
SC22/WG14/N1333

June 25, 2008

Reply to: Thomas Plum, tplum@plumhall.com

Unicode and Raw String Literals

This paper defines a specification for ‘u8’ (UTF-8), ‘u’ (char16_t), ‘U’ (char32_t) and
raw string literals which would achieve maximal compatibility with the C++ definition.
It is a word-for-word adaptation of SC22/WG21/N2442, by Lawrence Crowl <lawrence
at crowl.org> and Beman Dawes <bdawes at acm.org>, with section numbers and
standards text adapted to WG14/N1256. It’s likely that there are errors in this volume of
cut-and-paste; the presentation attempts to follow WG21/N2442 paragraph-by-paragraph.

Introduction

Proposed Text
Change 5.2.1 Character sets as indicated:

The representation of each member of the source and execution basic character sets shall
fit in a byte, as shall the eight-bit code units of the Unicode UTF-8 encoding form.

Change 5.1.1.2 Translation phases paragraph 1 as indicated.

1. Physical source file characters are mapped, in an implementation-defined manner, to
the basic source character set (introducing new-line characters for end-of-line indicators)
if necessary. The set of physical source file characters accepted is implementation-
defined. Trigraph sequences (2.3) are replaced by corresponding single-character internal
representations.

Change 5.1.1.2 Translation phases paragraph 1 as indicated:

5. Each source character set member, escape sequence, or universal-character-name in
character literals and string literals a character literal or a string literal, or escape
sequence in a character literal or a non-raw string literal, is converted to the
corresponding member of the execution character set; if there is no corresponding
member, it is converted to an implementation-defined member other than the null (wide)
character.7)

Change 6.4.5 String literals as indicated:

string-literal:
 "s-char-sequenceopt"

 u8"s-char-sequenceopt "
 u"s-char-sequenceopt"
 U"s-char-sequenceopt"
 L"s-char-sequenceopt"
 R raw-string
 u8R raw-string
 uR raw-string
 UR raw-string
 LR raw-string

s-char-sequence:
 s-char
 s-char-sequence s-char

s-char:
 any member of the source character set except the double-quote ",
backslash \, or new-line character
 escape-sequence
 universal-character-name

raw-string:
 "d-char-sequence opt [r-char-sequenceopt]d-char-sequenceopt "

r-char-sequence:
 r-char
 r-char-sequence r-char

r-char:
 any member of the source character set, except, (1), a backslash \
followed by a u or U, or,
 (2), a right square bracket] followed by the initial d-char-sequence
(which may be empty)
 followed by a double quote ".
 universal-character-name

d-char-sequence:
 d-char
 d-char-sequence d-char

d-char:
 any member of the basic source character set, except space, the left
square bracket [, the right square bracket],
 or the control characters representing horizontal tab,
vertical tab, form feed, or new-line.

A string literal is a sequence of characters (as defined in 2.13.2) surrounded by double
quotes, optionally beginning with one of the letters prefixed by R, u8, u8R, u, uR, U, UR, L,
or LR, as in "...", R"[...]" , u8"...", u8R"**[...]**",u"...", uR"*@[...]*@",
U"...",UR"zzz[...]zzz", L"...", or LR"[...]", respectively.

A string literal that has an R in the prefix is a raw string literal. The terminating d-char-
sequence of a raw-string is the same sequence of characters as the initial d-char-
sequence. A d-char-sequence shall consist of at most 16 characters.

A source-file new-line in a raw string-literal results in a new-line (‘\n’) in the resulting
execution string-literal, unless preceded by a backslash. [Footnote: Assuming no
whitespace at the beginning of lines in the following example, the assert will succeed:

 const char * p = R"[a\
 b
 c]";
 assert(strcmp(p, "ab\nc") == 0);

 -- end note]

A string literal that does not begin with u8, u, U, or L is an ordinary string literal, and is
initialized with the given characters.

A string literal that begins with u8, such as u8"asdf", is a UTF-8 string literal and is
initialized with the given characters as encoded in UTF-8.footnote

footnote For a specification of Unicode and UTF-8, see ISO 10646.

Ordinary string literals and UTF-8 string literals are also referred to as a narrow string
literals. An ordinary narrow string literal has type “array of n const char”, where n is
the size of the string as defined below, it and has static storage duration (3.7).

A string literal that begins with u, such as u"asdf", is a char16_t string literal. A
char16_t string literal has type “array of n const char16_t”, where n is the size of the
string as defined below; it has static storage duration and is initialized with the given
characters. A single c-char may produce more than one char16_t character in the form
of surrogate pairs.

A string literal that begins with U, such as U"asdf", is a char32_t string literal. A
char32_t string literal has type “array of n const char32_t”, where n is the size of the
string as defined below; it has static storage duration and is initialized with the given
characters.

A string literal that begins with L, such as L"asdf", is a wide string literal. A wide string
literal has type “array of n const wchar_t”, where n is the size of the string as defined
below, it has static storage duration and is initialized with the sequence of wide
characters corresponding to the multibyte character sequence, as defined by the mbstowcs

function with an implementation-defined current locale. [The last phrase is preserved
from C99, not from C++.]

Whether all string literals are distinct (that is, are stored in nonoverlapping objects) is
implementation-defined. The effect of attempting to modify a string literal is undefined.

Semantics

In translation phase 6, adjacent string literals are concatenated. If both string literals have
the same prefix, the resulting concatenated string literal has that prefix. If one string
literal has no prefix, it is treated as a string literal of the same prefix as the other operand.
If a UTF-8 string literal token is adjacent to a wide string literal token, the program is ill-
formed. Any other concatenations are conditionally supported with implementation-
defined behavior [If “conditionally-supported behavior isn’t added to C1x, then say
“Any other concatenations produce undefined behavior.”]. [Footnote: This concatenation
is an interpretation, not a conversion. —end note]

EXAMPLE

Here are some examples of valid concatenations:

Table NNN string literal concatenations

source means source means source means
u"a" u"b" u"ab" U"a" U"b" U"ab" L"a" L"b" L"ab"
u"a" "b" u"ab U"a" "b" U"ab L"a" "b" L"ab"
"a" u"b" u"ab" "a" U"b" U"ab" "a" L"b" L"ab"

Characters in concatenated strings are kept distinct. [Footnote: "\xA" "B" contains the
two characters ’\xA’ and ’B’ after concatenation (and not the single hexadecimal
character ’\xAB’). —end footnote]

After any necessary concatenation, in translation phase 7, a byte or code of value zero is
appended to every multibyte character sequence that results from a string literal or
literals. [Footnote 66) A character string literal need not be a string (see 7.1.1), because a
null character may be embedded in it by a \0 escape sequence. – end footnote] The
multibyte character sequence is then used to initialize an array of static storage duration
and length just sufficient to contain the sequence. For character string literals, the array
elements have type char, and are initialized with the individual bytes of the multibyte
character sequence; for wide string literals, the array elements have type wchar_t, and are
initialized with the sequence of wide characters corresponding to the multibyte character
sequence, as defined by the mbstowcs function with an implementation-defined current
locale. [These sentences re initialization are meant to be factored out in separate cases up
above.] The value of a string literal containing a multibyte character or escape sequence
not represented in the execution character set is implementation-defined.

Escape sequences in non-raw string literals and universal-character-names in string
literals have the same meaning as in character literals (2.13.2), except that the single
quote ’ is representable either by itself or by the escape sequence \’, and the double
quote " shall be preceded by a \. In a narrow string literal, a universal-character-name
may map to more than one char element due to multibyte encoding. The number of
elements in a char32_t or wide string literal is the total number of escape sequences,
universal-character-names, and other characters, plus one for the terminating U’\0’ or
L’\0’. The number of elements in a char16_t string literal is the total number of escape
sequences, universal-character-names, and other characters, plus one for each character
requiring a surrogate pair, plus one for the terminating u’\0’. [Note: The number of
elements in a char16_t string literal is the number of code units, not the number of
characters. —end note] Within char32_t and char16_t literals, any universal-character-
names must be within the range 0x0 to 0x10FFFF. The number of elements in a narrow
string literal is the total number of escape sequences and other characters, plus at least
one for the multibyte encoding of each universal-character-name, plus one for the
terminating ’\0’. [The C++ draft uses the word “size” for the “number of elements”,
which is considered unnecessarily confusing by some participants.]

