
WG14 N1517
Editor’s Report

October 4, 2010

1. Status

N1516 is a revised draft incorporating the changes from the editorial review meetings. It contains diff
marks for all of the changes from N1494 except for minor formatting changes and subclause number
changes.

2. Notable editorial changes from N1494

1. Finally populated the list of major changes in the Foreword.

2. Replaced ‘‘pointed-to type’’ with ‘‘referenced type’’, a defined term from 6.2.5p20 (last item). Also
replaced ‘‘pointed-to’’ with ‘‘referenced’’ in a couple of related contexts (e.g., ‘‘pointed-to object’’)
for symmetry.

3. Clarified NOTE 2 in the definition of memory location (3.14) to take atomic bit-fields into account.

4. Clarified footnote 3 in the definition of a strictly conforming program (4) to note that the use of
conditional features must be protected by an appropriate preprocessing directive, which might not
be #ifdef.

5. Clarified the description of signal handling in 5.1.2.3p5 to take atomic objects into account.

6. Clarified 6.2.4p2 to include a pointer just past the end of an object becomming indeterminate when
the object’s lifetime ends.

7. Clarified the description of alignment in 6.2.8 to only apply to complete types.

8. Clarified the description of integer promotions in 6.3.1.1p2 to not apply to int or unsigned
int.

9. Reformatted the constraint in 6.4.4.4p9 to be easier to read.

10. Added introductory text to the generic selection example in 6.5.1.1p5

11. Moved _Atomic() from Declarations (6.5) to Type specifiers (6.7.2), where it belongs.

12. Revised the definition of contracted expressions in 6.5p8 to avoid confusion with operations on
atomic objects.

13. Added a footnote in 6.5.16 to clarify the behavior of assigning to a volatile variable.

14. Added a constraint in 6.7.2p3 to forbid using _Atomic() when atomic types are not supported.

15. Clarified the definition of full expression in 6.8p4 (and Annex C) to exclude initializers that are part
of compound literals.

16. Split 6.10.8 into separate subclauses for macros that are always defined, macros that specify
something about the environment, and macros that specify which conditional features are supported.

17. Examined the library synopses and removed extraneous headers (only btowc and wctob were
affected).

18. Corrected the introductory text in a number of the library subclauses to avoid conflating definition
(of macros) and declaration (of types and functions).

19. Corrected the note about the CMPLX macros in 7.3.9.3p5 to cast the results to the correct types.

2 WG14 N1517

20. Clarified the description of the frexp functions in 7.12.6.4 to note that the result is unspecified if
the exponent is too big to fit in an int.

21. Clarified the description of the non-_explicit functions in 7.17.1p5.

22. Clarified the description of overflow behavior for strtod and friends in 7.22.1.3p10 and
7.28.4.1.1p10 to take rounding into account.

23. Added #include <threads.h> line to the synopses of all of the threads functions in 7.25.

24. Clarified the specification of allowable mutex types for mtx_timedlock and mtx_trylock in
7.25.4.4p2 and 7.25.4.5p2 to avoid confusing use of the word ‘‘type’’.

25. Updated Annex B to include new items that were overlooked as well as all of the bounds-checking
stuff from Annex K.

26. Updated the introductions in Annex F and G to note that they specify conditional features.

27. Clarified the description of floating to integer conversions in F.4p1 to exclude out-of-range integral
values from the ‘‘no floating-point exceptions’’ provision.

28. Corrected the description of relational operator optimization in F.9.3 to refer to expressions rather
than statements.

29. Corrected the description of comparison macros in F.10.11 to refer to relational operators rather
than inequality operators.

30. Corrected footnote 362 in K.3.1.1.3 to indicate that the __STDC_WANT_LIB_EXT1_ _ macro
must be defined as 0 to avoid the additional names, not just left undefined.

31. Added TR 19769 (new character data types) to the Bibliography.

3. Previously Applied Content

1. N1252 A finer-grained specification of sequencing
2. N1282 Clarification of Expressions
3. N1285 Extending the lifetime of temporary objects (factored approach)
4. N1300 Draft minutes for April 2008 9.19 N1271
5. N1310 Requiring signed char to have no padding bits
6. N1311 Initializing static or external variables
7. N1316 Conversion between pointers and floating types
8. N1319 Adding EPOLE to math library functions (modulo change in minutes N1346)
9. N1320 Integrating C89 Defect Report 25 into C1x (modulo N1346)

10. N1321 Split FLT_EVAL_METHOD into operations and constants (modulo N1346) [subsequently
removed by N1361]

11. N1326 Adding TR 19769 to the C Standard Library
12. N1327 Abandoning a Process (adding quick_exit and at_quick_exit) (modulo N1346)
13. N1330 Static Assertions (modulo N1346)
14. N1338 More Thoughts on Implementing errno as a Macro
15. N1346 Draft Minutes for September 2008 (3.2 Report of the Project Editor) [Update Annex C

(Sequence Points) to match revised text]
16. N1349 Parallel memory sequencing model proposal
17. N1350 Analyzability (#1, #4 - conditionally normative)
18. N1353 FLT_EVAL_METHOD issues (first change only)
19. N1356 _Bool bit-fields
20. N1357 tgamma range error (first way)
21. N1358 Extensions to the C1X Library (#1, #2, #3 along the lines)
22. N1359 Technical corrigendum for C1X
23. N1360 Benign typedef redefinition
24. N1361 FLT_EVAL_METHOD and constants (back out N1321)

WG14 N1517 3

25. N1363 Editor’s Report (move unicode feature test macros, make wchar_t encoding imp-def if not
10646, and remove quick_exit footnote)

26. N1364 Thread-local storage (plus make auto access imp-def just like thread local)
27. N1365 Constant expressions (second bullet except ‘‘are covered’’ rather than ‘‘are not covered’’)
28. N1367 Contractions and expression evaluation methods
29. N1371 Thread Unsafe Standard Functions (except for 21.5)
30. N1372 Threads for the C Standard Library
31. N1373 Wording improvements for mblen, mbtowc, and c16rtomb
32. N1376 Adding pole error to math library functions
33. N1377 xxx_DECIMAL_DIG macros for <float.h>
34. N1380 Minutes for Markham, March/April 2009 (4.29 WG14 Mail 11572)
35. N1381 memset_s() to clear memory, without fear of removal
36. N1382 FLT_EVAL_METHOD and return
37. N1383 LIA annex correction
38. N1384 xxx_TRUE_MIN macros for <float.h>
39. N1387 Requested clarifications for thread-local storage (initialization only)
40. N1391 Floating-point to int/_Bool conversions
41. N1394 Analyzability (along the lines)
42. N1396 Wide function return values (alternate proposal)
43. N1397 Adding Alignment Support to C (use _Align keyword rather than [[]] syntax)
44. N1398 Tr eatment of math error conditions
45. N1400 Headers not idempotent
46. N1406 Anonymous Member-Structures and -Unions (modulo ‘‘name lookup’’)
47. N1420 On The Removal of gets()
48. N1371 Thread Unsafe Standard Functions (21.5 changes).
49. N1439 Completeness of types
50. N1441 Generic macro facility
51. N1444 Dependency Ordering for C Memory Model
52. N1447 C and C++ Alignment Compatibility
53. N1459 Comparison Macros (option 2)
54. N1460 Subsetting the Standard
55. N1462 errno and threads
56. N1464 Creation of complex value (move static init to Recommended Practice and make "as if" a

Note)
57. N1468 Assumed types in F.9.2 (along the lines - change font)
58. N1472 Comparison Macro Argument Conversion (option 3)
59. N1478 Supporting the ’noreturn’ property in C1x
60. N1480 Updates to C++ Memory Model Based on Formalization
61. N1482 Explicit Initializers for Atomics (use data race words from N.1 for N.2, remove ‘‘where it

applies’’ from N.1)
62. N1485 Atomic proposal (minus ternary op)
63. N1486 fabs (F.3 change only)
64. N1487 Comparison Macro Argument Conversion
65. N1488 UTF-8 string literals
66. E-mail 12207 (fix to 6.7p2 for static_assert declarations)
67. dr269fix

4 WG14 N1517

4. Non-editorial Issues

1. The type char is not included in the standard integer types in 6.2.5, although both signed char
and unsigned char are (p7). It is included in integer types (p17), but it seems like it should be
a standard integer type.

2. Footnote 57 in 6.2.8p3 notes that every over-aligned type is, or contains, a structure or union type
with a member that has an extended alignment. It was not clear to the editorial review committee
where, if anywhere, this is stated normatively.

3. The prohibition in 6.5.2.3p5 against accessing members of an _Atomic-qualified structure or union
would seem to make them rather difficult to use. Should this say that undefined behavior may occur
rather than that it does occur?

4. The ‘‘editorial’’ change made to 6.7.6.2p2 in response to DR 320 and incorporated as part of TC3
had an unintended normative effect that needs to be reversed.

The original words were:

Only an ordinary identifier (as defined in 6.2.3) with both block scope or function prototype
scope and no linkage shall have a variably modified type.

This clearly restricts the kinds of things that can be declared with a variably modified type. In
particular, it forbids declaring structure and union members as is noted in footnote 121 in 6.7.2.1.
The revised wording from DR 320 no longer contains this restriction:

An ordinary identifier (as defined in 6.2.3) that has a variably modified type shall have either
block scope and no linkage or function prototype scope.

I propose the following rewording to restore the restriction:

If an identifier is declared as having a variably modified type, it shall be an ordinary identifier
(as defined in 6.2.3) and have both block scope or function prototype scope and no linkage.

5. The description of initialization in 6.7.9 was not updated to take the new sequencing model into
account. I propose updating 6.7.9p23 to:

The evaluations of the initialization list expressions are indeterminately sequenced with
respect to one another and thus the order in which any side effects occur is unspecified.

Does this need to be tweaked for compound literals?

6. The description of signal handling in 7.14.1.1p5 should be harmonized with the description in
5.1.2.3p5.

The description of a signal handler in p2 should probably note that functions called indirectly via
standard library functions like abort (when SIGABRT is being caught) are also considered to be
part of the handler.

7. ISO/IEC TR 10176 Information technology — Guidelines for the preparation of programming
language standards (the basis for Annex D) has been updated (twice!) since the 1998 edition that
we reference. We should probably update our reference and Annex D to the current edition.

8. ISO 4217, Codes for the representation of currencies and funds, ISO 8601, Data elements and
interchange formats — Information interchange — Representation of dates and times,
ISO/IEC 9945, Information technology — Portable Operating System Interface (POSIX), and
ISO/IEC 10646, Information technology — Universal Multiple-Octet Coded Character Set (UCS)
have also been updated. We should investigate referencing the newer editions.

9. The index probably needs work, particularly for the newly added material.

WG14 N1517 5

-- Larry Jones

