
Commenting template
ISO/IEC JTC 1/SC 22/WG XX NXXXX
 2009-xx-xx

n1571.xlsx
4/12/11
Page 1 of 6

Balloted document: N4578
Vote: Approve

NB
(IS
O

316
6)

No
.

Cat
ego
ry

Clause,
Sub-
clause

Paragraph,
Figure,
Table

Comment and rationale Proposed new text Response

AG 1 TL 7.22.4.7 page 352
para 2

Since quick_exit() disallows signal
handlers to be called, what happens if a
signal corresponding to a computational
exception is generated during execution
of one of the functions registered by
at_quick_exit()?

Add a statement that the behaviour is
undefined.

Agreed in principle
In 7.22.4.7, add at the end:
If a signal is raised while the
quick_exit function is executing, the
behavior is undefined.

Commenting template
ISO/IEC JTC 1/SC 22/WG XX NXXXX
 2009-xx-xx

n1571.xlsx
4/12/11
Page 2 of 6

AG 2 TL 7.25.1
The
xtime
structure

page 374
para 4

POSIX already defines two different
structures to hold time, one of which,
struct timespec, is almost identical to
the xtime structure. It would be
appropriate to merge the xtime and
timespec structures.

Remove xtime from threads.h
Change para 3 of <time.h> from
"... which are arithmetic types capable
of representing times; and
struct tm
which holds the components of a
calendar time, called the broken-down
time."

To:
" which are arithmetic types capable of
representing times;
struct timespec
which is a structure type that holds a
time specified in seconds and
nanoseconds. The structure shall
contain at least the following members,
in any order.
time_t tv_sec; long tv_nsec;
and
struct tm
which holds the components of a
calendar time, called the broken-down
time."

Globally replace "xtime" with
"timespec", the "sec" member with
"tv_sec, and the "nsec" member with
"tv_nsec". [Note the remainder of this
ballot uses xtime where appropriate.
The global edit suggested here should
be applied to these ballot comments if
this comment is accepted]

Agreed in principle, See N1564

Commenting template
ISO/IEC JTC 1/SC 22/WG XX NXXXX
 2009-xx-xx

n1571.xlsx
4/12/11
Page 3 of 6

AG 3 TL 7.25.3.5
The
cnd_time
dwait
function

page 376
para 1,2

"until after the time specified by the
xtime object pointed to by xt"

It is not clear whether xt specifies an
absolute time or elapsed
time from the start of the
cnd_timedwait() call.

I.e should applications just set xt to the
length of the timeout,
or should they call xtime_get(), add the
length to the returned
time, and then use that.

The equivalent POSIX function
pthread_cond_timedwait() takes an
absolute time. There are good reasons
for this: see the RATIONALE in
the POSIX description of the function.

Clarify whether xt is an absolute time or
the length of the timeout.

Agreed in principle, See N1564

AG 4 TL 7.25.3.6
The
cnd_wait
function

page 377
para 2

"If the mutex pointed to by mtx is not
locked by the calling thread,
the cnd_wait function will act as if the
abort function is called."

This requirement means mutexes must
keep a record of ownership,
which affects efficiency, and is
inconsistent with cnd_timedwait()
whose description states "The
cnd_timedwait function requires that
the mutex pointed to by mtx be locked
by the calling thread."

Change

 "If the mutex pointed to by mtx is not
locked by the calling thread,
 the cnd_wait function will act as if
the abort function is called."

to

 "The cnd_wait function requires that
the mutex pointed to by mtx
 be locked by the calling thread."

AGREE

Commenting template
ISO/IEC JTC 1/SC 22/WG XX NXXXX
 2009-xx-xx

n1571.xlsx
4/12/11
Page 4 of 6

AG 5 TL 7.25.4.4
The
mtx_time
dlock
function

page 379
para 2

"until the time specified by the xtime
object xt has passed"

It is not clear whether xt specifies an
absolute time, or elapsed
time from the start of the
mtx_timedlock() call.

I.e should applications just set xt to the
length of the timeout,
or should they call xtime_get(), add the
length to the returned
time, and then use that.

The equivalent POSIX function
pthread_mutex_timedlock() takes an
absolute time.

It would also make sense for
mtx_timedlock() to be consistent with
cnd_timedwait() in this regard. (The
same issue has been reported
separately for cnd_timedwait().)

Clarify whether xt is an absolute time or
the length of the timeout.

Agreed in principle, See N1564

AG 6 TL 7.25.5.5
The
thrd_exit
function

page 381
para 2

Nothing is said about what happens if
the last thread left running
calls thrd_exit(). POSIX has the
following requirement for the
equivalent pthread_exit() function:

 "The process shall exit with an exit
status of 0 after the last
 thread has been terminated. The
behavior shall be as if the
 implementation called exit() with a
zero argument at thread
 termination time."

The C Standard should either require
this behaviour, or should allow
this behaviour and one or more other
behaviours (and say the behaviour
is implementation-defined).

Add a statement about the program
terminating as if by a call
to exit(0) after the last thread has
terminated execution.

Agreed in principle, See N1564

Commenting template
ISO/IEC JTC 1/SC 22/WG XX NXXXX
 2009-xx-xx

n1571.xlsx
4/12/11
Page 5 of 6

AG 7 TL 7.25.5.7
The
thrd_slee
p
function

page 382
para 2

"until after the time specified by the
xtime object pointed to by xt"

It is not clear whether xt specifies an
absolute time, or elapsed
time from the start of the thrd_sleep()
call. Presumably it is
intended to be elapsed time.

Clarify that xt specifies elapsed time. Agreed in principle, See N1564

AG 8 TL 7.25.5.7
The
thrd_slee
p
function

page 382
para 2

What happens if a signal handler is
executed during execution
of the thrd_sleep function? Does it
return prematurely, or
continue sleeping? If it returns
prematurely, it would be
useful for it to indicate the remaining
sleep time.

The equivalent POSIX function
nanosleep() returns prematurely,
and places the remaining time in an
object pointed to by a second
argument.

Either

1. specify that execution of a signal
handler does not cause
thrd_sleep to return prematurely, or

2. change the return type and/or
arguments so that the remaining time
can be returned to the caller; state that if
execution of a signal
handler interrupts thrd_sleep then it
returns immediately; and
describe how the function indicates
whether it was interrupted and
what the remaining time is.

Agreed in principle, See N1564

AG 9 TL 7.25.7.1
The
xtime_ge
t function

page 384
para 1

See also AG 2 -- Since xtime_get() is
useful in its own right, not just with
threads,
it would be better for xtime_get() to be
declared in <time.h> instead
of <threads.h>. (Putting it in <time.h>
would also mean xtime_get()
becomes mandatory; if it is desirable for
it to be optional, an
alternative would be to have a new
optional <xtime.h> header and put
it in there.)

Move the declaration/description of the
xtime type and the declaration
of xtime_get() from <threads.h> to
<time.h>. In <threads.h> require that
it declare the xtime type and refer to
<time.h> "(described in 7.26)".

Agreed in principle, See N1564

Commenting template
ISO/IEC JTC 1/SC 22/WG XX NXXXX
 2009-xx-xx

n1571.xlsx
4/12/11
Page 6 of 6

AG 10 TL 7.25.7.1
The
xtime_ge
t function

page 384
para 2

"sets the xtime object pointed to by xt to
hold the current time"

Since xtime represents time in seconds
and nanoseconds, the "current
time" here must be the number of
seconds since a certain epoch, but
nothing is stated about this epoch.

Either the epoch should be specified as
a fixed time in the past
(such as 1970-01-01T00:00:00 UTC as
in POSIX) or the standard should
state that the epoch is implementation-
defined.

Agreed in principle, See N1564

AG 11 TL 7.25.7.1
The
xtime_ge
t function

7.25.7.1 The
xtime_get
function

This paragraph says that the value of
base must be TIME_UTC, but
TIME_UTC is not defined anywhere.

Add a requirement for TIME_UTC to
be defined as a macro in the same
header that xtime_get() and the xtime
type are declared in. (I.e. in
<threads.h> unless the latter are moved
to a different header.)

Agreed in principle, See N1564

