
SC22/WG14/N1330 

July 10, 2008 

Reply to: Thomas Plum, tplum@plumhall.com 

 

Static Assertions 
This paper defines a specification for static assertions which would 
achieve maximal compatibility with the C++ definition.  It is a word-
for-word adaptation of SC22/WG21/N1720, by Robert Klarer 
(klarer@ca.ibm.com), Dr. John Maddock (john@johnmaddock.co.uk), Beman 
Dawes(bdawes@acm.org), and Howard Hinnant(hinnant@twcny.rr.com).  
[Incorporates feedback from WG14.11495 Myers] 

A static_assert-declaration takes the following form: 

               static_assert ( constant-expression  ,  string-literal ) ; 

If the constant-expression in the static assertion evaluates as 0, the compiler will issue a 
diagnostic message containing the literal. Otherwise, the static_assert-declaration has no 
effect.  

The static_assert-declaration does not declare a new type or object, and does not imply 
any size or time cost at runtime.  

Proposed Wording 

To clause 6.4.1, Keywords, add the new keyword "_Static_assert"  

To clause 6.7, Declarations, add an additional entry to declaration: 

static_assert-declaration  

To clause 6.7, Declarations, add an additional grammar element: 

static_assert-declaration: 
               _Static_assert ( constant-expression  ,  string-literal  ) ; 

To clause 6.7.2.1, Structure and union specifiers, add an additional entry to struct-
declaration:: 

static_assert-declaration  



To clause 6.7, at a location to be determined by the Project Editor, add a new section or 
sub-section: 

static_assert declaration 

The constant-expression shall be an integer constant expression (6.6). If the value of 
the expression compares unequal to 0, the declaration has no effect. Otherwise, the 
program is ill-formed, causing the implementation to produce a diagnostic message 
(3.10) that includes the text of the string-literal, except that characters not in the basic 
source character set (5.2.1) are not required to appear in the diagnostic message. 
 

[Note to editor: The footnote (99 in N1256) listing uses of integer constant expressions 
should also be updated to list this new use.  That footnote is also missing array 
designators in initializers.] 

To clause 6.7, Declarations, add an additional entry to declaration: 

static_assert-declaration 
 

7.x Compatibility <to-be-determined.h> 
The header <to-be-determined.h> defines NN macros, which are provided for 
compatibility with other ISO/IEC languages and systems. 
The macro static_assert expands to _Static_assert. 
Notwithstanding the provisions of 7.1.3, a program may undefine and perhaps then 
redefine the macros static_assert [etc]. 

 
[Note: the name to-be-determined could become std_static_assert by analogy with bool.  
Alternatively, WG14 might consider a more generic approach, such as stdcompatibility, 
in which future “compatibility” macros might be housed.] 
 

Examples 

Static assertions at file scope 

// At file scope, the static_assertion declaration 
// may be used as an alternative to the #error preprocessor 
// directive. 
// 
static_assert(sizeof(long) >= 8,  
        "64-bit code generation not enabled/supported."); 

Static assertions at block scope 

#include <sys/param.h> // for PAGESIZE 
int do_something() 
{ 
        struct VMPage { 



                // ... 
        }; 
        static_assert(sizeof(VMPage) == PAGESIZE, 
               "Struct VMPage must be the same size " 
               "as a system virtual memory page."); 
 
                // ... 
} 

Interactions 

This proposal does not affect or alter any existing language feature. Legacy code is 
affected only by the well-known issue of introducing a new keyword in the 
implementer’s name space and a new macro in a new header.  

Prior Art 

Static assertions have been used in the Boost libraries since around the year 2000. This 
proposal is based upon that experience.  

Implementations exist in several released compilers, including gcc 4.3, Comeau 4.3.9, 
and in EDG front-ends since version 3.9 (March 2007). 

Implementation of this feature requires modification of the compiler front end only; no 
changes to the backend, runtime library, linker, or debugger are necessary.  

 


