5 5 5 5 5 5 5
And 5 5
AndAssign 5
AndScalar 5
Append 5 5 5 5 5 5
Apply 5 5 5 5 5 5 5 5 5 5
Back 5 5 5 5 5 5 5
BitBlockCount 5
BitLeftShift 5 5
BitRightShift 5 5
CastToArray 5 5
Clear 5 5 5 5 5 5 5 5 5 5 5 5 5
Compare 5
CompareEqual 5 5 5
CompareEqualScalar 5 5 5
CompareScalar 5
Contains 5 5 5 5 5 5 5 5 5 5
Copy 5 5 5 5 5 5 5 5 5 5 5
CopyBits 5
CopyElement 5 5 5 5 5
CopyTo 5 5 5
Create 5 5 5 5 5 5 5 5 5 5 5 5 5
CreateFromFile 5 5
CreateSequence 5
CreateWithAllocator 5 5 5 5 5 5 5 5 5 5 5
Dequeue 5
DivideBy 5
DivideByScalar 5
DivideScalarBy 5
Enqueue 5
Equal 5 5 5 5 5 5 5 5 5 5
Erase 5 5 5 5 5 5 5 5 5 5
EraseAll 5 5 5 5 5
EraseAt 5 5 5 5 5 5
EraseRange 5
FCompare 5
FillSequential 5

Function List Dlist Vector Val Bit- String Queue Deque Dict. Hash Tree Priority Stream

Name array string collection table map queue buffer

Finalize 5 5 5 5 5 5 5 5 5 5 5 5 5
FindFirst 5
FindNext 5
FindText 5
FindTextIndex 5
FindTextPositions 5
FirstElement 5 5
ForEach 5
Fprintf 5
Front 5 5 5 5 5 5 5 5
GetAllocator 5 5 5 5 5 5 5 5
GetCapacity 5 5 5 5
GetData 5 5 5 5 5 5
GetElement 5 5 5 5 5 5 5 5 5
GetElementSize 5 5 5 5 5 5 5 5 5
GetFlags 5 5 5 5 5 5 5 5 5 5
GetHeap 5
GetKeys 5
GetLoadFactor 5
GetPosition 5
GetRange 5 5 5 5 5 5
GetSlice 5
IndexIn 5 5 5
IndexOf 5 5 5 5 5 5
Init 5 5 5 5 5 5 5 5 5
InitIterator 5 5 5 5 5 5 5 5 5 5
InitWithAllocator 5 5 5 5
InitializeWith 5 5 5 5 5 5 5 5
Insert 5 5 5 5 5 5
InsertAt 5 5 5 5 5 5
InsertIn 5 5 5 5 5 5
Inverse 5
LastElement 5 5
LessEqual 5
Load 5 5 5 5 5 5 5 5 5 5
Max 5
Memset 5 5
Min 5
Mismatch 5 5 5
Mod 5
ModScalar 5
MultiplyWith 5
MultiplyWithScalar 5

Function List Dlist Vector Val Bit- String Queue Deque Dict. Hash Tree Priority Stream

Name array string collection table map queue buffer

NewIterator 5 5 5 5 5 5 5 5 5 5
Not 5 5
NotAssign 5
Or 5 5
OrAssign 5
OrScalar 5
Pop 5
PopBack 5 5 5 5 5 5
PopFront 5 5 5 5
PopulationCount 5
Print 5
Product 5
Push 5
PushBack 5 5 5 5 5 5
PushFront 5 5 5 5
Read 5
ReadFromFile 5
RemoveRange 5 5 5 5 5
Replace 5 5
ReplaceAt 5 5 5 5 5 5
Reserve 5
ResetSlice 5
Resize 5 5 5 5
Reverse 5 5 5 5 5 5 5
RotateLeft 5 5 5 5
RotateRight 5 5 5 5
Save 5 5 5 5 5 5 5 5 5 5
Search 5
SearchWithKey 5
Select 5 5 5 5 5
SelectCopy 5 5 5 5 5
SetCapacity 5 5 5 5
SetCompareFunction 5 5 5 5 5 5
SetDestructor 5 5 5 5 5 5 5 5 5
SetElement 5
SetElementData 5 5
SetErrorFunction 5 5 5 5 5 5 5 5 5 5
SetFlags 5 5 5 5 5 5 5 5 5 5
SetHashFunction 5 5
SetPosition 5
SetSlice 5
Size 5 5 5 5 5 5 5 5 5 5 5 5 5
Sizeof 5 5 5 5 5 5 5 5 5 5 5 5

Function List Dlist Vector Val Bit- String Queue Deque Dict. Hash Tree Priority Stream

Name array string collection table map queue buffer

SizeofIterator 5 5 5 5 5 5 5 5 5
Sort 5 5 5 5 5
Splice 5
SplitAfter 5 5
StringToBitString 5
SubtractFrom 5
SubtractFromScalar 5
SubtractScalarFrom 5
SumScalarTo 5
SumTo 5
Union 5
UseHeap 5 5
Write 5
WriteToFile 5 5
Xor 5 5
XorAssign 5
XorScalar 5
Totals 56 57 60 94 56 65 11 28 35 26 28 13 15
Total APIs 544

356 Chapter 10. API Overview

Start 2009

Release 1.0 2010/06/24

Creation of google project 2010/12/28

Buffers 2011/01/14

Destructor functions 2011/02/04

Observer interface 2011/03/26

Valarrays 2011/04/11

Masks 2011/04/30

WstrCollection 2012/05/26

Stringlist 2011/08/16

WDictionary 2012/03/01

Priority Queue 2012/04/30

Templated lists 2012/05/22

Index

Abs
ValArray, 222

Accumulate
ValArray, 223

Add
BitString, 153
BloomFilter, 214
Buffers, 253
code for hash, 327
code for list, 285
Dictionary, 177
HashTable, 192
List, 89
PriorityQueues, 210
ValArray, 223
Vector, 128

AddObject
code for Observer, 335

AddRange
code for list, 286
List, 91
strCollection, 167
ValArray, 223
Vector, 129

Advance
List, 90

Alloc
Pool, 67

Allocator, 51
And, 58

BitString, 154
ValArray, 224

AndAssign
BitString, 155

API Overview, 351
Append

code for list, 288
List, 91
Vector, 129

Apply
code for hash, 329
code for list, 289
Deque, 202
Dictionary, 178
general, 48
HashTable, 192
List, 92
ValArray, 223
Vector, 129

Back
code for list, 322
Deque, 202
List, 94
Queue, 200
Vector, 131

BitBlockCount
BitString, 156

BitLeftShift
BitString, 158
ValArray, 224

BitRightShift
ValArray, 224

BitString, 151
structure definition, 283

Bloomfilter, 213
Buffers, 245

CalculateSpace

357

358 Index

BloomFilter, 214
Calloc

Pool, 67
CastToArray

Dictionary, 179
strCollection, 167

Change
Allocator, 63

Clear, 41, 58
BloomFilter, 215
Buffers, 247, 253
code for list, 290
Deque, 202
Dictionary, 179
HashTable, 193
Heap, 65
List, 94
Pool, 67
PriorityQueues, 210
ValArray, 224
Vector, 131

Compare
ValArray, 225

COMPARE EXPRESSION, 349
CompareEqual

ValArray, 225
Vector, 131

CompareEqualScalar
ValArray, 226
Vector, 132

CompareFunction, 79
CompareScalar

ValArray, 225
Contains

code for list, 293
Deque, 203
Dictionary, 179
List, 94
ValArray, 226
Vector, 132

Copy, 59
code for list, 291
Deque, 203
Dictionary, 180

HashTable, 194
List, 95
PriorityQueues, 210
ValArray, 227
Vector, 133

CopyBits
BitString, 157

CopyElement
code for list, 293
Dictionary, 180
List, 95
Vector, 133

CopyTo
ValArray, 227
Vector, 134

Create, 39, 59
BloomFilter, 214
Buffers, 247, 253
code for list, 294
Deque, 203
Dictionary, 181
HashTable, 194
Heap, 64
List, 96
Pool, 66
PriorityQueues, 210
ValArray, 227
Vector, 134

CreateFromFile
Buffers, 247
strCollection, 168

CreateFromMask, 59
CreateSequence

ValArray, 227
CreateWithAllocator, 181

Buffers, 248, 253
code for list, 294, 322
List, 96
Vector, 134

DefaultListCompareFunction
code for list, 295

DefaultListLoadFunction
code for list, 295

Index 359

DefaultSaveFunction
code for list, 295

deleteIterator
code for list, 296
Dictionary, 181
HashTable, 194
List, 97
Vector, 134

Deque, 200
DestructorFunction, 81
Dictionary, 174

structure definition, 281
DivideBy

ValArray, 228
DivideByScalar

ValArray, 228
DivideScalarBy

ValArray, 228
Dlist, 120

structure definition, 280

EmptyErrorFunction
iError, 68

Equal
code for list, 296
Deque, 203
Dictionary, 181
List, 97
PriorityQueues, 211
ValArray, 228
Vector, 135

Erase
code for list, 297
Deque, 204
Dictionary, 181
HashTable, 194
List, 97
ValArray, 229
Vector, 135

EraseAll
List, 98
ValArray, 229
Vector, 135

EraseAt

List, 98
ValArray, 229
Vector, 136

EraseRange
code for list, 298
List, 99

error-codes, 69
ErrorFunction, 81

FCompare
ValArray, 229

FillSequential
ValArray, 231

Finalize, 41, 59
BloomFilter, 215
Buffers, 248, 254
code for list, 298, 323
Deque, 204
Dictionary, 182
Heap, 65
List, 99
Pool, 67
PriorityQueues, 211
ValArray, 231
Vector, 136

Find
BloomFilter, 215

FindFirst
strCollection, 168

FindNext
strCollection, 168

FindTextPositions
strCollection, 168

FirstElement
List, 100

ForEach
ValArray, 232

Fprintf
ValArray, 232

Free
code for debugMalloc, 332

FreeObject
Heap, 65

Front

360 Index

code for list, 323
Deque, 204
List, 100
PriorityQueues, 211
Queue, 199
strCollection, 169
Vector, 137

Generic Container
structure, 276

GetAllocator
Dictionary, 182
List, 100

GetCapacity
ValArray, 232
Vector, 137

GetCurrent
Allocator, 63
code for list, 299
Iterator, 71

GetData
BitString, 157
Buffers, 248
Queue, 200
ValArray, 232
Vector, 137

GetElement
Dictionary, 183
HashTable, 195
List, 101
ValArray, 233
Vector, 138

GetElementSize
Dictionary, 182
List, 100
ValArray, 233
Vector, 137

GetFirst
code for list, 299
Iterator, 71

GetFlags
code for list, 300
Deque, 204
Dictionary, 183

HashTable, 195
GetFlags / SetFlags

List, 101
Vector, 138

GetLast
Iterator, 73

GetLoadFactor
Dictionary, 183

GetNext
code for list, 300
Iterator, 72

GetPosition
Buffers, 248

GetPrevious
code for list, 301
Iterator, 72

GetRange, 44
BitString, 157
code for list, 302
List, 102
ValArray, 233
Vector, 138

GetSlice
ValArray, 233

guid, 309

hash
code for hash, 325

HashTable, 191

iAssociativeContainer, 258
iBitString, 152
iDeque, 201
iDictionary, 175
iDlist, 121
iError, 67
iGenericContainer, 256
iHashTable, 191
iHeap, 63
iList, 84
IndexIn

ValArray, 234
Vector, 139

IndexOf

Index 361

code for list, 303
List, 102
ValArray, 234
Vector, 139

Infinite arrays, 126
Init

code for hash, 326
code for list, 305
Dictionary, 184
List, 103
strCollection, 169

InitHeap
Heap, 64

InitializeWith
BitString, 160
Dictionary, 184
List, 103
ValArray, 234

InitObserver
code for Observer, 334

InitWithAllocator
code for list, 304
Dictionary, 184
List, 103
strCollection, 169

Insert
Dictionary, 184

InsertAt
code for list, 305
List, 104
ValArray, 235
Vector, 140

InsertIn
code for list, 306
Dictionary, 183
List, 105
strCollection, 170
Vector, 140

Inverse
ValArray, 235

iPool, 66
iSequentiaContainer, 257
istrCollection, 165
Iterator

structure, 283
iterator

Dictionary, 329
Iterators

General, 48
iTreeMap, 189
iValArray, 216
iVector, 125, 126
iWstrCollection, 165

LastElement
List, 107

List, 83
ListIterator, 284
lists

code, 285
double linked, 121
single linked, 84
structure, 278

Load
code for list, 307
Deque, 204
Dictionary, 185
HashTable, 195
List, 107
Vector, 143

Malloc
code for debugMalloc, 330

mapcar, 268
mapcon, 270
Mask

structure definition, 283
Max

ValArray, 235
Memset

ValArray, 235
Merge

HashTable, 195
Min

ValArray, 236
Mismatch

strCollection, 171
ValArray, 236

362 Index

Vector, 143
MoveBack

D-list, 122
MultiplyWith

ValArray, 236
MultiplyWithScalar

ValArray, 237

NewIterator
code for list, 309
Dictionary, 185
HashTable, 196
List, 107
Vector, 143

newObject
Heap, 64

NextElement
List, 108

Not, 59
BitString, 159
ValArray, 237

NotAssign
BitString, 159

Notify
code for Observer, 336
Observer, 76

NullPtrError
iError, 68

observer, 74
ObserverFunction

Observer, 75
Or, 60

BitString, 161
ValArray, 237

OrAssign
BitString, 161

OrScalar
ValArray, 237

Overlay
HashTable, 196

PeekFront
Buffers, 254

Pop

PriorityQueues, 211
PopBack

D-list, 123
Deque, 205
strCollection, 172
ValArray, 238
Vector, 144

PopFront
Buffers, 254
code for list, 310
Deque, 205
List, 108

PopulationCount, 60
BitString, 161

PreviousElement
D-list, 123

Print
BitString, 161

Priority queues, 208
Product

ValArray, 238
Push

PriorityQueues, 212
PushBack

D-list, 123
Deque, 205

PushFront
code for list, 310
Deque, 206
List, 108

Queue, 199

RaiseError
iError, 68

Read
Buffers, 249

ReadFromFile
Buffers, 249

ReadFunction, 80
RemoveAt

BitString, 162
code for list, 311

RemoveRange

Index 363

List, 109
strCollection, 172
Vector, 144

Replace
HashTable, 197
Iterator, 74

ReplaceAt
code for list, 312
List, 109
Vector, 144

Reserve
Vector, 145

ResetSlice
ValArray, 238

Resize
Buffers, 249
HashTable, 197
Vector, 145

Reverse
BitString, 162
code for list, 313
List, 110
ValArray, 238
Vector, 146

RotateLeft
code for list, 313, 320
List, 111
ValArray, 239
Vector, 146

RotateRight
code for list, 314
List, 110
ValArray, 240
Vector, 146

Save
code for list, 315
Deque, 206
Dictionary, 186
HashTable, 197
List, 111
ValArray, 240
Vector, 147

SaveFunction, 80

SearchWithKey
Vector, 147

Seek
code for list, 316
Iterator, 73

Select
List, 111
ValArray, 240
Vector, 147

SelectCopy
List, 112
ValArray, 241
Vector, 148

Set, 60
BitString, 163

SetCapacity
Vector, 148

SetCompareFunction
code for list, 316
List, 114
strCollection, 172
ValArray, 240
Vector, 148

SetDestructor
Dictionary, 186
List, 114
Vector, 149

SetElementData
List, 114

SetErrorFunction
Dictionary, 187
HashTable, 198
iError, 68
List, 115
Vector, 149

SetHashFunction
Dictionary, 186

SetPosition
Buffers, 249

SetSlice
ValArray, 241

Size, 51, 60
Buffers, 250, 255
Dictionary, 186, 187

364 Index

HashTable, 198
List, 115
PriorityQueues, 212
ValArray, 242
Vector, 149

Sizeof, 60
Buffers, 255
code for list, 317, 323
Dictionary, 187
HashTable, 198
Heap, 65
List, 115
PriorityQueues, 212
ValArray, 242
Vector, 149

SizeofIterator, 51
List, 116

Sort
code for list, 318
List, 116
ValArray, 242
Vector, 150

Splice
D-list, 124

SplitAfter
code for list, 319
List, 117

strCollection
structure, 282

StrError
iError, 68

StringCompareFn, 173
StringToBitString

BitString, 163
Subscribe

code for Observer, 334
Observer, 76

SubtractFrom
ValArray, 242

SubtractFromScalar
ValArray, 243

SubtractScalarFrom
ValArray, 243

SumTo

ValArray, 243
SumToScalar

ValArray, 243

TreeMap, 189

Unsubscribe
code for Observer, 336
Observer, 77

UseHeap
code for list, 321
List, 118

ValArray, 216
ValArrays,code, 338
Vector, 126

structure, 281

Write
Buffers, 250

WriteToFile
Buffers, 251
strCollection, 173

WstrCollection, 165

Xor
BitString, 164
ValArray, 243

XorAssign
BitString, 164

XorScalar
ValArray, 244

Containers lists

single
linked

double
linked

vector

bitstrings

string
collec-
tions

Valarray

int

double

long
double

size t

Hash tables

Dictionary

char
keywchar t

key

Hash
table

trees

buffers

Stream

Circular

queues

queue

deque

priority
queue

