
WG14 N1351

C Language support for multiprocessor application
environments.

Walter Banks
Byte Craft Limited

Canada

February 2009

The purpose of this paper is to start the dialog that must inevitably precede making a

clear decision on the emerging issue of support for multiprocessor applications. This

paper is meant to define the problem, its terms and current solutions and some of the

possible alternatives. This paper is not proposing a specific C language solution to

language support for multiprocessor systems. There may not be a single language

solution, and at this point support technology may still be viewed as not fully mature

even though much of it is 25 plus years old.

The following two questions should be considered by WG-14 regarding the support of

multiprocessor execution environments.

1) Should the mainstream language support a multiprocessor environment? (Currently

N1256 Programming languages — C ISO/IEC 9899:TC3)

2) A separate but related issue is should the embedded systems technical report be

enhanced to support named execution spaces to reflect current embedded systems

practices? (ISO/IEC TR 18037 Programming languages - C - Extensions to

support embedded processors)

There may be other documents that could be affected and they may need changes as well.

Multiprocessor environments date back 40 years to the I/O controllers of large mainframe

computers. There have been many attempts to measure and define how multiprocessors

should be defined and evaluated.

In the mid 60’s Flynn attempted to define multiprocessor systems in terms of data flow

and processor simultaneous or independent execution. Flynn’s definitions were all

combination of single or multiple instruction streams and single or multiple data streams.

(SISD SIMD MISD and MIMD) Flynn’s definitions went through many modifications to

attempt to classify multiprocessor implementations. In time it became clear that many of

the early applications for multiprocessor environments represented special but important

cases. The first proposed parallel applications were all variations on matrix calculations

weather forecasting, pattern matching specifically Grace Hopper’s ground data cruise

missile navigation pattern matching and high-energy explosion simulation.

Once the small list of obvious applications had been implemented the focus shifted to the

holy grail of multiple processor support. The Holy Grail is a single application program

automatically being distributed over multiple processors. Multiprocessor embedded

systems generally have several specialized processing elements that can be part but not

the whole solution. Many applications may never benefit from multiprocessor

implementations because no significant opportunity for parallel execution. It doesn’t

mean that a large application may not be broken down into small functions to function on

a distributed network of resources. (Indeed there are many cases where this is currently

happening)

The ad hoc applications have proven to be much more the norm than the exception.

Incrementally these applications have significantly contributed to the multiprocessor

technology.

The following are a few examples from personal experience that illustrate the point.

The four-processor computer network simulator used for computer network protocol

simulation used independent processors that ran independently but interfaced through

well-defined protocols. This simulator used both common data space and messaging

interprocessor communication.

This system could be described as implemented as a loosely coupled multiprocessor.

Each processor ran code that could have been replaced with code that interacted with the

interprocessor protocols. The C implementation requited no language extensions and no

multiprocessor specific support.

This project defined the nature of multiprocessor systems. Processor coupling could be

tight or loose. Tight coupling was an environment where execution threads could pass

from one processor to the next and return to the original processor. Tight coupling

required that execution protocols be able to call functions in alternative processors a

change that would have required changes to the descriptive language used for

implementations.

Loose-coupled processors function independently and interact through data passed

between processors but not execution threads. Another way of defining loose coupling is

each processor interfaces through a well defined protocol allowing individual processors

or their application code to be replaced by with independent code that conforms to the

protocols.

The mid 70’s brought a lot of research on the interconnection between multiprocessor

systems, not unlike some of the current debate on on-chip interprocessor connections.

Academic institutions have written papers on every one, two and three-dimensional

topology. At the application level how data is shared and transported has had little impact

on software implementation.

Loosely coupled processors are currently the most common form of multiprocessors.

Desktop personal computer keyboards, automotive displays, distributed intelligence using

CAN, LIN and other packet switching busses for data communications. Loose but close

coupling with processor arithmetic co-processors.

Loosely coupled systems typically are coupled in data space, either real or virtual, that is

accessible from both processors. One characteristic of a loosely coupled system is that the

data life in the common communication data space is often long, rarely changing after

initialization during start-up and (relatively) rarely changing during application

execution. The software design in each of the processors can be independently developed

as long as both parties understand the meaning of the data and its access protocols.

Another way to distinguish multiprocessor environments would be to determine if the

actual application crosses between boundaries. These applications can be loosely or

tightly coupled and is independent of interprocessor communication technology. The

relationship between a keyboard embedded processor and the host processor in a desktop

personal computer is one way of looking at this distinction. It is clear that the keyboard is

part of many applications but it is very rare that the code running in the keyboard is part

of a specific application. This simple distinction alters the way many applications are

viewed.

The most common embedded systems solution for control of automotive engines is a

multiple processor solution implemented as a hiarchity of execution platforms. A

variation on a Power PC is used to provide over all engine control, it is coupled to

processors that interface directly to the actual engine. This lower layer has two identical

event driven processors that respond system events. Events can originate from timers,

sensors or be host initiated. The division of labor between the two processor levels that

contribute to the successful execution of the application and the division of the

engineering skills needed to implement the application roughly follow the same lines.

Processes that are often engaged in interactive execution characterize tightly coupled

systems. Data life usually is short, generally limited to a few instruction times. Response

times to events requiring both processors are generally slower than loosely coupled

systems.

The distinction between loosely and tightly coupled systems is really a software design

distinction. The loosely coupled system has independent pieces of software that conform

to the protocol standards of the communication area. Tightly coupled systems require

software to have intimate details of code running in both processors and are likely to have

software developed by a single software team.

This software design difference can actually be exploited by the development tool sets to

reduce development time and automate the interface protocol enforcement in the

communication link by the tools.

Multiple software teams divided roughly along the divisions between processors

implement many loosely coupled systems. The development teams implementing the

software work quite independently with independent schedules.

The development teams function independently and, although they have agreed on an

interprocessor protocol, there is nothing to prevent minor changes from creeping into data

structure. This is a significant problem that cannot be solved reliably by programmer

discipline.

The engine controller project automated the checking of the interprocessor interface

compatibility without seriously impacting the development process. The solution turned

out to be surprisingly simple. The development teams would agree on communication

protocols and common data memory contents. The build process for the multiple

processor system would compile and link one processor and export the interprocessor

interface to the second processor’s build process in the form of a header file. If the

interface was compatible the build would succeed; if not, then a build or compiler error

would be generated.

The first processor team ultimately made the actual choices on the placement of variables

and do the actual maintenance of the interprocessor space. Application design documents

detailed the interprocessor space contents and common variable name and types. At make

time the normal diagnostics of the compilers would identify missing variables and type

mismatches.

This simple approach solved many workflow problems for multiprocessor applications. It

identified intera-team and design communication errors. In normal operation it was an

invisible solution.

Teams rarely develop in sync. The multiprocessor build process meant that each team

could release software revisions independently of the other. Multi-versions of each piece

could reasonably be expected to work together.

The implementation required tools to be able to export information in files drawn from

data that normally was retained within the compiler and linker tools. Interestingly, we

actually only needed to export from the tools for one of the processors. A pragma based

report generator was implemented with full access to the compiler symbol table, code

image and compiler resource management information.

The report generator pragmas were part of the application source and could be distributed

through the code or not as a style option. The report generator ran at the end of the

compile/link phase of source translation.

Case for named execution space.

Handling single chip processors with multiple execution units.

In the embedded systems world this is actually quite common. A single chip processor is

created with multiple execution units. These execution units are usually heterogeneous

often with diverse architecture and instructions sets. Communication between processors

is typically through shared memory but may be also through other forms. The internal

complexity ranges from a host processor with a programmable I/O controller to true co-

processors. Single chip processors configured this way have been able for about 20 years.

Some examples include Zilog 86C94 used in disk drives. Motorola 68K/TPU automotive

and industrial controllers, Freescale 68HC12X/XGATE xgate is a general purpose RISC

processor used as a true co-processor. 68S08/xgate used as special purpose processor

primarily in automotive. Freescale PowerPC / eTPU and Coldfire /eTPU used in

industrial controllers and automotive engine controllers. Not identified are all the

processors with protocol co-processor that interfaces with standard bus protocols and

processors that are available for executing application code.

All of the recent examples have parts where the execution space is in some way

connected

These processors are easily configured to support applications that are being tightly or

loosely coupled with code that is implemented for a single application or as parallel

separate applications.

Consumer electronics multiple processor environments

Many high volume consumer goods manufacturers have a unique development work

flow. The whole application is prototyped in a single processor. This allows them to

quickly produce many working prototypes for product evaluation even small run product

for marketing tests.

The production engineering phase goes though a cycle of cost reduction of the final

product. During this phase all the usual stuff happens and very often this single processor

is replaced with several processors. The three main reasons that this is done is to reduce

overall production bill of materials cost, to reduce assembly costs by replacing wiring

bundles with two or three line communication links between functional units and to run

the processor clocks at a lower speed to enable the production product to meet FCC and

other countries RF radiation requirements.

The original application software is functionally separated and divided among the

multiple processors. The application software remains surprisingly intact with the

addition of interprocessor communication functions to pass data and request

interprocessor services.

The application dividing process of distributing the single processor application code

among multiple processors is an interesting one. Independent of whether it is automated

or hand divided each processor becomes a geographical center of reference so that

software that is associated with the I/O devices of that processor becomes attached to that

processor and where possible the next layer of calling software gets located in the same

processor that contains lower level called functions. In a similar way data is distributed

among processors based on where it is referenced and on available space.

Off processor data references are easily handled using IEC/ISO 18037 user defined data

spaces. Each off processor reference is handled through an application set of data access

primitives. Named execution space or user defined execution space would be a logical

extension to IEC/ISO 18037 to support this type of development.

Interprocessor calls

Interprocessor calls in a multiprocessor application environment need to be handled

separately. In a single processor environment calls and code execution is executed as a

sequential process. In a multiple processor environment calls initiate execution in a

second processor but what happens to the first processor? It can continue on (non

blocked) or it can wait for execution to complete in the second processor and then

continue (blocking)

There are alternative approaches to handling interprocessor calls in a multiprocessor

environment but we treated all void functions as initiating an action in a second processor

and immediately continuing with execution (non blocking) and any function that returns a

value was implemented as a blocking call. This simple approach is not perfect but is easy

to understand and visualize. The most common missed case with this heuristic is that of

initiating a non-blocking off processor call that is expected to return values in the future.

In our implementation this was done by returns though global variables with a void

function. The data was protected through of semaphores.

Addition to IEC/ISO 18037

The named address space in the two examples cited was implemented using pragma’s.

WG-14 should consider adding named execution space to IEC/ISO 18037. The addition

of execution space is consistent with some current embedded systems applications. The

additions would have limited impact with fundamental definitions for named execution

space to section 5 and a section of reference material in Annex B should discuss design

considerations for off processor calls and flow control in applications using multiple

processors.

Alternative implementations and how others are doing this

IEC61131 / IEC 61499 Approach. This set of standards primarily used in programmable

logic controllers (PLC). IEC 61499 grew out of the earlier IEC 61131 is a system of

function block programming which focuses on tracking data and system control and

hiding the block implementation. This approach focuses on a programmer’s

comprehensive look at the application.

This last observation is an important part of multiprocessor support. It is necessary to be

able to tie the complete application together, not just by design but also in someway

validated by the development system as a whole. This comprehensive application view is

lost when individual processors are programmed with individual application code rather

than a single application wide application source.

VHDL and several C like languages have been used to program FPGAs and CPLDs at a

very low level. These are implementation approaches that follow the data and control at a

lower level. The compiler tools attempts to extract and exploit parallelism at a low level.

This approach would change the fundamental nature of C as a language.

Actions for WG-14 to consider

ISO/IEC TR 18037 proposed change.

Add execution unit space to named and user defined address space currently support in

the ”Programming languages - C - Extensions to support embedded processors “ ISO/IEC

TR 18037. This extension would be relatively minor. This change does conflict with the

much larger issue of supporting C language multiprocessing support should be handled.

C language support for multiprocessor programming

This paper is not taking a position on the C language changes that could be added to

support multiprocessor environments. The author feels strongly that WG-14 should have

specific reasons why multiprocessor language support is included or excluded in the C

standards documents.

1. We can do nothing and take the narrow view that WG-14 is to considered language

support for single processors. Even this may require us to define the scope of C as a

language and the supporting execution environment. Part of this position may be that

multiprocessor general purpose execution environments are application specialized

and C is primarily an implementation language not an application language.

2. An argument for C to support multiprocessor environments is to define the language

as having a full application view. If a single application is distributed across multiple

processors and described as having one C source then multiprocessors should be

supported.

3. We could consider the larger possibility of defining the behaviour and language

support for multiprocessor environments in the context of C language support. This

paper generally is not comprehensive. There are open problems that would need to be

studied and addressed if multiprocessor support is to become part of the C language

in normal C hosted environments. ISO/IEC TR 18037 deals with some of the data

address space issues. .

i. Off processor data references

ii. Off processor function references

iii. Defining off processor function calls

iv. C may need to address the larger issue of event driven function execution.

There are a few processors that have no ability to have a main function.

