
ISO/IEC	 JTC	 1/SC	 22/WG	 14	 N	 1555	

Date 11	 April	 2011	 	

Contributed by Barry	 Hedquist	 and	 John	 Benito	

Original file name N1553	

Notes Based	 on	 WG	 14/N1553	 and	 SC	 22/N4578	

	

Commenting template
ISO/IEC JTC 1/SC 22/WG XX NXXXX
 2009-xx-xx

n1555.xlsx
4/12/11
Page 0 of 23

N1553 Balloted document: SC22 N 4578
Vote: Approve, Disapprove, Abstain

NB
(ISO
3166)

N
o.

Ca
te
go
ry

Clause,
Sub-
clause

Paragraph,
Figure,
Table

Comment and rationale Proposed new text Response

US 1 E 6.5.1 5 Add a 6th paragraph about generic-
selection

A generic selection is a primary
expression. It type depends on its
form and value, as detailed in
6.5.1.1.

Editorial - Accepted

US 2 TL 7.12.1 7 “... the value corresponding to the error
...” is missing the correspondence.

The correspondence is: “invalid”
=> EDOM; “divide-by-zero” =>
ERANGE; “overflow” =>
ERANGE; “underflow” =>
ERANGE. It might be better as a
table.

The Committee considered the proposed
change and concluded the Standard is
clear as written.

US 3 TL 6.2.8 4 “nonnegative integral power of two” is
ambiguous. Is ”nonnegative” referring
to the exponent or the final number?
Also, it does not include zero.

“Every valid alignment value shall
be either zero or a positive integer
(which is two to a nonnegative
integral power).”

Editorial - the Committee considered the
proposed change and found no consensus
to adopt the change. The feeling is the
document is clear as written.

US 4 TL 6.5.3.4 3 Could add that result is nonnegative. The result is a nonnegative integer
constant.

The Committee considered the proposed
change and found no consensus to adopt it.

US 5 TL G.5.1 8 N1496 was applied to wrong line. logbw == INFINITY should be
isfinite(logbw) and isinf(logbw)
should be (logbw == INFINITY)

Editorial - Accepted

US 6 E 6.3.1.4 2, last line “some” seems wrong. Either remove it
or explain which ones.

Results of implicit conversions … Editorial - the Committee considered the
proposed change and found no consensus
to adopt the change. The consenus was
that the explaination was already in the text
of the document.

US 7 E 6.3.1.5 1, last line “some” seems wrong. Either remove it
or explain which ones.

Results of implicit conversions … Editorial - the Committee considered the
proposed change and found no consensus
to adopt the change. The consenus is the
explaination is already the in the document.

Commenting template
ISO/IEC JTC 1/SC 22/WG XX NXXXX
 2009-xx-xx

n1555.xlsx
4/12/11
Page 1 of 23

US 8 GE Both “precision and range” and “range
and precision” are used.

Use just “range and precision” Editorial - Accepted

US 9 GE Both “precision or range” and “range
or precision” are used.

Use just “range or precision” Editorial - Accepted

US 10 TL 7.3.9.3 3 If the CMPLX macros are not useable
in static initialization, then they have
little value.

Remove “Recommended practice”
and change “should” to “shall”.

Accepted

US 11 TL F.10.3.5 3 It is ambiguous if ilogb(NaN) is outside
the range of the return type. The
correct value for ilogb(NaN) is NaN.
But, since NaN is not representable in
int, “invalid” should be raise and an
unspecified value returned. But,
7.12.6.5 specifies FP_ILOGBNAN as
the return value (which some people
say is in the range of the return type).
Same problem applies to zero and
infinity.

Add a 3rd paragraph: ilogb(x), for
x zero, infinite, or NaN, raises
“invalid” and returns the value as
specified in 7.12.6.5.

Accepted

US 12 TL 6.10.8.3 1 Need a way to distinguish freestanding
from hosted.

__STDC_FREESTANDING__
The integer constant 1, intended to
indicate a freestanding
environment.

The Committee considered the proposed
change and found no consensus to adopt it.
Note that __STDC_HOSTED__ is used for
this feature test.

US 13 E Contents 7.28.4.1 area of table of contents is
expanded to four levels, while 6.5.16 is
expanded to three levels. Seems like
we should be consistent.

Expand all contents to same level
(either 3 or 4).

Editorial -the Committee considered the
proposed change and found no consensus
to adopt the change. The consensus is that
current wording is clear.

US 14 E 3.14 4 It would be more obvious if d:8 were
on its own line.

Move “:0, d:8;” to their own line. Editorial - the Committee considered the
proposed change and found no consensus
to adopt the change. The consensus was
proposed change only confuses the issue.

US 15 TL 4. 4 A program that violates C's syntax
should not be translated.

Add “Recommended practice –
The implementation should not
successfully translate a
preprocessing translation unit that
violates any syntax (has an
erroneous program construct).”

The Committee considered the proposed
change and found no consensus to adopt it.

US 16 TL 4. 8 It would be nice if a programmer could
find out how to invoke an
implementation in Standard C
conformance mode.

Add to end of sentence: and how
to invoke the implementation in
conforming mode.

The Committee considered the proposed
change and found no consensus to adopt it.

Commenting template
ISO/IEC JTC 1/SC 22/WG XX NXXXX
 2009-xx-xx

n1555.xlsx
4/12/11
Page 2 of 23

US 17 TL 6.7.2.1 paragraphs 8
and 13

Anonymous structures and unions need
minor clarification.

Changes along the lines of N 1549
should be adopted.

Accepted

US 18 E 7.25.1 5 Per N1372, thrd_timeout should be
thrd_timedout

Replace thrd_timeout with
thrd_timedout

Editorial - Accepted

US 19 TL 7.3, 7.15,
7.18

There are headers that define macros
"complex", "bool", "alignas" for
keywords "_Complex", "_Bool",
"_Alignas" etc.

But we could not find a header defining
the macro "noreturn" for "_Noreturn".
Nor could we find a header defining
the macro "thread_local" for
"_Thread_local".

We think there should be.

Add header files along the lines of
<stdbool.h> to define the noreturn
and thread_local macros.

Accepted in principle - Add a new header
file, <stdnoreturn.h>, for _Noreturn.
Put _Thread_local in <threads.h>.

US 20 TL 6.4.1 Why is "alignof" a new keyword,
instead of "_Alignof" with a header to
define alignof macro?
Seems needlessly inconsistent

Change the “alignof” keyword to
“_Alignof” and add a header file
along the lines of <stdbool.h> to
define the alignof macro.

Accepted in principle - use header
<stdalign.h>

US 21 GT 7.17.6 paragraph 1 It was never the intention to require
that the atomic_* types be defined in
terms of the _Atomic keyword, and this
paragraph causes major problems with
C++ compatibility. The atomic_* types
must be implementable as structs so
that they can serve as base classes for
their atomic<*> counterparts.

For each line in the following
table, the atomic type name
behaves the same as the
corresponding direct type. (NOTE:
The atomic type name may be a
typedef for the direct type, or it
may be a struct.)

Accepted in principle - will adopt along the
lines of the proposed solution. A change to
require the
same representation and alignment rather
than requiring the same type.

Commenting template
ISO/IEC JTC 1/SC 22/WG XX NXXXX
 2009-xx-xx

n1555.xlsx
4/12/11
Page 3 of 23

US 22 GT 7.21 The locking behavior of I/O functions
is not specified. This may result in
unexpected behavior in multithread
contexts and require explicit locking
that will be redundant on most
implementations.

Require implicit locking or
provide for efficient explicit
locking.

Accepted in principle - Insert the following
paragraphs after 7.21.2p6:

Each stream has an associated lock that
can is used to prevent data races when
multiple threads access a stream, and to
restrict the interleaving of stream
operations performed by multiple threads.
Only one thread may hold this lock at a
time. The lock is reentrant: A single thread
may hold the lock multiple times at a given
time.

All functions that read, write, position, or
query the position of a stream, except for
putc_unlocked, getc_unlocked,
putchar_unlocked, and getchar_unlocked,
lock the stream, as though with flockfile
before accessing it. They release the lock
associated with the stream, as though with
funlockfile, when the access is complete.

Commenting template
ISO/IEC JTC 1/SC 22/WG XX NXXXX
 2009-xx-xx

n1555.xlsx
4/12/11
Page 4 of 23

US 23 GT 7 The library section should be examined
for threads incompatibilities. Obviously
threads-incompatible functions include
strtok and rand.

Thread safe versions should be
included.

See N1551. The committee considered 5
items relative to this comment.
Issue #1: strerror, strtok, rand and asctime.
No Consensus to adopt this change.
Issue #2: Replace wording for strtok,
strerror, rand. Adopted the following
wording: The <function> is not required to
avoid data races with other calls to
<function>. Substitute for <function>,
strerror, strtok, and rand, respectively.
Issue #3: Same as Issue 2 for rand and
srand. Adopted the following words for each
function: The rand and srand functions are
not required to avoid data races with other
calls to rand and srand." Issue #4:
setjmp/longjmp Adopt the proposed
wording in N1551, as modified by N1566.
Issue #5: malloc/free Added the following
words following 7.22.3;p1 For purposes of
determining the existence of a data race,
memory allocation functions behave as
though they accessed only memory
locations accessible through their
arguments and not other static duration
storage. These functions may however
visibly modify the storage that they allocate
or deallocate. A call to free or realloc that
deallocates a region p of memory
synchronizes with any allocation call that
allocates all or part of the region p. This
synchronization occurs after any access of
p by the deallocating function, and before
any such access by the allocating function.
behave as though they accessed only
memory locations accessible through theirUS 24 GT 7 The current mutex API is substantially

different from both C++0x and Posix
APIs. It is based on an API which
currently has few direct clients.

At a minimum, the removal of
mtx_try as in N1521 should be
reconsidered.

Accepted with Modification. Removed
mtx_try(). See N1521

Commenting template
ISO/IEC JTC 1/SC 22/WG XX NXXXX
 2009-xx-xx

n1555.xlsx
4/12/11
Page 5 of 23

US 25 GT 7 The _Atomic type qualifier should be
reomoved. It is redundant, and its use
needlessly hinders C++ compilation of
code.

Remove _Atomic type qualifier. The Committee considered the proposed
change and found no consensus to adopt it.

CA 1 TE Ge We believe this function declaration is
ambiguous is the current C draft:

int func(_Atomic(int))

can mean a func that takes an atomic
int or a function that takes a function
that returns an atomic int and not a
function that takes a function that
returns an atomic int

_Atomic should not be a qualifier
on the function return. If we
remove the second meaning, then
C++ can define _Atomic as a
macro that expands to our
template definition, and take the
C++ symbols, and promote them
to the global namespace.

The Committee considered the proposed
change and found no consensus to adopt it.
See US 25

CA 2 TE B.16 Remove atomic_address in C1x. We have removed atomic_address
in C++0x. This was removed
because it was a base class of the
pointer specialization, which leads
to no type safety.

Accepted

CA 3 TE Ge The current draft supports too many
compound operations like atomic
divide assign, atomic float for
arithmetic operations. It is trying to be
too general making every compound
operators atomic. C++ selectively
narrowed the operations based on what
current hardware will not have trouble
supporting.

Until we specify what they mean,
what are the traps, we would
prefer that C1x limits it to the
same list as C++0x. Additional
operations can be added. Original
C1x paper implies that these
operations can be written as if it is
written with a compare exchange
loop and that might work, but we
need to understand it better. The
limited set of operations that C++
supports is listed in Table 1 below
these comments.

The Committee considered the proposed
change and found no consensus to adopt it.

Commenting template
ISO/IEC JTC 1/SC 22/WG XX NXXXX
 2009-xx-xx

n1555.xlsx
4/12/11
Page 6 of 23

CA 4 TE 6.10.8.3 There is a current macro that says if
you have stdc_no_threads, if that is
defined, then you don’t need to provide
the stdcatomic.h header. These are
different things. Specifically, threads
belong to the OS and atomics belongs
to the hardware. In embedded system,
you want hardware support and not
have OS come along for the ride.

Separate stdc_no_threads from
std_atomic.h

Accepted in principle - split out atomics
from __STDC_NO_THREADS__, and add
__STDC_NO_ATOMICS__.

CA 5 TE 5.1.2.4 Remove atomic to atomic assignment. C++0x has removed it because
people may think the assignment is
like transactional memory, but it is
not.

No Change. The submitter provided more
information, saying there was no problem,
and essentially withdrew the comment.

Commenting template
ISO/IEC JTC 1/SC 22/WG XX NXXXX
 2009-xx-xx

n1555.xlsx
4/12/11
Page 7 of 23

CA 6 TE Align C mutex types with C++ mutex
types.

C++ mutex types were designed to
make that compatibility possible.
It will be embarrassing if we don’t
have the same mutex type.
Originally, they were not placed
probably because people did not
want to assume a C syntax. Now
that there is, this makes this
argument moot. C mutex are local
objects and while we may put
wrapper around that because we
require member functions, this will
make condition variables fail to
work with that. Condition
variables only work with the C++
mutex type. If we further export
these as inline functions, it also
breaks down. We believe the C++
design leads to better performance,
especially when we start scaling
the system. [Hans and Lawrence
may have some personal anecdotes
and experience to back this up].
What is supplied by OS facility
usually is too slow because it tries
to be fair and does not scale well.

The Committee considered the proposed
change and found no consensus to adopt it.

Commenting template
ISO/IEC JTC 1/SC 22/WG XX NXXXX
 2009-xx-xx

n1555.xlsx
4/12/11
Page 8 of 23

RU 1 ED 5.2.4.2.2 Page 30,
paragraph 11

The phrase
"The values given in the following list
shall be replaced by constant
expressions with implementation-
defined values that are greater or equal
in magnitude (absolute value) to those
shown, with the same sign:"
 Should be replaced with something
like
"The values given in the following list
shall be replaced by constant
expressions with implementation-
defined values:
a) greater or equal in magnitude
(absolute value) to those shown, with
the same sign, if the shown values are
greater than 1 in magnitude, or
b) less or equal in magnitude (absolute
value) to those shown, with the same
sign, if the shown values are less than 1
in magnitude:"

because constants with values less than
1 in magnitude (FLT_EPSILON,
DBL_EPSILON, LDBL_EPSILON,
FLT_MIN, DBL_MIN, LDBL_MIN,
FLT_TRUE_MIN, DBL_TRUE_MIN,
LDBL_TRUE_MIN) can be only
decreased in conforming
implementations.

To replace the current text
"The values given in the following
list shall be replaced by constant
expressions with implementation-
defined values that are greater or
equal in magnitude (absolute
value) to those shown, with the
same sign:"

with
"The values given in the following
list shall be replaced by constant
expressions with implementation-
defined values:
a) greater or equal in magnitude
(absolute value) to those shown,
with the same sign, if the shown
values are greater than 1 in
magnitude, or
b) less or equal in magnitude
(absolute value) to those shown,
with the same sign, if the shown
values are less than 1 in
magnitude"

Editorial - No chance, this is a misreading
of the Standard.

Commenting template
ISO/IEC JTC 1/SC 22/WG XX NXXXX
 2009-xx-xx

n1555.xlsx
4/12/11
Page 9 of 23

NL 1 TE 6.7.5 Comment on Section 6.7.5 - Alignment
specifier
It would be 'natural', certainly for a
language like C, if the alignment
specification is part of the type
specification and not, as proposed, as
part of the declaration specifier. The
proposed _Alignas specifier prevents
the proper propagation and use of
alignment information in the compiler.
The argument for the current choice is
that the cost of taking the type specifier
approach would be very costly for
C++; we do not consider this to be a
valid argument: in many other places a
difference between C and C++ is
justified by the reasoning that C and
C++ are two different languages, each
with their own users and application
areas, so why is it so necessary that in
the _Alignas case the languages are the
same

The Committee considered the proposed
change and found no consensus to adopt it
at this time.

Commenting template
ISO/IEC JTC 1/SC 22/WG XX NXXXX
 2009-xx-xx

n1555.xlsx
4/12/11
Page 10 of 23

NL 2 TE Annex F Comment on Annex F - IEC 60559
floating-point arithmetic

This (normative) section refers to IEC
60669:1989, while there is a new
version of this standard by the summer
of 2011 (well in advance of adoption of
the C1X standard). C1X must refer to
the new floating-point standard.
Separate question: is it the intention to
include the exchange formats
(especially binary16 - half float) as a
fully required data type once the new
new floating-point standard is
referenced?
If not, should this be added to the
Embedded-C specification as there is
some interest in this in the embedded C
world?

The Committee considered the proposed
change and found no consensus to adopt it
for this revision However there is a Study
Group withing WG14 looking at this issue
with plans to create a C binding to the new
IEEE Standard as a Technical Specification
in the future.

Commenting template
ISO/IEC JTC 1/SC 22/WG XX NXXXX
 2009-xx-xx

n1555.xlsx
4/12/11
Page 11 of 23

BSI 1 TE 5.1.2.3#5 5 5.1.2.3#5 describes parts of program
state when a signal occurs. However, it
is defined in terms of objects, which
does not cover the floating-point
environment.
Depending on the operating system, the
floating-point environment on receipt
of a signal may be set to a default
environment or it may be the
environment in effect when the signal
was delivered; the latter may not be a
state that was ever in effect in the
abstract machine because code
sequences for some operations may
change the rounding mode temporarily,
then restore it. It seems best to leave
the choice explicitly unspecified. (This
means signal handlers cannot reliably
use floating point; if that is to be
permitted, feholdexcept and fesetenv
would need to be documented as safe
to call from signal handlers.)

In 5.1.2.3, insert ", as is the
floating-point environment (7.6)"
after "unspecified", and insert ", as
does the floating-point
environment if it is modified and
not restored before exit from the
handler" after "undefined".

Accepted

Commenting template
ISO/IEC JTC 1/SC 22/WG XX NXXXX
 2009-xx-xx

n1555.xlsx
4/12/11
Page 12 of 23

BSI 2 TE There are some places where alignof
needs to be handled similarly to sizeof,
for consistency and to reflect existing
practice, but with appropriate
adjustments for when VLA size
expressions are involved

In 6.5.3.4#3, change the second
sentence to "Expressions in the
operand are not evaluated, and the
result is an integer constant.".
In 6.6#3, footnote 115, change
"sizeof" to "sizeof or alignof".
In 6.6#6, insert "alignof
expressions," before "sizeof
expressions", and change "sizeof
operator" to "sizeof or alignof
operator".
In 6.6#8, change "and sizeof
expressions" to "alignof
expressions, and sizeof
expressions", and change "a sizeof
operator" to "an alignof operator
or a sizeof operator".
In 6.9#3, change "a sizeof
operator" to "an alignof operator
or a sizeof operator".
In 6.9#5, change "a sizeof
operator" to "an alignof operator
or a sizeof operator".

Accepted

Commenting template
ISO/IEC JTC 1/SC 22/WG XX NXXXX
 2009-xx-xx

n1555.xlsx
4/12/11
Page 13 of 23

BSI 3 TE 6.7#3 3 6.7#3 says "a typedef name can be
redefined to denote the same type as it
currently does", and redefining
otherwise is a constraint violation, but
in the case of VLAs it may not be
known until runtime whether the types
will in fact be the same. The suggested
solution of diagnosing that a violation
at runtime is possible should be stated
in a footnote.

In 6.7#3, after "same type as it
currently does" add a footnote "If
identity of the types depends on
the values of variable length array
size expressions, the
implementation may generate a
diagnostic that a constraint
violation could occur depending
on the values at runtime.".

Accepted in principle - 6.7;p3. Change:

If an identifier has no linkage, there shall be
no more than one declaration of the
identifier (in a declarator or type specifier)
with the same scope and in the same name
space, except that a typedef name can be
redefined to denote the same type as it
currently does and tags may be redeclared
as specified in 6.7.2.3.

To:

If an identifier has no linkage, there shall be
no more than one declaration of the
identifier (in a declarator or type specifier)
with the same scope and in the same name
space, except:

 * a typedef name can be redefined to
denote the same type as it currently does if
that type is not a variably modified type

 * tags may be redeclared as specified in
6.7.2.3.

BSI 4 TE 6.7.#5 5 6.7#5 defines a "definition" of an
identifier, saying that for an
enumeration constant or typedef name
it is "the (only) declaration of the
identifier". The "(only)" is no longer
accurate now typedef redefinition is
allowed; it seems natural to say that the
first declaration in such a case is the
definition (an alternative would be to
say that all are definitions).

In 6.7#5, replace the last bullet
point with two bullet points:
• for an enumeration constant, is
the (only) declaration of the
identifier;
• for a typedef name, is the first or
only declaration of the identifier.

Accepted

Commenting template
ISO/IEC JTC 1/SC 22/WG XX NXXXX
 2009-xx-xx

n1555.xlsx
4/12/11
Page 14 of 23

BSI 5 TE 6.7.1 6.7.1 is missing a constraint that
_Thread_local may not be used on a
function declaration. (This usage
makes no sense and disallowing it is
existing GNU __thread practice. For
function definitions this is already
disallowed by 6.9.1#4 but it should also
be disallowed for declarations that are
not definitions.)

In the Constraints in 6.7.1, add a
new paragraph after paragraph 3:
"_Thread_local may not be present
in the storage class specifiers in a
declaration of a function.".

Accepted

BSI 6 TE 6.7.2.1#1
8

6.7.2.1#18 says "As a special case, the
last element of a structure with more
than one named member may have an
incomplete array type; this is called a
flexible array member.". It should be
made clear that this allows structures
where all previous members are
anonymous structures or unions, by
virtue of 6.7.2.1#13.

At the end of 6.7.2.1, add a new
example:
Because elements of anonymous
structures and unions are
considered to be members of the
containing structure or union, the
following example has more than
one named member and is a valid
use of a flexible array member:
struct s
{
 struct
 {
 int i;
 };
 int a[];
};

Accepted

Commenting template
ISO/IEC JTC 1/SC 22/WG XX NXXXX
 2009-xx-xx

n1555.xlsx
4/12/11
Page 15 of 23

BSI 7 TE 6.7.9#15 15 6.7.9#15 says "An array with element
type compatible with a qualified or
unqualified version of wchar_t may be
initialized by a wide string literal,
optionally enclosed in braces.
Successive wide characters of the wide
string literal (including the terminating
null wide character if there is room or
if the array is of unknown size)
initialize the elements of the array.".
But 6.4.5 now defines wide string
literals to include char16_t and
char32_t literals, and the initialization
wording needs updating to allow each
kind of wide string literal to initialize
the associated kind of array.

Change 6.7.9#15 to read "An array
with element type compatible with
a qualified or unqualified version
of wchar_t, char16_t or char32_t
may be initialized by a wide string
literal, optionally enclosed in
braces. The wide string literal
must have array element type (as
defined in 6.4.5) compatible with
the unqualified version of the
element type of the array being
initialized. Successive elements of
the array specified in 6.4.5 for the
wide string literal (including the
terminating null element if there is
room or if the array is of unknown
size) initialize the elements of the
array."

Accepted

BSI 8 TE 6.10.9#1 6.10.9#1 refers to removal of the L
prefix, if present, from a string literal
inside _Pragma. This should now
handle the new types of string prefixes
added in C1X.

In 6.10.9#1, change "L prefix" to
"u8, u, U or L prefix

Accepted

Commenting template
ISO/IEC JTC 1/SC 22/WG XX NXXXX
 2009-xx-xx

n1555.xlsx
4/12/11
Page 16 of 23

BSI 9 TE 7.1.2#4 4 7.1.2#4 says "The program shall not
have any macros with names lexically
identical to keywords currently defined
prior to the inclusion.".
There is however a related issue that
this does not address: a macro lexically
identical to a keyword could be defined
after the standard header is included,
but with the definition being in effect
when a macro defined in the standard
header is expanded, and the expansion
of the macro in the standard header
could use the keyword that is defined
as a macro.
Thus, either such definitions of
keywords as macros should be
disallowed whenever a macro from a
standard header is expanded, or all
macro definitions in standard headers
need to use alternative implementation-
specific keywords in the reserved
namespaces such as __void. In the
latter case, examples in the C standard
such as the required definition of assert
in 7.2#1, the possible definition of the
cbrt type-generic macro in 6.5.1.1#5
and the possible definitions of
CMPLX, CMPLXF and CMPLXL in
7.3.9.3#5 should not show the use of
keywords outside the reserved
namespaces.
(The Rationale (pages 100 and 101 in
version 5.10) discusses uses for
defining keyword names as macros, but
I think this should still be made

In 7.1.2#4, add "or when a macro
defined in a standard header is
expanded" at end of last sentence.

Accepted

BSI 10 ED 7.19 7.19 has a forward reference to 7.11.
This is actually a backward reference.
(In C90 it was genuinely a forward
reference from 7.1.6 to 7.4.)

At the end of 7.19, remove
"Forward references: localization
(7.11)."

Editorial - Accepted

Commenting template
ISO/IEC JTC 1/SC 22/WG XX NXXXX
 2009-xx-xx

n1555.xlsx
4/12/11
Page 17 of 23

BSI 11 TE 7.19 It seems clear from the standard text
that the scanf %% format is required to
skip white-space in the input stream:
that %% acts differently from single
ordinary characters in the format string
and you need to use %1[%] to match
just a single % without white-space.
However, implementations differ in
this regard, so it would be useful to add
an example to make this clearer to
implementors.

In 7.21.6.2, add another example:
"The program
#include <stdio.h>

int main (void)
{
 int dummy;
 return sscanf ("foo \t %bar1",
"foo%%bar%d", &dummy);
}
returns status 1, not 0, because
input white-space is skipped when
matching %%."

Accepted

Commenting template
ISO/IEC JTC 1/SC 22/WG XX NXXXX
 2009-xx-xx

n1555.xlsx
4/12/11
Page 18 of 23

BSI 12 TE 7.25.1#4
and
7.26.1#4

7.25.1#4 says that xtime "holds a time
specified in seconds and nanoseconds",
and has members "time_t sec;" and
"long nsec;". But time_t is not required
to count in seconds; 7.26.1#4 says "The
range and precision of times
representable in clock_t and time_t are
implementation-defined.". time_t may
count in units other than seconds; it
may be a floating-point type, so if it
counts in seconds it may have
subsecond resolution; it may not bear a
linear relation to elapsed time.
The xtime type is used by
cnd_timedwait, mtx_timedlock and
thrd_sleep, and set by xtime_get.
xtime_get creates a valid xtime value,
which apparently is to be interpreted in
accordance with the base argument; the
other functions use such a value, and
do not have any base parameter to
describe the interpretation. The
description of the base argument refers
to TIME_UTC, but the list of macros
defined in this header does not include
TIME_UTC.
I don't believe it makes sense to have
the base argument to xtime_get, given
that the semantics of time_t values
(which must be the basis for those of
xtime values) do not depend on any
such value, and the only way to modify
a time_t value to get a valid future
time, and so a valid future xtime value,
is through <time.h> functions (direct

Proposed change 1: In 7.25.1#4,
change "holds a time specified in
seconds and nanoseconds" to
"holds a time specified as a
nanosecond offset from a time_t
value", with a footnote "Although
the time_t value is given as time_t
sec;, time_t does not necessarily
count in seconds.".
Proposed change 2: In 7.25.7.1#1,
remove the "int base" argument. In
7.25.7.1#2, remove "based on the
time base base". In 7.25.7.1#3,
change "the nonzero value base,
which must be TIME_UTC" to "a
nonzero value". In Annex B.24,
remove the "int base" argument to
xtime_get.

Accepted with Modification. See N1564

BSI 13 TE 7.26.1#3 It appears 7.26.1#3 allows time_t and
clock_t to be complex types. I see no
good reason for this to be permitted.

In 7.26.1#3, change "arithmetic
types" to "real types".

Accepted

Commenting template
ISO/IEC JTC 1/SC 22/WG XX NXXXX
 2009-xx-xx

n1555.xlsx
4/12/11
Page 19 of 23

BSI 14 TE 3.7.3 and
7.28.1

When are wide string library functions
required to handle values of type
wchar_t that do not represent any value
in the execution character set, and
when does using such values with a
library function result in undefined
behavior? This issue was raised directly
and through the Austin Group; the
Batavia minutes say "We are taking no
action here" (N1541 6.31 item 1) but
this still leaves the standard unclear.
The definition of "wide character" in
3.7.3 is "bit representation that fits in
an object of type wchar_t, capable of
representing any character in the
current locale". I interpret the part after
the comma as being descriptive of the
type wchar_t, rather than constraining
the definition of "wide character". That
is, "wide character" includes all bit
representations that fit in type wchar_t,
whether or not they represent valid
members of the execution character set.
The first problem here would seem to
be the possible inclusion of trap
representations; it seems better for only
representations that represent values of
type wchar_t to count as wide
characters, and for only the integer
value to be significant. That is, a wide
character should be a value of type
wchar_t, not a bit representation.
In turn, 7.1.1#4 defines a "wide string"
to include all null-terminated sequences
of wide characters (whether or not they

Proposed change 1: In 3.7.3,
change "bit representation that fits
in" to "value representable by".
Proposed change 2: In 7.28.1, add
a new paragraph before paragraph
5: "Arguments to the functions in
this subclause may point to arrays
containing wchar_t values that do
not correspond to members of the
extended character set. Such
values shall be processed
according to the specified
semantics, provided that it is
unspecified whether an encoding
error occurs if such a value occurs
in the format string for a function
in 7.28.2 or 7.28.5 and the
specified semantics do not include
passing the wide character through
wcrtomb."

Accepted

Commenting template
ISO/IEC JTC 1/SC 22/WG XX NXXXX
 2009-xx-xx

n1555.xlsx
4/12/11
Page 20 of 23

BSI 15 TE 7.30 There are what appear to be
namespaces (explicitly reserved or
otherwise) used by various headers that
are not listed in 7.30 but should be.

Proposed change 1: Between
7.30.3 and 7.30.4, add a subclause
for <fenv.h>: "Macros that begin
with FE_ and an uppercase letter
may be added to the definitions in
the <fenv.h> header.". Add
footnotes referencing this new
subclause to the sentences
referring to such macros in 7.6#6,
7.6#8 and 7.6#10.
Proposed change 2: Between
7.30.6 and 7.30.7, add a subclause
for <stdatomic.h>: "Macros,
function names, typedef names
and enumeration values that begin
with ATOMIC_, atomic_ or
memory_ may be added to the
<stdatomic.h> header.".
Proposed change 3: Between
7.30.11 and 7.30.12, add a
subclause for <threads.h>:
"Function names, typedef names
and enumeration values that begin
with cnd_, mtx_, thrd_ or tss_ may
be added to the <threads.h>
header.".

Accepted

Commenting template
ISO/IEC JTC 1/SC 22/WG XX NXXXX
 2009-xx-xx

n1555.xlsx
4/12/11
Page 21 of 23

BSI 16 TE J2 J.2 lists (bottom of page 563) "The
number of characters transmitted by a
formatted output function is greater
than INT_MAX (7.21.6.1, 7.21.6.3,
7.21.6.8, 7.21.6.10).". This is missing
the wide character functions and the
functions that output to strings instead
of files; all of these have the same issue
that there may be return values
specified by the semantics that cannot
be represented in the int return type.
(A similar issue applies to functions in
Annex K. I have not tried to propose a
fix there, though making the overflow
cases into runtime-constraint violations
may make sense. The asprintf-family
functions in TR 24731-2 also have this
problem.)

In the last item on page 563,
change "characters" to "characters
or wide characters" and change
"transmitted" to "transmitted,
written to a string, or that would
be written to a string has the array
size parameter been large enough".
Add 7.21.6.5, 7.21.6.6, 7.21.6.12,
7.21.6.13, 7.28.2.1, 7.28.2.3,
7.28.2.5, 7.28.2.7, 7.28.2.9,
7.28.2.11 to the list of subclauses
in that item.

Accepted

BSI 17 TE J2 scanf-family functions may have a
format string with more than
INT_MAX conversion specifiers. J.2
should list undefined behavior if one of
these functions would need to return a
value greater than INT_MAX.
(A similar issue applies to functions in
Annex K. I have not tried to propose a
fix there, though making the overflow
cases into runtime-constraint violations
may make sense.)

Add to J.2 an item "The number of
input items assigned by a
formatted input function is greater
than INT_MAX (7.21.6.2,
7.21.6.4, 7.21.6.7, 7.21.6.9,
7.21.6.11, 7.21.6.14, 7.28.2.2,
7.28.2.4, 7.28.2.6, 7.28.2.8,
7.28.2.10, 7.28.2.12).".

Accepted

BSI 18 TE J.5.6#1 1 In view of the binary16 format in IEEE
754-2008, J.5.6 should explicitly note
the possibility of additional floating
types having less range and precision
than float.

In J.5.6#1, add "or less range and
precision than float" after "long
double".

Accepted

Commenting template
ISO/IEC JTC 1/SC 22/WG XX NXXXX
 2009-xx-xx

n1555.xlsx
4/12/11
Page 22 of 23

BSI 19 TE There are several instances of
undefined behavior that are
intrinsically hard for implementations
to bound, by reason of the ABIs in use
in practice or the limitations of
hardware. These should be added to the
list of critical undefined behavior in
L.3#2.
Specifically:
• Modifying constant objects should be
considered equivalent to operations
using invalid pointers.
• The problems with invalid arguments
to library functions also apply to
symbols such as va_arg specified to be
macros.
• Incompatible types, where not
constraint violations, generally cannot
be diagnosed without information often
not available at link time, and if (say)
one translation unit declares an object
with a type occupying more memory
than another translation unit defining
the object, accesses from the first
translation unit vill be like using
invalid pointers.

Proposed change 1: In the list in
L.3#2, add "The program attempts
to modify a string literal (6.4.5).".
Proposed change 2: In the list in
L.3#2, add "An attempt is made to
modify an object defined with a
const-qualified type through use of
an lvalue with non-const-qualified
type (6.7.3).".
Proposed change 3: In the list in
L.3#2, change "library function" to
"library function or macro".
Proposed change 4: "Two
declarations of the same object or
function specify types that are not
compatible (6.2.7).".

Accepted with Modification, See N1568.
Proposed change 1:
Accepted as written.

Proposed change 2:
Accepted as written.

Proposed change 3:
In L.3#2, change "An argument to a library
function . . ." to
"An argument to a function or macro
defined in the standard library . . ."

Proposed change 4:
 Part A:
 Change "(6.3.2.3)" to "(6.3.2.3, and see
6.2.7)".

 Part B:
 "A store is performed to an object that has
two incompatible declarations (6.2.7)."

