
Document: WG14 N1353

Submitter: Fred Tydeman and Jim Thomas (USA)
Submission Date: 2009-02-26
Related WG14 documents: N1321, DR 290
Subject: FLT_EVAL_METHOD issues

This paper notes problems related to the following sections of text, in C1x draft N1336,
as recently modified by N1321, and proposes ways to fix them.

5.2.4.2.2 #8

Except for assignment and cast (which remove all extra range and precision), the values
of operations with floating operands and values subject to the usual arithmetic
conversions and of floating constants are evaluated to a format whose range and precision
may be greater than required by the type. The use of evaluation formats is characterized
by the implementation-defined value of FLT_EVAL_METHOD:20)

6.8.6.4 #3

If a return statement with an expression is executed, the value of the expression is
returned to the caller as the value of the function call expression. If the expression has a
type different from the return type of the function in which it appears, the value is
converted as if by assignment to an object having the return type of the function.142)

142) The return statement is not an assignment. The overlap restriction of subclause 6.5.16.1 does not
apply to the case of function return. The representation of floating-point values may have wider range or
precision and is determined by FLT_EVAL_METHOD. A cast may be used to remove this extra range and
precision.

Problem 1: The term “operations” is potentially misleading. The standard uses
“operations” as a more general term than “operators”, for example, in “Operations on
files”. One might wonder if library functions like sqrt() could be affected by wide
evaluation. But only operators are subject to the usual arithmetic conversions, so
“operators” could replace “operations” in the text to clarify the matter, without
substantive change.

Recommended change:

5.2.4.2.2 [8]: change “operations” to “operators”.

Problem 2: The new text in 5.2.4.2.2 and footnote 142 now implies that function returns
are widened by widening expression evaluation methods. This specification is not tenable
from an ABI perspective because it would introduce inconsistencies between the format
expected by the callers and the format returned by the callee, depending on the evaluation
method used for their translation. The following recommended changes revert to the

original intention, namely that function returns, like assignments and casts, are not
affected by wide expression evaluation methods.

Recommended changes:

5.2.4.2.2 [8]: change “Except for assignment and cast” to “Except for assignment, cast,
and return”.

6.8.6.4 #3: change the second sentence to “If the expression is evaluated to a format
different from the return type of the function in which it appears …”

Footnote 142: remove the last two sentences (thereby reverting to the C99 text).

