
Doc No:  SC22/WG14/N1335 
Date:   8/7/2008 

Reply to:  Arjun Bijanki (arjun.bijanki@microsoft.com) 

 

Adding Alignment Support to C 

Summary  
SC22/WG21/N2341 [link] proposes wording to the C++ language and libraries to support 
alignment, and the language aspects of alignment in that paper are largely applicable to C.   
This paper proposes their adoption in a semantically equivalent manner (syntax aside, for the 
moment).  The aspects of alignment intended primarily to support generic libraries in C++ are 
not included for adoption. 
 
For reference, changes voted into the C++ working paper were: 
 

 New: alignment-specifier (alignas) to declarations 

 New: alignof expression to retrieve alignment requirements of a type (like sizeof for 

 size) 

 New: alignment arithmetic by library support (aligned_storage, aligned_union) 

 New: standard function (std::align) for pointer alignment at run time 
 

Of those changes, the single proposed change to C is the addition of support for specifying 

stricter alignment: 

 New: alignment-specifier (alignas) to declarations 
 
The other three changes are not proposed for C, since they’re largely necessary for template 
containers and don’t seem to have a high degree of utility for C code: 
 

 New: alignof expression to retrieve alignment requirements of a type (like sizeof for 
size) 

 New: alignment arithmetic by library support (aligned_storage, aligned_union) 

 New: standard function (std::align) for pointer alignment at run time 

Questions 

 Should packing and weaker alignment requirements be considered?  

 Does C need aligned allocation (e.g. posix_memalign)? 
 

Wording 
The proposed wording draws heavily on the wording in WG21/N2341.  Note: wording additions 
are underlined; deletions are in strikethrough. 

 
6.4.1 
 [add alignas to the list of keywords] 
 

mailto:arjun.bijanki@microsoft.com
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2341.pdf


6.2.8 Alignment of objects [new section]  
 1. Object types have alignment requirements which place restrictions on the addresses 
at which an object of that type may be allocated.  An alignment is an implementation-defined 
integer value representing the number of bytes between successive addresses at which a given 
object can be allocated.  An object type imposes an alignment requirement on every object of 
that type: stricter alignment can be requested using alignas. 
 
 2. A fundamental alignment is represented by an alignment less than or equal to the 
greatest alignment supported by the implementation in all contexts. 
 
 3. An extended alignment is represented by an alignment greater than the greatest 
alignment supported by the implementation in all contexts.  It is implementation-defined whether 
any extended alignments are supported and the contexts in which they are supported.  A type 
having an extended alignment requirement is an over-aligned type. 
 
 4. Alignments are represented as values of the type size_t.  Valid alignments include 
only those values supported by the implementation for fundamental types, plus an additional 
implementation-defined set of values, which may be empty.  [Footnote: It is intended that every 
valid alignment value is an integral power of two] 
 
 5. Alignments have an order from weaker to stronger or stricter alignments.  Stricter 
alignments have larger alignment values.  An address that satisfies an alignment requirement 
also satisfies any weaker valid alignment requirement. 
 
 6. The types char, signed char, and unsigned char shall have the weakest alignment 
requirement. 
 
 7. If a request for a specific extended alignment in a specific context is not supported by 
an implementation, the implementation is allowed to reject the request as ill-formed.  The 
implementation is also allowed to silently disregard the requested alignment.  
  
6.7 Declarations 
Syntax 

 declaration-specifiers: 
storage-class-specifier declaration-specifiersopt 

type-specifier declaration-specifiersopt 

type-qualifier declaration-specifiersopt 

function-specifier declaration-specifiersopt 

  alignment-specifier 
 
6.7.9 Alignment specifiers [new section] 
 1. The alignment specifier has the form 
  alignment-specifier 
   alignas (constant-expression) 
 
 2. The constant-expression shall be an integer constant expression. 

 If the constant expression evalues to a fundamental alignment, the alignment 
requirement of the declared object shall be the specified fundamental alignment. 



 If the constant expression evaluates to an extended alignment and the 
implementation supports that alignment in the context of the declaration, the 
alignment of the declared object shall be that alignment. 

 If the constant expression evalues to an extended alignment and the 
implementation does not support that alignment in the context of the declaration, 
the program is ill-formed. 

 Otherwise, the program is ill formed. 
 

3. If a declaration contains multiple alignment specifiers, the program is ill-formed. 
 
4. An alignment specifier shall not be specified in a declaration of a typedef, or a bit-field, 
or a function parameter or return type, or an object declared with the register storage-
class specifier. 
 
5. If the defining declaration of an object has an alignment specifier, any non-defining 
declaration of that object shall either specify equivalent alignment or have no alignment 
specifier.  No diagnostic is required if declarations of an object have different alignment 
specifiers in different translation units. 

 
 
7.20.3/1 
 The order and contiguity of storage allocated by successive calls to the calloc, malloc, 
and realloc functions is unspecified. The pointer returned if the allocation succeeds is suitably 
aligned so that it may be assigned to a pointer to any type of object with a fundamental 
alignment requirement and then used to access such an object or an array of such objects in 
the space allocated (until the space is explicitly deallocated). 
 


