
Document: WG14 N1408

Submitter: Barry Minor, Michael Wong, Raymond Mak (IBM)
Email:bminor@us.ibm.com, michaelw@ca.ibm.com,
rmak@ca.ibm.com
Submission Date: 2009-09-23
Related WG14 documents: N/A
Subject: Proposed Common Vectorized Types for C based on OpenCL

1. Introduction
This aim of this proposal is to suggest a standardized vector types for C. This
can be in the form of a TR or with enough interest, with the current C1X.
However, this proposal can be viewed as an introduction to vector types.
This paper will look at some history for vectorized types, as well as examples of
current implementation experience of vectorized types in various industrial
compilers. This paper is not an exhaustive authoritative research on the topic,
and we apologize for omissions.
The motivation for a common vectorized type is to:

1. support one of the most promising form of parallel programming and
improves the viability of C as a future programming language

2. Reduce the multiple ways that vectorized types can be created even
within a single compiler vendor’s product, and improve cross-compiler
support through standardization.

2. History
The basic concept behind vector processing is to enhance the performance of
data-intensive applications by providing hardware support for operations that can
manipulate an entire vector (or array) of data in a single operation. The number
of data elements operated upon at a time is called the vector length.
Scalar processors perform operations that manipulate single data elements such
as fixed-point or floating-point numbers. For example, scalar processors usually
have an instruction that adds two integers to produce a single-integer result.
Vector processors perform operations on multiple data elements arranged in
groups called vectors (or arrays). For example, a vector add operation to add two
vectors performs a pair-wise addition of each element of one source vector with
the corresponding element of the other source vector. It places the result in the
corresponding element of the destination vector. Typically a single vector
operation on vectors of length n is equivalent to performing n scalar operations.

mailto:michaelw@ca.ibm.com
mailto:rmak@ca.ibm.com

Processor designers are continually looking for ways to improve application
performance. The addition of vector operations to a processor architecture is one
method that a processor designer can use to make it easier to improve the peak
performance of a processor. However, the actual performance improvements
that can be obtained for a specific application depend on how well the application
can exploit vector operations.
The concept of vector processing has existed since the 1950s. Early
implementations of vector processing (known as array processing) were installed
in the 1960s. They used special purpose peripherals attached to general purpose
computers. An example is the IBM 2938 Array Processor, which could be
attached to some models of the IBM System/360. This was followed by the IBM
3838 Array Processor in later years.
By the mid-1970s, vector processing became an integral part of the main
processor in large supercomputers manufactured by companies such as Cray
Research. By the mid-1980s, vector processing became available as an optional
feature on large general-purpose computers such as the IBM 3090TM.
In the 1990s, developers of microprocessors used in desktop computers adapted
the concept of vector processing to enhance the capability of their
microprocessors when running desktop multimedia applications. These
capabilities were usually referred to as Single Instruction Multiple Data (SIMD)
extensions and operated on short vectors. Examples of SIMD extensions in
widespread use today include:

Intel Multimedia Extensions (MMXTM)
Intel Streaming SIMD Extensions (SSE)
AMD 3DNow!
Motorola AltiVec and IBM VMX/AltiVec

The SIMD extensions found in microprocessors used in desktop computers
operate on short vectors of length 2, 4, 8, or 16. This is in contrast to the classic
vector supercomputers that can often exploit long vectors of length 64 or more.
The VMX/AltiVec extensions to PowerPC Architecture add a vector processor
(VXU) to the PowerPC logical processing model.

The VXU operates on vectors that are a total of 128-bits long. These can be
interpreted by the VXU as either:

A vector of sixteen 8-bit bytes
A vector of eight 16-bit half words
A vector of four 32-bit words

The VMX/AltiVec extensions to PowerPC Architecture define 32 vector registers
that form the vector register file (VRF). The VRF is architecturally distinct from
the standard PowerPC FPRs and GPRs.

The VMX/AltiVec extensions to PowerPC also define two additional registers:
The VMX/AltiVec status and control register (VSCR), which is used to control

the operation of the VXU and report the status of some VMX/AltiVec
operations

The VRSAVE register, which can be used to assist the operating system save
state across context switches by providing a mechanism for software to
indicate what vector registers are in use

The VMX/AltiVec extensions to PowerPC Architecture define new instructions
that use the VXU to manipulate vectors stored in the VRF. These instructions fall
into these categories:

Vector integer arithmetic instructions (on 8-bit, 16-bit, or 32-bit integers)
Vector floating-point arithmetic instructions (32-bit only)
Vector load and store instructions
Vector permutation and formatting instructions

Processor control instructions used to read and write from the
VMX/AltiVec status and control register

Memory control instructions used to manage caches
This technology can be thought of as a set of registers and execution units that
can be added to the PowerPC architecture in a manner analogous to the addition
of floating-point units. Floating-point units were added to provide support for high-
precision scientific calculations and the vector technology is added to the
PowerPC architecture to accelerate the next level of performance-driven, high-
bandwidth communications and computing applications.

3. Current Implementations
I will list a few examples of vector types that our C and other compiler support:
1. Altivec, VMX
From the IBM XLC++ V10.1 [IBMXLC] manual for VMX vector types:

The following table lists the supported vector data types and the size and
possible values for each type.

Type Interpretation of
content

Range of values

Table 1. Vector data
types

vector unsigned char 16 unsigned char 0..255

vector signed char 16 signed char -128..127

vector bool char 16 unsigned char 0, 255

vector unsigned short

vector unsigned short
int

8 unsigned short 0..65535

vector signed short

vector signed short int 8 signed short -32768..32767

vector bool short

vector bool short int 8 unsigned short 0, 65535

vector unsigned int

vector unsigned long

vector unsigned long
int

4 unsigned int 0..232-1

vector signed int

vector signed long

vector signed long int 4 signed int -231..231-1

vector bool int

vector bool long

vector bool long int 4 unsigned int 0, 232-1

vector float 4 float IEEE-754 values6.80564694 *
10+38

vector pixel 8 unsigned short 1/5/5/5 pixel

All vector types are aligned on a 16-byte boundary. An aggregate that contains
one or more vector types is aligned on a 16-byte boundary, and padded, if
necessary, so that each member of vector type is also 16-byte aligned.

2. OpenCL:1.0

OpenCL [OpenCL] (Open Computing Language) is the first open, royalty-free standard
for general-purpose parallel programming of heterogeneous systems. OpenCL provides a
uniform programming environment for software developers to write efficient, portable
code for high-performance compute servers, desktop computer systems and handheld
devices using a diverse mix of multi-core CPUs, GPUs, Cell-type architectures and other
parallel processors such as DSPs.

The specification is implemented by many vendors including Apple, AMD, Nvidia, and
RapidMind. All of this is based on the LLVM Compiler technology and use the Clang
Compiler as its frontend [OpenCLImpl].

This specification is rapidly becoming an industrial de-factor standard for vectorized
types. We will use this as an example of the basis for standardization for the C
Programming language.

http://en.wikipedia.org/wiki/Clang

3. GCC vector types using attributes on basic types:
For GCC [GCC], on some targets, the instruction set contains SIMD vector
instructions that operate on multiple values contained in one large register at the
same time. For example, on the i386 the MMX, 3Dnow! and SSE extensions can
be used this way.

The first step in using these extensions is to provide the necessary data types.
This should be done using an appropriate typedef:

 typedef int v4si __attribute__ ((vector_size (16)));

The int type specifies the base type, while the attribute specifies the vector size
for the variable, measured in bytes. For example, the declaration above causes
the compiler to set the mode for the v4si type to be 16 bytes wide and divided

into int sized units. For a 32-bit int this means a vector of 4 units of 4 bytes, and
the corresponding mode of foo will be V4SI.

The vector_size attribute is only applicable to integral and float scalars, although
arrays, pointers, and function return values are allowed in conjunction with this
construct.

All the basic integer types can be used as base types, both as signed and as
unsigned: char, short, int, long, long long. In addition, float and double can be
used to build floating-point vector types.

4. Sample Proposal

We propose to follow the syntax defined in the current OpenCL specification. Many
other models are possible, and there may be value in combining multiple models. The
remainder of this paper will describe this proposal.

Data Types

Below is a list of supported vector data types.
Supported values of n are 2, 4, 8, and 16.

charn A 8-bit signed two’s complement integer vector.
ucharn A 8-bit unsigned integer vector.
shortn A 16-bit signed two’s complement integer vector.
ushortn A 16-bit unsigned integer vector.
intn A 32-bit signed two’s complement integer vector.
uintn A 32-bit unsigned integer vector.
longn A 64-bit signed two’s complement integer vector.
ulongn A 64-bit unsigned integer vector.
floatn A float vector.
doublen A double precision vector.

A lignment of Types

A data item declared to be a data type in memory is always aligned to the size of the data
type in bytes. For example, a float4 variable will be aligned to a 16-byte boundary, a
char2 variable will be aligned to a 2-byte boundary.

A built-in data type that is not a power of two bytes in size must be aligned to the next
larger power of two. This rule applies to built-in types only, not structs or unions.

The compiler is responsible for aligning data items to the appropriate alignment as
required by the data type. The behavior of a direct unaligned load/store is considered to
be undefined, except for the vector data load and store functions. These vector load and
store functions allow you to read and write vectors types from addresses aligned to the
size of the vector type or the size of a scalar element of the vector type.

Vector Literals

Vector literals can be used to create vectors from a set of scalars, or vectors. A vector
literal is written as a parenthesized vector type followed by a parenthesized set of
expressions. Vector literals may be used either in initialization statements or as constants
in executable statements.

The number of literal values specified must be one, i.e. referring to a scalar value, or
must match the size of the vector type being created. If a scalar literal value is specified,
the scalar literal value will be replicated to all the components of the vector type.

Vector Components

The components of vector data types with 1 … 4 components can be addressed as
<vector_data_type>.xyzw. Vector data types of type char2, uchar2,
short2, ushort2, int2, uint2, long2, ulong2, float2, and
double2 can access .xy elements. Vector data types of type char4, uchar4,
short4, ushort4, int4,uint4, long4, ulong4, float4, and
double4 can access .xyzw elements.

Accessing components beyond those declared for the vector type is an error so, for
example:

float2 pos;

pos.x = 1.0f; // is legal
pos.z = 1.0f; // is illegal

The component selection syntax allows multiple components to be selected by appending
their names after the period (.).

float4 c, a, b;

c.xyzw = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
c.z = 1.0f; // is a float

c.xy = (float2)(3.0f, 4.0f); // is a float2

The order of the components can be different to swizzle them, or replicated:

float4 pos = (float4)(1.0f, 2.0f, 3.0f, 4.0f);

float4 swiz= pos.wzyx; // swiz = (4.0f, 3.0f, 2.0f, 1.0f)

float4 dup = pos.xxyy; // dup = (1.0f, 1.0f, 2.0f, 2.0f)

The component group notation can occur on the left hand side of an expression. To form
an l- value, swizzling must be applied to an l-value of vector type, contain no duplicate
components, and it results in an l-value of scalar or vector type, depending on number of
components specified.

float4 pos = (float4)(1.0f, 2.0f, 3.0f, 4.0f);

pos.xw = (float2)(5.0, 6.0); // pos =(5.0f, 2.0f, 3.0f, 6.0f)
pos.wx = (float2)(7.0f, 8.0f);// pos =(8.0f, 2.0f, 3.0f, 7.0f)
pos.xx = (float2)(3.0f, 4.0f);// illegal - 'x' used twice

// illegal - mismatch between float2 and float4
pos.xy = (float4)(1.0f, 2.0f, 3.0f, 4.0f);

Elements of vector data types can also be accessed using a numeric index to refer to the
appropriate element in the vector. The numeric indices that can be used are given in the
table below:

Vector Components Numeric indices that can be used

2-component 0, 1
4-component 0, 1, 2, 3
8-component 0, 1, 2, 3, 4, 5, 6, 7
16-component 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, A, b, B, c, C,
d, D, e, E, f, F

The numeric indices must be preceded by the letter s or S.

In the following example

 float8 f;

f.s0 refers to the 1st element of the float8 variable f and f.s7 refers to the 8th
element of the float8 variable f.

The numeric indices used to refer to an appropriate element in the vector cannot be
intermixed with .xyzw notation used to access elements of a 1 .. 4 component vector.

For example

 float4 f, a;

 a = f.x12w; // illegal use of numeric indices with .xyzw

 a.xyzw = f.s0123; // valid

Vector data types can use the .lo (or .odd) and .hi (or .even) suffixes to get
smaller vector types or to combine smaller vector types to a larger vector type. Multiple
levels of .lo (or .odd) and .hi (or .even) suffixes can be used until they refer to
a scalar term.

The .lo suffix refers to the lower half of a given vector. The .hi suffix refers to the
upper half of a given vector.

Some examples to help illustrate this are given below:

float4 vf;

float2 low = vf.lo; // returns vf.xy
float2 high = vf.hi // returns vf.zw

The .odd suffix refers to the odd elements of a vector. The .even suffix refers to the
even elements of a vector.

Some examples are given below:

 float8 vf;
 float4 left = vf.odd;
 float4 right = vf.even;
 float2 high = vf.even.hi;
 float2 low = vf.odd.lo;

 // interleave L+R stereo stream
 float4 left, right;
 float8 interleaved;
 interleaved.even = left;
 interleaved.odd = right;

 // deinterleave
 left = interleaved.even;
 right = interleaved.odd;

 // transpose a 4x4 matrix
 void transpose(float4 m[4])
 {
 // read matrix into a float16 vector

 float16 x = (float16)(m[0], m[1], m[2], m[3]);
 float16 t;

 //transpose
 t.even = x.lo;
 t.odd = x.hi;
 x.even = t.lo;
 x.odd = t.hi;
 //write back
 m[0] = x.lo.lo; // { m[0][0], m[1][0], m[2][0], m[3][0] }
 m[1] = x.lo.hi; // { m[0][1], m[1][1], m[2][1], m[3][1] }
 m[2] = x.hi.lo; // { m[0][2], m[1][2], m[2][2], m[3][2] }
 m[3] = x.hi.hi; // { m[0][3], m[1][3], m[2][3], m[3][3] }
 }

Explicit Casts

Explicit casts between vector types are not legal. The example below will generate a
compilation error.

 float4 f;
 int4 i = (int4) f; not allowed

Scalar to vector conversions may be performed by casting the scalar to the desired vector
data type. Type casting will also perform appropriate arithmetic conversion. The round
to zero rounding mode will be used for conversions to built-in integer vector types. The
current rounding mode will be used for conversions to floating-point vector types.

In the examples below:

 float f = 1.0f;
 float4 va = (float4)f;

// va is a float4 vector with elements (f, f, f, f).

 uchar u = 0xFF;

float4 vb = (float4)u;

// vb is a float4 vector with elements((float)u, (float)u,
// (float)u, (float)u).

float f = 2.0f;
int2 vc = (int2)f;

// vc is an int2 vector with elements ((int)f, (int)f).

Explicit Conversions

Explicit conversions may performed using the

convert_<dest type name>(srctype)

suite of functions. These provide a full set of type conversions between supported types.
The number of elements in the source and destination vectors must match.

In the example below:

uchar4 u;
int4 c = convert_int4(u);

convert_int4 converts a uchar4 vector u to a int4 vector c.

float f;
int i = convert_int(f);

convert_int converts a float scalar f to a int scalar i.

Explicit conversions from a type to the same type has no effect on the type or value of an
expression.

The behavior of the conversion may be modified by one or two optional modifiers that
specify saturation for out-of-range inputs and rounding behavior.

The full form of the scalar convert function is:

destType convert_destType<_sat><_roundingMode> (sourceType)

The full form of the vector convert function is:

destTypen convert_destTypen<_sat><_roundingMode> (sourceTypen)

Data Types

Conversions are available for the following scalar types: bool, char, uchar, short,
ushort, int, uint, long, ulong, float, double and built-in vector types derived
therefrom. The operand and result type must have the same number of elements. The
operand and result type may be the same type.

Rounding Modes

Conversions to and from floating-point type shall conform to IEEE-754 rounding rules.
Conversions involving a floating-point or integer source operand or destination type may
have an optional rounding mode modifier. These are described in the table below:

Modifier Rounding Mode Description

_rte Round to nearest even
_rtz Round towards zero
_rtp Round toward positive infinity
_rtn Round toward negative infinity

no modifier specified Use the default rounding mode for this destination type,
_rtz for conversion to integers or the current rounding mode for conversion to floating-
point types.

By default, conversions to integer type use the _rtz (round toward zero) rounding mode
and conversions to floating-point type use the current rounding mode. The only default
floating- point rounding mode supported is round to nearest even i.e the current rounding
mode will be _rte for floating-point types.

Out of Range Behavior and Saturated Conversions

When the conversion operand is either greater than the greatest representable destination
value or less than the least representable destination value, it is said to be out of range.
When converting between integer types, the resulting value for out of range inputs will be
equal to the set of least significant bits in the source operand element that fit in the
corresponding destination element. When converting from a floating-point type to integer
type, the behavior is implementation- defined.

Conversions to integer type may opt to convert using the optional saturated mode by
appending the _sat modifier to the conversion function name. When in saturated mode,
values that are outside the representable range shall clamp to the nearest representable
value in the destination format. (NaN should be converted to 0).

Conversions to floating-point type shall conform to IEEE-754 rounding rules. The _sat
modifier may not be used for conversions to floating-point formats.

Explicit Conversion Examples

Example 1:

 short4 s;

 // -ve values clamped to 0
 ushort4 u = convert_ushort4_sat(s);

 // values > CHAR_MAX converted to CHAR_MAX
 // values < CHAR_MIN converted to CHAR_MIN
 char4 c = convert_char4_sat(s);

Example 2:

 float4 f;

 // values implementation defined for
 // f > INT_MAX, f < INT_MIN or NaN
 int4 i = convert_int4(f);

 // values > INT_MAX clamp to INT_MAX, values < INT_MIN clamp
 // to INT_MIN. NaN should produce 0.
 // The _rtz rounding mode is
 // used to produce the integer values.
 int4 i2 = convert_int4_sat(f);

 // similar to convert_int4, except that
 // floating-point values are rounded to the nearest
 // integer instead of truncated
 int4 i3 = convert_int4_rte(f);

 // similar to convert_int4_sat, except that
 // floating-point values are rounded to the
 // nearest integer instead of truncat
 int4 i4 = convert_int4_sat_rte(f);

ed

Example 3:

 int4 i;
 // convert ints to floats using the current rounding mode.
 float4 f = convert_float4(i);

 // convert ints to floats. integer values that cannot
 // be exactly represented as floats should round up to the
 // next representable float.
 float4 f = convert_float4_rtp(i);

Reinterpreting Data As Another Type

It is frequently necessary to reinterpret bits in a vector data type as another vector data
type. This is typically required when direct access to the bits in a floating-point type is
needed, for example to mask off the sign bit or make use of the result of a vector

relational operator.

Reinterpreting Types Using as_typen()

All data types may be also reinterpreted as another data type of the same size using the
as_typen() operator. When the operand and result type contain the same number of
elements, the bits in the operand shall be returned directly without modification as the
new type. The usual type promotion for function arguments shall not be performed.

For example, as_float(0x3f800000) returns 1.0f, which is the value that the bit
pattern 0x3f800000 has if viewed as a IEEE-754 single precision value.

When the operand and result type contain a different number of elements, the result shall
be implementation-defined. That is, a conforming implementation shall explicitly define
a behavior, but two conforming implementations need not have the same behavior when
the number of elements in the result and operand types does not match. The
implementation may define the result to contain all, some or none of the original bits in
whatever order it chooses. It is an error to use as_typen() operator to reinterpret data to
a type of a different number of bytes.

Examples:

 float f = 1.0f;
 uint u = as_uint(f); // Legal. Contains: 0x3f800000

 float4 f = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
// Legal. Contains: (int4)
// (0x3f800000, 0x40000000, 0x40400000, 0x40800000)
int4 i = as_int4(f);

 float4 f, g;
 int4 is_less = f < g;

// Legal. f[i] = f[i] < g[i] ? f[i] : 0.0f
 f = as_float4(as_int4(f) & is_less);

 int i;
// Legal. Result is implementation-defined.
 short2 j = as_short2(i);

 int4 i;
// Legal. Result is implementation-defined.
 short8 j = as_short8(i);

 float4 f;
 //Error. result and operand have different size
 double4 g = as_double4(f);

Implicit Conversions

Implicit conversions are conversions from one type to another without the use of the
as_type , explicit casts or explicit conversions using the convert_<dest type
name>(srctype) function . When an implicit conversion is done, it is not just a re-
interpretation of the expression's value but a conversion of that value to an equivalent
value in the new type. For example, the integer value 5 will be converted to the floating-
point value 5.0.

Implicit conversions may occur from scalar and vector built-in types. The conversions
shall proceed as described in section 6.3 of the ISO C99 standard TC2, with the following
amendments:

 Implicit conversions of non-void scalar types to vector types are allowed, if the
conversion to the corresponding scalar type is allowed (see below).

 Conversion to a scalar or vector floating point type shall be correctly rounded as
described by IEEE-754 using the current rounding mode.

 Conversion to a scalar or vector floating point type from integer with zero value
shall produce +0, per IEEE-754-2008.

 Vector types may not be implicitly converted to any other type.

Conversions are classified into three varieties:

 promotion -- the conversion is of type "promotion" if the new type can exactly
represent all numeric values representable by the old type.

 conversion -- a conversion wherein the new type cannot represent all numeric
values representable by the old type.

 widening -- a conversion is a widening operation if it is a conversion of a scalar
type to a vector type containing elements of the same type.

A conversion may be both a promotion and a widening, or a conversion and a widening
in cases where both the type and number of elements in the type change. In such cases,
the conversion is considered a single conversion. The compiler shall implement
conversions from all non-void scalar types directly to all non-void built-in scalar and
vector types.

Implicit scalar promotion to vector types will be extended to all operators, and built-in
functions, except for the as_type() operator, and inside a vector constructor with more

than one argument. In cases where the correct operator or function to use may be
ambiguous because of the arguments passed to an overloaded function or operator do not
exactly match the function or operator prototype, the correct function to be used shall be
determined as follows:

1. A set of legal candidate functions (or operators) is prepared. Qualifying functions
have the following properties:

a. They have the correct name.
b. They are in the scope of the statement.
c. They have the same number of arguments as the number of arguments

provided to the operator or function.
d. For each argument that does not match the argument type for the function,

there must exist a single legal implicit conversion to that type.

2. Candidate functions are evaluated to find the best candidate function. If there is
exactly one candidate function that is a better function than all the other candidate
functions, then it is selected. Otherwise, the call is ill-formed.

A candidate function A is defined to be better than another candidate function B if for all
arguments, there is not an implicit conversion to conform to A's prototype that is worse
than the corresponding conversion to conform to B for the same argument, and for some
argument the conversion to A is a better conversion than to B.

A conversion is defined to be better than another conversion according to the following
ranking:

 Conversion Class

1. Exact match i.e. no conversion – Best
2. Promotion only
3. Widening only
4. Promotion + Widening
5. Conversion only
6. Conversion + Widening – Worst

In addition, when comparing two conversions in the same conversion class, conversions
that widen to a vector with fewer elements are better than conversions that widen to a
vector with more elements.

Examples:

Implicit conversion of float to double is preferred over float to float2, because promotion
is better than widening only.

Implicit conversion of float to float4 is better than float to float8, because float4 is
narrower.

Implicit conversion of float to double2 is better than float to int2, because the former is a
promotion, and the latter is a conversion.

Implicit conversion from double to float2 is better than double to int4 because float2 has
fewer elements than int4. However, implicit conversion from double to float2 is the same
as double to int2 – both are in the same conversion class and widen to the same number
of elements. The call is ill-formed.

Implicit conversions for pointer types follow the rules described in the C99 specification.

There are no implicit conversions for members of an array or structure. For example, an
array of int cannot be implicitly converted to an array of float.

Operators

a. The arithmetic operators add (+), subtract (-), multiply (*) and divide (/) operate on
built-in integer and floating-point scalar, and vector data types. The remainder (%)
operates on built- in integer scalar and integer vector data types only. All arithmetic
operators result in the same fundamental type (integer or floating-point) as the operand
they operate on, after operand type conversion. After conversion, the following cases are
valid:

 The two operands are scalars. In this case, the operation is applied, resulting in a
scalar.

 One operand is a scalar, and the other is a vector. In this case, the scalar is promoted
and/or up-converted to the type used by the vector operand (down-conversion of the
scalar type is illegal and will result in a compile time error). The scalar type is then
widened to a vector that has the same number of components as the vector operand.
The operation is done component-wise resulting in the same size vector.

 The two operands are vectors of the same size. In this case, the operation is done
component-wise resulting in the same size vector.

All other cases are illegal. Division on integer types which results in a value that lies
outside of the range bounded by the maximum and minimum representable values of the
integer type will not cause an exception but will result in an unspecified value. A divide
by zero with integer types does not cause an exception but will result in an unspecified
value. Division by zero for floating-point types will result in ±infinity or NaN as
prescribed by the IEEE-754 standard.

b. The arithmetic unary operators (+ or -), operates on built-in scalar and vector types.

c. The arithmetic post- and pre-increment and decrement (-- and ++) operate on built-in
scalar and vector types except the built-in scalar and vector float types 21. All unary
operators work component-wise on their operands. These result with the same type they
operated on. For post- and pre-increment and decrement, the expression must be one that
could be assigned to (an l-value). Pre-increment and pre-decrement add or subtract 1 to
the contents of the expression they operate on, and the value of the pre-increment or pre-
decrement expression is the resulting value of that modification. Post-increment and
post-decrement expressions add or subtract 1 to the contents of the expression they
operate on, but the resulting expression has the expression’s value before the post-
increment or post-decrement was executed.

d. The relational operators greater than (>), less than (<), greater than or equal (>=), and
less than or equal (<=) operate on scalar and vector types. If the source operands are a
vector float, the result is a vector signed integer.

The result is a scalar signed integer of type int if the source operands are scalar and a
vector signed integer type of the same size as the source operands if the source operands
are vector types. Vector source operands of type charn and ucharn return a charn
result; vector source operands of type shortn and ushortn return a shortn result;
vector source operands of type intn, uintn and floatn return an intn result; vector
source operands of type longn, ulongn, and doublen return a longn result. For
scalar types, the relational operators shall return 0 if the specified relation is false and 1 if
the specified relation is true. For vector types, the relational operators shall return 0 if
the specified relation is false and –1 (i.e. all bits set) if the specified relation is true. The
relational operators always return 0 if either argument is not a number (NaN).

e. The equality operators equal (==), and not equal (!=) operate on built-in scalar and
vector types. For built-in vector types, the operators are applied component-wise.

The result is a scalar signed integer of type int if the source operands are scalar and a
vector signed integer type of the same size as the source operands if the source operands
are vector types. Vector source operands of type charn and ucharn return a charn
result; vector source operands of type shortn and ushortn return a shortn result;
vector source operands of type intn, uintn and floatn return an intn result; vector
source operands of type longn, ulongn and doublen return a longn result.

For scalar types, the equality operators return 0 if the specified relation is false and return
1 if the specified relation is true. For vector types, the equality operators shall return 0 if
the specified relation is false and –1 (i.e. all bits set) if the specified relation is true. The
equality operator equal (==) returns 0 if one or both arguments are not a number (NaN).
The equality operator not equal (!=) returns 1 (for scalar source operands) or -1 (for
vector source operands) if one or both arguments are not a number (NaN).

f. The bitwise operators and (&), or (|), exclusive or (^), not (~) operate on all scalar and
vector built-in types except the built-in scalar and vector float types. For vector built-in
types, the operators are applied component-wise.

g. The logical operators and (&&), or (||) operate on all scalar and vector built-in types
except the built-in scalar and vector float types. And (&&) will only evaluate the right
hand operand if the left hand operand compares unequal to 0. Or (||) will only evaluate
the right hand operand if the left hand operand compares equal to 0. For built-in vector
types, the operators are applied component-wise.

The logical operator exclusive or (^^) is reserved.

The result is a scalar signed integer of type int if the source operands are scalar and a
vector signed integer type of the same size as the source operands if the source operands
are vector types. Vector source operands of type charn and ucharn return a charn
result; vector source operands of type shortn and ushortn return a shortn result;
vector source operands of type intn, and uintn return an intn result; vector source
operands of type longn and ulongn return a longn result.

For scalar types, the logical operators shall return 0 if the result of the operation is false
and 1 if the result is true. For vector types, the logical operators shall return 0 if the
result of the operation is false and –1 (i.e. all bits set) if the result is true.

h. The logical unary operator not (!) operates on all scalar and vector built-in types
except the built-in scalar and vector float types. For built-in vector types, the operators
are applied component-wise.

The result is a scalar signed integer of type int if the source operands are scalar and a
vector signed integer type of the same size as the source operands if the source operands
are vector types. Vector source operands of type charn and ucharn return a charn
result; vector source operands of type shortn and ushortn return a shortn result;
vector source operands of type intn, and uintn return an intn result; vector source
operands of type longn and ulongn return a longn result.

For scalar types, the result of the logical unary operator is 0 if the value of its operand
compares unequal to 0, and 1 if the value of its operand compares equal to 0. For vector
types, the unary operator shall return a 0 if the value of its operand compares unequal to
0, and -1 (i.e. all bits set) if the value of its operand compares equal to 0.

i. The ternary selection operator (?:) operates on three expressions (exp1 ? exp2 : exp3).
This operator evaluates the first expression exp1, which can be a scalar or vector result
except float. If the result is a scalar value then it selects to evaluate the second expression
if the result is true, otherwise it selects to evaluate the third expression. If the result is a
vector value, then this is equivalent to calling select(exp2, exp3, exp1). The second and

third expressions can be any type, as long their types match. This resulting matching
type is the type of the entire expression.

j. The operators (~), right-shift (>>), left-shift (<<) operate on all scalar and vector built-
in types except the built-in scalar and vector float types. For built-in vector types, the
operators are applied component-wise. For the right-shift (>>), left-shift (<<) operators,
the rightmost operand must be a scalar if the first operand is a scalar, and the rightmost
operand can be a vector or scalar if the first operand is a vector.

The result of E1 << E2 is E1 left-shifted by log2(N) least significant bits in E2
viewed as an unsigned integer value, where N is the number of bits used to represent the
scalar data type or each component of a vector data type; vacated bits are filled with
zeros.

The result of E1 >> E2 is E1 right-shifted by log2(N) least significant bits in E2
viewed as an unsigned integer value, where N is the number of bits used to represent the
scalar data type or each component of a vector data type. If E1 has an unsigned type or if
E1 has a signed type and a nonnegative value, the empty bits are cleared. If E1 has a
signed type and a negative value, the empty bits are set.

k. The sizeof operator yields the size (in bytes) of its operand, including any padding
bytes (needed for alignment, which may be an expression or the parenthesized name of a
type. The size is determined from the type of the operand. The result is an integer. If the
type of the operand is a variable length array22 type, the operand is evaluated; otherwise,
the operand is not evaluated and the result is an integer constant.

When applied to an operand that has type char, uchar, the result is 1. When applied
to an operand that has type short, ushort, or half the result is 2. When applied to
an operand that has type int, uint or float, the result is 4. When applied to an
operand that has type long, ulong or double, the result is 8. When applied to an
operand that is a vector type, the result is number of components * size of each scalar
component. When applied to an operand that has array type, the result is the total number
of bytes in the array. When applied to an operand that has structure or union type, the
result is the total number of bytes in such an object, including internal and trailing
padding. The sizeof operator shall not be applied to an expression that has function
type or an incomplete type, to the parenthesized name of such a type, or to an expression
that designates a bit-field member.

l. The comma (,) operator operates on expressions by returning the type and value of the
right- most expression in a comma separated list of expressions. All expressions are
evaluated, in order, from left to right.

m. The unary (*) operator denotes indirection. If the operand points to a function, the
result is a function designator; if it points to an object, the result is an lvalue designating

the object. If the operand has type ‘‘pointer to type’’, the result has type ‘‘type’’. If an
invalid value has been assigned to the pointer, the behavior of the unary * operator is
undefined23.

n. The unary (&) operator returns the address of its operand. If the operand has type
‘‘type’’, the result has type ‘‘pointer to type’’. If the operand is the result of a unary *
operator, neither that operator nor the & operator is evaluated and the result is as if both
were omitted,

except that the constraints on the operators still apply and the result is not an lvalue.
Similarly, if the operand is the result of a [] operator, neither the & operator nor the unary
* that is implied by the [] is evaluated and the result is as if the & operator were removed
and the [] operator were changed to a + operator. Otherwise, the result is a pointer to the
object or function designated by its operand24.

o. Assignments of values to variable names are done with the assignment operator (=),
like

 lvalue = expression

The assignment operator stores the value of expression into lvalue. The expression and
lvalue must have the same type, or the expression must have a type in table 6.1, in which
case an implicit conversion will be done on the expression before the assignment is done.

If expression is a scalar type and lvalue is a vector type, the scalar is promoted and/or up-
converted to the type used by the vector operand (down-conversion of the scalar type is
illegal and will result in a compile time error). The scalar type is then widened to a
vector that has the same number of components as the vector operand. The operation is
done component-wise resulting in the same size vector.

Any other desired type-conversions must be specified explicitly. L-values must be
writable. Variables that are built-in types, entire structures or arrays, structure fields, l-
values with the field selector (.) applied to select components or swizzles without
repeated fields, l-values within parentheses, and l-values dereferenced with the array
subscript operator ([]) are all l- values. Other binary or unary expressions, function
names, swizzles with repeated fields, and constants cannot be l-values. The ternary
operator (?:) is also not allowed as an l-value.

The order of evaluation of the operands is unspecified. If an attempt is made to modify
the result of an assignment operator or to access it after the next sequence point, the
behavior is undefined. Other assignment operators are the assignments add into (+=),
subtract from (-=), multiply into (*=), divide into (/=), modulus into (%=), left shift by
(<<=), right shift by (>>=), and into (&=), inclusive or into (|=), and exclusive or into
(^=).

The expression

 lvalue op= expression

is equivalent to

 lvalue = lvalue op expression

and the l-value and expression must satisfy the semantic requirements of both op and
equals (=).

Vector Operations

Vector operations are component-wise. Usually, when an operator operates on a vector, it
is operating independently on each component of the vector, in a component-wise
fashion.

For example,

float4 v, u;
float f;

v = u + f;

will be equivalent to

v.x = u.x + f;
v.y = u.y + f;
v.z = u.z + f;
v.w = u.w + f;

And

float4 v, u, w;

w = v + u;

will be equivalent to

w.x = v.x + u.x;
w.y = v.y + u.y;
w.z = v.z + u.z;
w.w = v.w + u.w;

and likewise for most operators and all integer and floating-point vector types.

Built-in Functions

Math Functions

The vector versions of the math functions operate component-wise. The description is
per- component.

The built-in math functions are not affected by the prevailing rounding mode in the
calling environment, and always return the same value as they would if called with the
round to nearest even rounding mode.

 Below is a list of built-in math functions that can take scalar or vector arguments. We
use the generic type name gentype to indicate that the function can take float,
float2, float4, float8, float16, double, double2, double4,
double8, or double16 as the type for the arguments. For any specific use of a
function, the actual type has to be the same for all arguments and the return type, unless
otherwise specified.

gentype acos (gentype)
gentype acosh (gentype)
gentype acospi (gentype x)
gentype asin (gentype)
gentype asinh (gentype)
gentype asinpi (gentype x)
gentype atan (gentype y_over_x)
gentype atan2 (gentype y, gentype x)
gentype atanh (gentype)
gentype atanpi (gentype x)
gentype atan2pi (gentype y, gentype x)
gentype cbrt (gentype)
gentype ceil (gentype)
gentype copysign (gentype x, gentype y)
gentype cos (gentype)
gentype cosh (gentype)
gentype cospi (gentype x)
gentype erfc (gentype)
gentype erf (gentype)
gentype exp (gentype x)
gentype exp2 (gentype)
gentype exp10 (gentype)
gentype expm1 (gentype x)
gentype fabs (gentype)
gentype fdim (gentype x, gentype y)
gentype floor (gentype)
gentype fma (gentype a, gentype b, gentype c)

gentype fmax (gentype x, gentype y)
gentype fmax (gentype x, float y)
gentype fmin (gentype x, float y)
gentype fmod (gentype x, gentype y)
gentype frexp (gentype x, intn *exp)
gentype hypot (gentype x, gentype y)
intn ilogb (gentype x)
gentype ldexp (gentype x, intn n)
gentype ldexp (gentype x, int n)
gentype lgamma (gentype x)
gentype lgamma_r (gentype x, intn *signp)
gentype log (gentype)
gentype log2 (gentype)
gentype log10 (gentype)
gentype log1p (gentype x)
gentype logb (gentype x)
gentype maxmag (gentype x, gentype y)
gentype minmag (gentype x, gentype y)
gentype modf (gentype x, gentype *iptr)
gentype nan (uintn nancode)
gentype pow (gentype x, gentype y)
gentype pown (gentype x, intn y)
gentype powr (gentype x, gentype y)
gentype remainder (gentype x, gentype y)
gentype remquo (gentype x, gentype y, intn *quo)
gentype rint (gentype)
gentype rootn (gentype x, intn y)
gentype round (gentype x)
gentype rsqrt (gentype)
gentype sin (gentype)
gentype sincos (gentype x, gentype *cosval)
gentype sinh (gentype)
gentype sinpi (gentype x)
gentype sqrt (gentype)
gentype tan (gentype)
gentype tanh (gentype)
gentype tanpi (gentype x)
gentype tgamma (gentype)
gentype trunc (gentype)

Integer Functions

Below is a list of built-in integer functions that take scalar or vector arguments. We use
the generic type name gentype to indicate that the function can take char,
char{2|4|8|16}, uchar, uchar{2|4|8|16}, short,

short{2|4|8|16}, ushort, ushort{2|4|8|16}, int,
int{2|4|8|16}, uint, uint{2|4|8|16}, long, long{2|4|8|16}
ulong, or ulong{2|4|8|16} as the type for the arguments. We use the generic
type name ugentype to refer to unsigned versions of gentype. For example, if
gentype is char4, ugentype is uchar4.

For any specific use of a function, the actual type has to be the same for all arguments
and the return type unless otherwise specified.

ugentype abs (gentype x)
ugentype abs_diff (gentype x, gentype y)
gentype add_sat (gentype x, gentype y)
gentype hadd (gentype x, gentype y)
gentype rhadd (gentype x, gentype y)
gentype clamp (gentype x, gentype minval, gentype maxval)
gentype clz (gentype x)
gentype mad_hi (gentype a, gentype b, gentype c)
gentype mad_sat (gentype a, gentype b, gentype c)
gentype mad_hi_sat (gentype a, gentype b, gentype c)
gentype max (gentype x, gentype y)
gentype min (gentype x, gentype y)
gentype mul_hi (gentype x, gentype y)
gentype rotate (gentype v, gentype i)
gentype sub_sat (gentype x, gentype y)
shortn upsample (charn hi, ucharn lo)
ushortn upsample (ucharn hi, ucharn lo)
intn upsample (shortn hi, ushortn lo)
uintn upsample (ushortn hi, ushortn lo)
longn upsample (intn hi, uintn lo)
ulongnn upsample (uintn hi, uintn lo)
intn msum (short2n a, short2n b, intn c)
intn msum (short2n a, ushort2n b, intn c)
uintm msum (ushort2n a, ushort2n b, uintn c)

Common Functions

Below is a list of built-in common functions. These all operate component-wise. The
description is per-component. We use the generic type name gentype to indicate that
the function can take float, float2, float4, float8, float16,
double, double2, double4, double8, or double16 as the type for the
arguments.

The built-in common functions are implemented using the round to nearest even rounding
mode.

gentype clamp (gentype x, gentype minval, gentype maxval)
gentype clamp (gentype x, float minval, float maxval)
gentype degrees (gentype radians)
gentype max (gentype x, gentype y)
gentype max (gentype x, float y)
gentype min (gentype x, gentype y)
gentype min (gentype x, float y)
gentype mix (gentype x, gentype y, gentype a)
gentype mix (gentype x, gentype y, float a)
gentype radians (gentype degrees)
gentype step (gentype edge, gentype x)
gentype step (float edge, gentype x)
genType smoothstep (genType edge0, genType edge1, genType x)
genType smoothstep (float edge0, float edge1, genType x)
gentype sign (gentype x)

Relational Functions

The relational and equality operators (<, <=, >, >=, !=, ==) can be used with scalar and
vector built-in types and produce a scalar or vector signed integer result respectively as
described in section 6.3.

The functions described in table 6.13 can be used with built-in scalar or vector types as
arguments and return a scalar vector integer result. The argment type gentype can be
char, charn, uchar, ucharn, short, shortn, ushort, ushortn,
int, intn, uint, uintn, long, longn, ulong, ulongn, float,
floatn, double, and doublen, The argument type igentype refers to signed
integer vector types i.e. char, charn, short, shortn, int, intn, long and
longn. The argument type ugentype refers to unsigned integer vector types i.e.
uchar, ucharn, ushort, ushortn, uint, uintn, ulong and ulongn.

The functions isequal, isnotequal, isgreater, isgreaterequal, isless, islessequal,
islessgreater, isfinite, isinf, isnan, isnormal, isordered, isunordered and signbit shall
return a 0 if the specified relation is false and a 1 if the specified relation is true for scalar
argument types. These functions shall return a 0 if the specified relation is false and a –1
(i.e. all bits set) if the specified relation is true for vector argument types.

The relational functions isequal, isgreater, isgreaterequal, isless, islessequal, and
islessgreater always return 0 if either argument is not a number (NaN). isnotequal
returns 1 if one or both arguments are not a number (NaN) and the argument type is a
scalar and returns -1 if one or both arguments are not a number (NaN) and the argument
type is a vector.

int isequal (float x, float y)
intn isequal (floatn x, floatn y)

int isnotequal (float x, float y)
intn isnotequal (floatn x, floatn y)
int isgreater (float x, float y)
intn isgreater (floatn x, floatn y)
int isgreaterequal (float x, float y)
intn isgreaterequal (floatn x, floatn y)
int isless (float x, float y)
intn isless (floatn x, floatn y)
int islessequal (float x, float y)
intn islessequal (floatn x, floatn y)
int islessgreater (float x, float y)
intn islessgreater (floatn x, floatn y)
int isfinite (float)
intn isfinite (floatn)
int isinf (float)
intn isinf (floatn)
int isnan (float)
intn isnan (floatn)
int isnormal (float)
intn isnormal (floatn)
int isordered (float x, float y)
intn isordered (floatn x, floatn y)
int isunordered (float x, float y)
intn isunordered (floatn x, floatn y)
int signbit (float)
intn signbit (floatn)
int any (igentype x)
int all (igentype x)
gentype bitselect (gentype a, gentype b, gentype c)
gentype select (gentype a, gentype b, igentype c)
gentype select (gentype a, gentype b, ugentype c)

Vector Data Load Store and Prefetch Functions

Below is a list of supported functions that allow you to read and write vector types from a
pointer to memory. We use the generic type gentype to indicate the built-in data types
char, uchar, short, ushort, int, uint, long, ulong, float,
double. We use the generic type name gentypen to indicate the built-in data types
char{2|4|8|16}, uchar{2|4|8|16}, short{2|4|8|16},
ushort{2|4|8|16}, int{2|4|8|16}, uint{2|4|8|16},
long{2|4|8|16}, ulong{2|4|8|16}, float{2|4|8|16}, or
double{2|4|8|16} as the type for the arguments unless otherwise stated. The suffix
used in gentypen or the function name (i.e. vloadn, vstoren etc.) represents the number
of elements in the built-in vector type (n = 2, 4, 8 or 16).

gentypen vloadn (size_t offset, const gentype *p)
void vstoren (gentypen data, size_t offset, gentype *p)
void prefetch (const gentype *p, size_t num_elements)

M iscellaneous Vector Functions

The OpenCL C programming language implements the following additional built-in
vector functions. We use the generic type name gentypen (or gentypem) to indicate the
built-in data types char{2|4|8|16}, uchar{2|4|8|16}, short{2|4|8|16}, ushort{2|4|8|16},
int{2|4|8|16}, uint{2|4|8|16}, long{2|4|8|16}, ulong{2|4|8|16}, float{2|4|8|16} or
double{2|4|8|16} as the type for the arguments unless otherwise stated. We use the
generic name ugentypen to indicate the built-in unsigned integer data types.

int vec_step (gentypen a)
int vec_step(type)
gentypen shuffle (gentypem x, ugentypen mask)
gentypen shuffle (gentypem x, gentypem y, ugentypen mask)

5. Summary
This paper proposes a vectorized type for C. It follows the OpenCL specification.
OpenCL is the first open, royalty-free standard for cross-platform, parallel programming
of modern processors found in personal computers, servers and handheld/embedded
devices. OpenCL (Open Computing Language) greatly improves speed and
responsiveness for a wide spectrum of applications in numerous market categories from
gaming and entertainment to scientific and medical software.

Our motivation for a standardized common vectorized syntax is to improve portability of
vector programs, especially with the current interest in using vectors in parallel
programming. Furthermore, it will reduce the current proliferation of existing vector
programming languages, and make standard existing implementations, for which we
already have extensive experience.

6. References

[IBMXLC] http://publib.boulder.ibm.com/infocenter/comphelp/v101v121/index.jsp
[GCC] http://gcc.gnu.org/onlinedocs/gcc-4.4.0/gcc/Vector-Extensions.html#Vector-
Extensions
[OpenCL] http://www.khronos.org/opencl/
[OpenCLImpl] http://en.wikipedia.org/wiki/OpenCL

http://www.khronos.org/opencl/
http://en.wikipedia.org/wiki/OpenCL

7. Acknowledgement
This proposal would not be possible without the work of the Khronos Group, as well as a
number of people from various companies.

	Alignment of Types
	Miscellaneous Vector Functions

