
© ISO 2007 – All rights reserved

ISO/IEC JTC1 SC22 WG14 N1312

Date: 2008-05-16

Reference number of document: ISO/IEC TR 24732

Committee identification: ISO/IEC JTC1 SC22 WG14

SC22 Secretariat: ANSI

Information Technology —

Programming languages, their environments and system software interfaces —

Extension for the programming language C to support decimal floating-point arithmetic —

Warning

This document is an ISO/IEC draft Technical Report. It is not an ISO/IEC International Technical
Report. It is distributed for review and comment. It is subject to change without notice and shall
not be referred to as an International Technical Report or International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant
patent rights of which they are aware and to provide supporting documentation.

Document type: Technical Report Type 2
Document subtype: n/a
Document stage: (3) Proposed Draft Technical Report
Document language: E

ISO/IEC DTR 24732 WG14 N1312

 ii

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO.

Requests for permission to reproduce this document for the purpose of selling it should be
addressed as shown below or to ISO’s member body in the country of the requester:

ISO copyright office
Case postale 56
CH-1211 Geneva 20
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
E-mail copyright@iso.org

 Web www.iso.org

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

ISO/IEC DTR 24732 WG14 N1312

 iii

Contents

1 Introduction... 1

1.1 Background ... 1
1.2 The Arithmetic Model ... 2
1.3 The Formats... 2

2 General... 3
2.1 Scope... 3
2.2 References ... 4

3 Predefined macro name .. 5
4 Decimal floating types ... 5
5 Characteristics of decimal floating types <float.h>.. 6
6 Conversions ... 9

6.1 Conversions between decimal floating and integer ... 9
6.2 Conversions among decimal floating types, and between decimal floating types and
generic floating types ...10
6.3 Conversions between decimal floating and complex ...10
6.4 Usual arithmetic conversions ..11
6.5 Default argument promotion ...11

7 Constants ..12
7.1 Unsuffixed floating constant ...13

7.1.1 The FLOAT_CONST_DECIMAL64 pragma ...13
8 Arithmetic Operations ...14

8.1 Operators..14
8.2 Functions..15
8.3 Conversions..16

9 Library..16
9.1 Standard headers...16
9.2 Floating-point environment <fenv.h>..16
9.3 Decimal mathematics <math.h>..18
9.4 New <math.h> functions...26
9.5 Formatted input/output specifiers..28
9.6 strtod32, strtod64, and strtod128 functions <stdlib.h> ...30
9.7 wcstod32, wcstod64, and wcstod128 functions <wchar.h>..33
9.8 Type-generic macros <tgmath.h>..35

Index ...37

ISO/IEC DTR 24732 WG14 N1312

 1

1 Introduction
1.1 Background

Most of today's general purpose computing architectures provide binary floating-point arithmetic
in hardware. Binary floating-point is an efficient representation which minimizes memory use, and
is simpler to implement than floating-point arithmetic using other bases. It has therefore become
the norm for scientific computations, with almost all implementations following the IEEE 754
standard for binary floating-point arithmetic.

However, human computation and communication of numeric values almost always uses decimal
arithmetic and decimal notations. Laboratory notes, scientific papers, legal documents, business
reports and financial statements all record numeric values in decimal form. When numeric data are
given to a program or are displayed to a user, binary to-and-from decimal conversion is required.
There are inherent rounding errors involved in such conversions; decimal fractions cannot, in
general, be represented exactly by binary floating-point values. These errors often cause usability
and efficiency problems, depending on the application.

These problems are minor when the application domain accepts, or requires results to have,
associated error estimates (as is the case with scientific applications). However, in business and
financial applications, computations are either required to be exact (with no rounding errors)
unless explicitly rounded, or be supported by detailed analyses that are auditable to be correct.
Such applications therefore have to take special care in handling any rounding errors introduced by
the computations.

The most efficient way to avoid conversion error is to use decimal arithmetic. Currently, the IBM
zArchitecture (and its predecessors since System/360) is a widely used system that supports built-
in decimal arithmetic. This, however, provides integer arithmetic only, meaning that every number
and computation has to have separate scale information preserved and computed in order to
maintain the required precision and value range. Such scaling is difficult to code and is error-
prone; it affects execution time significantly, and the resulting program is often difficult to
maintain and enhance.

Even though the hardware may not provide decimal arithmetic operations, the support can still be
emulated by software. Programming languages used for business applications either have native
decimal types (such as PL/I, COBOL, C#, or Visual Basic) or provide decimal arithmetic libraries
(such as the BigDecimal class in Java). The arithmetic used in business applications, nowadays, is
almost invariably decimal floating-point; the COBOL 2002 ISO standard, for example, requires
that all standard decimal arithmetic calculations use 32-digit decimal floating-point.

Arguably, the C language hits a sweet spot within the wide range of programming languages
available today – it strikes an optimal balance between usability and performance. Its simple and
expressive syntax makes it easy to program; and its close-to-the-hardware semantics makes it
efficient. Despite the advent of newer programming languages, C is still often used together with
other languages to code the computationally intensive part of an application. In many cases, entire

ISO/IEC DTR 24732 WG14 N1312

 2

business applications are written in C/C++. To maintain the vitality of C, the need for decimal
arithmetic by the business and financial community cannot be ignored.

The importance of this has been recognized by the IEEE. The IEEE 754 standard is currently being
revised, and the major change in that revision is the addition of decimal floating-point formats and
arithmetic.

Historically there has been a close tie between IEEE 754 and C with respect to floating-point
specification. This Technical Report proposes to add decimal floating types and arithmetic to the C
programming language specification.

1.2 The Arithmetic Model

This Technical Report proposes to add support for the decimal formats for floating-point data
specified in IEEE 754-2008, with operations and behaviors consistent with that specification. IEEE
754-2008 provides a unified specification for floating-point arithmetic using both binary radix and
decimal radix representations. For binary radix, it specifies upwardly-compatible extensions to the
previous version, IEEE 754-1985 (equivalently IEC 60559:1989, which is already supported by
C99 implementations that define the macro __STDC_IEC_559__). Those extensions are not
considered in this proposal. Instead, this proposal confines itself to supporting the decimal radix
formats, which are new in this revision of IEEE 754.

The model of floating-point arithmetic used in IEEE 754-2008 has three components:

• data - numbers and NaNs, which can be manipulated by, or be the results of, the operations

it specifies
• operations - (addition, multiplication, conversions, etc) which can be carried out on data
• context - the status of operations (namely, exceptions flags), and controls to govern the

results of operations (for example, rounding modes). (IEEE 754-2008 does not use a single
term to refer to these collectively.)

The model defines these components in the abstract. It neither defines the way in which operations
are expressed (which might vary depending on the computer language or other interface being
used), nor does it define the concrete representation (specific layout in storage, or in a processor's
register, for example) of data or context, except that it does define specific encodings that are to be
used for data that may be exchanged between different implementations that conform to the
specification.

From the perspective of the C language, data are represented by data types, operations are defined
within expressions, and context is the floating environment specified in <fenv.h>. This
Technical Report specifies how the C language implements these components.

1.3 The Formats

ISO/IEC DTR 24732 WG14 N1312

 3

IEEE 754-2008 specifies formats, in terms of their radix, exponent range, and precision
(significand length), to support general purpose decimal floating-point arithmetic. It specifies
operation semantics in terms of values and abstract representations of data (format members). It
also specifies bit-level encodings for formats intended for data interchange.

C99 specifies floating-point arithmetic using a two-layer organization. The first layer provides a
specification using an abstract model. The representation of a floating-point number is specified in
an abstract form where the constituent components of the representation are defined (sign,
exponent, significand) but not the internals of these components. In particular, the exponent range,
significand size, and the base (or radix) are implementation defined. This allows flexibility for an
implementation to take advantage of its underlying hardware architecture. Furthermore, certain
behaviors of operations are also implementation defined, for example in the area of handling of
special numbers and in exceptions.

The reason for this approach is historical. At the time when C was first standardized, there were
already various hardware implementations of floating-point arithmetic in common use. Specifying
the exact details of a representation would make most of the existing implementations at the time
not conforming.

C99 provides a binding to IEEE 754 by specifying an Annex F, IEC 60559 floating point
arithmetic, and adopting that standard by reference. An implementation may choose not to
conform to IEEE 754 and indicates that by not defining the macro __STDC_IEC_559__.This
means not all implementations need to support IEEE 754, and the floating-point arithmetic need
not be binary.

This Technical Report specifies decimal floating-point arithmetic according to IEEE 754-2008,
with the constituent components of the representation defined. This is more stringent than the
existing C99 approach for the floating types. Since it is expected that all decimal floating-point
hardware implementations will conform to the revised IEEE 754, binding to this standard directly
benefits both implementers and programmers.

2 General
2.1 Scope

This Technical Report specifies an extension to the programming language C, specified by the
international standard ISO/IEC 9899:1999. The extension provides support for decimal floating-
point arithmetic that is intended to be consistent with the specification in IEEE 754-2008.
However, as of the October 4, 2006 IEEE draft, the referenced standard is still in draft review
stage. Any conflict between the requirements described here and the referenced standard is
unintentional. This Technical Report defers to IEEE 754-2008.

The binary floating-point arithmetic as specified in IEEE 754-2008 is not considered in this
Technical Report.

ISO/IEC DTR 24732 WG14 N1312

 4

2.2 References

The following standards contain provisions which, through reference in this text, constitute
provisions of this Technical Report. For dated references, subsequent amendment to, or revisions
of, any of these publications do not apply. However, parties to agreements based on this Technical
Report are encouraged to investigate the possibility of applying the most recent editions of the
normative documents indicated below. For undated references, the latest edition of the normative
document referred applies. Members of IEC and ISO maintain registers of current valid
International Standards.

ISO/IEC 9899:1999, Information technology - Programming languages, their environments and
system software interfaces - Programming Language C.

ISO/IEC 9899:1999/Cor 1:2001, Information technology - Programming languages, their
environments and system software interfaces - Programming Language C – Technical
Corrigendum 1.

ISO/IEC 9899:1999/Cor 2:2004, Information technology - Programming languages, their
environments and system software interfaces - Programming Language C – Technical
Corrigendum 2.

ISO/IEC TR 18037, Information technology - Programming languages, their environments and
system software interfaces – Extensions for the programming language C to support embedded
processors.

ISO/IEC 1989:2002, Information technology - Programming languages - COBOL.

IEC 60559:1989, Binary floating-point arithmetic for microprocessors systems (previously
designated IEC 559:1989).

ANSI X3.274, Information Technology - Programming Language REXX.

ANSI/IEEE 754-1985 - IEEE Standard for Binary Floating-Point Arithmetic. The Institute of
Electrical and Electronic Engineers, Inc., New York, 1985.

ANSI/IEEE 854-1987 - IEEE Standard for Radix-Independent Floating-Point Arithmetic. The
Institute of Electrical and Electronic Engineers, Inc., New York, 1987.

The IEEE 754 revision working group is currently revising the specification for floating-point
arithmetic:

ANSI/IEEE 754-2008 - IEEE Standard for Floating-Point Arithmetic. The Institute of Electrical
and Electronic Engineers, Inc. Draft.

A Decimal Floating-Point Specification, Schwarz, Cowlishaw, Smith, and Webb, in the
Proceedings of the 15th IEEE Symposium on Computer Arithmetic (Arith 15), IEEE, June 2001.

ISO/IEC DTR 24732 WG14 N1312

 5

Note: Reference materials relating to IEEE 754-2008 can be found in
http://grouper.ieee.org/groups/754/ and http://www.validlab.com/754R/.

3 Predefined macro name

The following macro name is conditionally defined by the implementation:

__STDC_DEC_FP__ The integer constant 200805L, intended to indicate conformance to

this technical report.

4 Decimal floating types

This Technical Report introduces three decimal floating types, designated as _Decimal32,
_Decimal64 and _Decimal128. The set of values of type _Decimal32 is a subset of the set
of values of the type _Decimal64; the set of values of the type _Decimal64 is a subset of the
set of values of the type _Decimal128.

Within the type hierarchy, decimal floating types are base types, real types and arithmetic types.

The types float, double, and long double are also called generic floating types for the
purpose of this Technical Report.

Note: C does not specify a radix for float, double and long double. An implementation
can choose the representation of float, double and long double to be the same as the
decimal floating types. In any case, the decimal floating types are distinct from float, double
and long double regardless of the representation.

Note: This Technical Report does not define decimal complex types or decimal imaginary types.
The three complex types remain as float _Complex, double _Complex and long
double _Complex, and the three imaginary types remain as float _Imaginary, double
_Imaginary and long double _Imaginary.

Suggested changes to C99:

Change the first sentence of 6.2.5#10:

[10] There are three generic floating types, designated as float, double and long double.

Add the following paragraphs after 6.2.5#10:

ISO/IEC DTR 24732 WG14 N1312

 6

[10a] There are three decimal floating types, designated as _Decimal32, _Decimal64 and
_Decimal128. The set of values of the type _Decimal321 is a subset of the set of values of
the type _Decimal64; the set of values of the type _Decimal64 is a subset of the set of values
of the type _Decimal128. Decimal floating types are real floating types.

[10b] Together, the generic floating types and the decimal floating types comprise the real floating
types.

Add the following to 6.7.2 Type specifiers:

type-specifier:
_Decimal32
_Decimal64
_Decimal128

Add the following paragraph after 6.5#8:

[8a] Expressions involving decimal floating-point operands are evaluated according to the
semantics of IEEE 754-2008, including production of results with the preferred exponent as
specified in IEEE 754-2008.

5 Characteristics of decimal floating types <float.h>

The characteristics of decimal floating types are defined in terms of a model specifying general
decimal arithmetic (1.2). The formats are specified in IEEE 754-2008 (1.3).

The three decimal formats defined in IEEE 754-2008 correspond to the three decimal floating
types as follows:

• _Decimal32 is a decimal32 number, which is encoded in four consecutive octets (32

bits)
• _Decimal64 is a decimal64 number, which is encoded in eight consecutive octets (64

bits)
• _Decimal128 is a decimal128 number, which is encoded in 16 consecutive octets (128

bits)

The value of a finite number is given by (-1)sign x coefficient x 10exponent. Refer to IEEE 754-2008
for details of the format.

These formats are characterized by the length of the coefficient, and the maximum and minimum
exponent. The coefficient is not normalized, so trailing zeros are significant; i.e., 1.0 is equal to but
can be distinguished from 1.00. The table below shows these characteristics by format:

1 The 32-bit format is a storage only format in IEEE 754-2008.

ISO/IEC DTR 24732 WG14 N1312

 7

Format _Decimal32 _Decimal64 _Decimal128
Coefficient length in digits 7 16 34
Maximum Exponent (Emax) 97 385 6145
Minimum Exponent (Emin) -94 -382 -6142

If the macro __STDC_WANT_DEC_FP__ is defined at the point in the source file where the
header <float.h> is included, the header <float.h> shall define several macros that expand
to various limits and parameters of the decimal floating types. The names and meaning of these
macros are similar to the corresponding macros for generic floating types.

Suggested change to C99:

Add the following after 5.2.4.2.2:

5.2.4.2.2a Characteristics of decimal floating types <float.h>

[1] Macros in <float.h> provide characteristics of floating types in terms of the model
presented in 5.2.4.2.2. The prefixes DEC32_, DEC64_, and DEC128_ denote the types
_Decimal32, _Decimal64, and _Decimal128 respectively.

[2] For decimal floating-point, it is often convenient to consider an alternate equivalent model
where the significand is represented with integer rather than fraction digits: a floating-point
number (x) is defined by the model

 ∑
=

−−
=

p

k

kp

k

pe

bfsbx
1

)()(

where s, b, e, p, and fk are as defined in 5.2.4.2.2, and b = 10.

[3] The term quantum exponent refers to q = e - p and coefficient to c = f1f2...fp, an integer between
0 and bp - 1 inclusive. Thus, x = s * c * bq is represented by the triple of integers (s, c, q).

[4] For binary floating-point following IEC 60559 (and IEEE 754-2008), representations in the
model described in 5.2.4.2.2 that have the same numerical value are indistinguishable in the
arithmetic. However, for decimal floating-point, representations that have the same numerical
value but different quantum exponents, e.g., (1, 10, -1) representing 1.0 and (1, 100, -2)
representing 1.00, are distinguishable. To facilitate exact fixed-point calculation, standard decimal
floating-point operations and functions have a preferred quantum exponent, as specified in IEEE
754-2008, which is determined by the quantum exponents of the operands if they have decimal
floating-point types (or by specific rules for conversions from other types), and they produce a
result with that preferred quantum exponent, or as close to it as possible within the limitations of
the type. For example, the preferred quantum exponent for addition is the minimum of the

ISO/IEC DTR 24732 WG14 N1312

 8

quantum exponents of the operands. Hence (1, 123, - 2) + (1, 4000, -3) = (1, 5230, -3) or 1.23 +
4.000 = 5.230.

[5] Except for assignment and casts, the values of operations with decimal floating operands and
values subject to the usual arithmetic conversions and of decimal floating constants are evaluated
to a format whose range and precision may be greater than required by the type. The use of
evaluation formats is characterized by the implementation-defined value of DEC_EVAL_METHOD:

-1 indeterminable;
0 evaluate all operations and constants just to the range and precision of the type;
1 evaluate operations and constants of type _Decimal32 and _Decimal64 to the

range and precision of the _Decimal64 type, evaluate _Decimal128 operations
and constants to the range and precision of the _Decimal128 type;

2 evaluate all operations and constants to the range and precision of the _Decimal128
type.

[6] The integer values given in the following lists shall be replaced by constant expressions
suitable for use in #if preprocessing directives:

• radix of exponent representation, b(=10)

For the generic floating-point types, this value is implementation-defined and is specified
by the macro FLT_RADIX. For the decimal floating-point types there is no corresponding
macro, since the value 10 is an inherent property of the types. Wherever FLT_RADIX
appears in a description of a function that has versions that operate on decimal floating-
point types, it is noted that for the decimal floating-point versions the value used is
implicitly 10, rather than FLT_RADIX.

• number of digits in the coefficient

DEC32_MANT_DIG 7
DEC64_MANT_DIG 16
DEC128_MANT_DIG 34

• minimum exponent

DEC32_MIN_EXP -94
DEC64_MIN_EXP -382
DEC128_MIN_EXP -6142

• maximum exponent

DEC32_MAX_EXP 97
DEC64_MAX_EXP 385
DEC128_MAX_EXP 6145

ISO/IEC DTR 24732 WG14 N1312

 9

• maximum representable finite decimal floating number (there are 6, 15 and 33 9's after the
decimal points respectively)

DEC32_MAX 9.999999E96DF
DEC64_MAX 9.999999999999999E384DD
DEC128_MAX 9.999999999999999999999999999999999E6144DL

• the difference between 1 and the least value greater than 1 that is representable in the given

floating point type

DEC32_EPSILON 1E-6DF
DEC64_EPSILON 1E-15DD
DEC128_EPSILON 1E-33DL

• minimum normalized positive decimal floating number

DEC32_MIN 1E-95DF
DEC64_MIN 1E-383DD
DEC128_MIN 1E-6143DL

• minimum positive subnormal decimal floating number

DEC32_SUBNORMAL_MIN 0.000001E-95DF
DEC62_SUBNORMAL_MIN 0.000000000000001E-383DD
DEC128_SUBNORMAL_MIN
 0.000000000000000000000000000000001E-6143DL

6 Conversions
6.1 Conversions between decimal floating and integer

For conversions between real floating and integer types, C99 6.3.1.4 leaves the behavior undefined
if the conversion result cannot be represented (Annex F.4 tightened up the behavior.) To help
writing portable code, this Technical Report provides defined behavior for decimal floating type.
Furthermore, it is useful to allow program execution to continue without interruption unless the
program needs to check the condition.

Suggested changes to C99:

Change the first sentence of 6.3.1.4 paragraph 1:

[1] When a finite value of generic floating type is converted to an integer type …

Add the follow paragraph after 6.3.1.4 paragraph 1:

ISO/IEC DTR 24732 WG14 N1312

 10

[1a] When a finite value of decimal floating type is converted to an integer type other than _Bool,
the fractional part is discarded (i.e., the value is truncated toward zero). If the value of the integral
part cannot be represented by the integer type, the “invalid” floating-point exception shall be raised
and the result of the conversion is unspecified.

Change the first sentence of 6.3.1.4 paragraph 2:

[2] When a value of integer type is converted to a generic floating type, …

Add the following paragraph after 6.3.1.4 paragraph 2:

[2a] When a value of integer type is converted to a decimal floating type, if the value being
converted can be represented exactly in the new type, it is unchanged. If the value being converted
is in the range of values that can be represented but cannot be represented exactly, the result shall
be correctly rounded with exceptions raised as specified in IEEE 754-2008.

6.2 Conversions among decimal floating types, and between
decimal floating types and generic floating types

The specification is similar to the existing ones for float, double and long double, except
that when the result cannot be represented exactly, the behavior is tightened to become correctly
rounded.

Suggested change to C99:

Add after 6.3.1.5#2.

[3] When a _Decimal32 is promoted to _Decimal64 or _Decimal128, or a _Decimal64
is promoted to _Decimal128, the value is converted to the type being promoted to. All extra
precision and/or range (for the converted to type) are removed.

[4] When a _Decimal64 is demoted to _Decimal32, a _Decimal128 is demoted to
_Decimal64 or _Decimal32, or conversion is performed among decimal and generic floating
types other than the above, if the value being converted can be represented exactly in the new type,
it is unchanged. If the value being converted is in the range of values that can be represented but
cannot be represented exactly, the result is correctly rounded with exceptions raised as specified in
IEEE 754-2008.

6.3 Conversions between decimal floating and complex

ISO/IEC DTR 24732 WG14 N1312

 11

This is covered by C99 6.3.1.7.

6.4 Usual arithmetic conversions

In an application that is written using decimal arithmetic, mixed operations between decimal and
other real types are likely to occur only when interfacing with other languages, calling existing
libraries written for binary floating point arithmetic, or accessing existing data. Determining the
common type for mixed operations is difficult because ranges overlap; therefore, mixed mode
operations are not allowed and the programmer must use explicit casts. Implicit conversions are
allowed only for simple assignment, return statement, and in argument passing involving
prototyped functions.

Following are suggested changes to C99:

Insert the following to 6.3.1.8#1, after "This pattern is called the usual arithmetic conversions:"

6.3.1.8[1]

... This pattern is called the usual arithmetic conversions:

If one operand is a decimal floating type, all other operands shall not be generic floating type,
complex type, or imaginary type:

First if either operand is _Decimal128, the other operand is converted to
_Decimal128.

Otherwise, if either operand is _Decimal64, the other operand is converted to
_Decimal64.

Otherwise, if either operand is _Decimal32, the other operand is converted to
_Decimal32.

If there are no decimal floating types in the operands:

First, if the corresponding real type of either operand is long double, the other operand
is converted, without ... <the rest of 6.3.1.8#1 remains the same>

6.5 Default argument promotion

There is no default argument promotion specified for the decimal floating types. Default argument
promotion covered in C99 6.5.2.2 [6] and [7] remains unchanged, and applies to generic floating
types only.

ISO/IEC DTR 24732 WG14 N1312

 12

7 Constants

New suffixes are added to denote decimal floating constants: DF for _Decimal32, DD for
_Decimal64, and DL for _Decimal128.

Suggested changes to C99:

Change floating-suffix in 6.4.4.2 to:

floating-suffix: one of
f d l F D L df dd dl DF DD DL

Add the following paragraph after 6.4.4.2#2:

6.4.4.2
...
[2a] Constraints

The floating-suffix df, dd, dl, DF, DD and DL shall not be used in a hexadecimal-floating-
constant.

Change 6.4.4.2#4 to:

[4] An unsuffixed floating constant has type double, unless modified by the standard pragma
FLOAT_CONST_DECIMAL64. If suffixed by the letter f or F, it has type float. If suffixed by
the letter d or D, it has type double. If suffixed by the letter l or L, it has type long double.

Add the following paragraph after 6.4.4.2#4:

6.4.4.2
...
[4a] If a floating constant is suffixed by df or DF, it has type _Decimal32. If suffixed by dd or
DD, it has type _Decimal64. If suffixed by dl or DL, it has type _Decimal128.

Add the following paragraph after 6.4.4.2#5:

[5a] For decimal floating-point constants, representations that have the same numerical value but
different quantum exponents have distinguishable internal formats. The quantum exponent is
specified to be the same as strtodxx for the same representation string.

Add the following paragraph after 6.4.4.2#7:

ISO/IEC DTR 24732 WG14 N1312

 13

Forward references: the FLOAT_CONST_DECIMAL64 pragma (6.4.4.2a).

7.1 Unsuffixed floating constant

The above introduces new suffixes for the decimal floating constants. It would help usability if
unsuffixed floating constant could be used. The issue can be illustrated by the following example:

_Decimal64 rate = 0.1;

The constant 0.1 has type double. In an implementation where binary representation is used for
the floating types, the internal representation of 0.1 cannot be exact. The variable rate will get a
value slightly different from 0.1. This defeats the purpose of decimal floating types. On the other
hand, requiring programmers to write:

_Decimal64 rate = 0.1dd;

can be inconvenient and affect readability of the program.

7.1.1 The FLOAT_CONST_DECIMAL64 pragma

Source code that uses both generic and decimal floating point values in close proximity ought to
use the suffixed forms of floating-point constants for clarity. However, it may be expected that a
typical usage pattern would be that within significant portions of source code, all of the floating-
point usage would be purely generic or purely decimal. The FLOAT_CONST_DECIMAL64
pragma allows programmers to establish a context in which unsuffixed floating-point constants
would be uniformly interpreted as having either type double (as they do in C99) or type
_Decimal64.

Note that as a practical matter, especially with early implementations, this pragma could have
unintended effects on floating-point constants defined in header files, as C99 does not have a
suffix to specify that a constant is of type double explicitly; all such constants will be unsuffixed
in pre-existing C99 header files. If this pragma is in the “on” state when such a header is included,
unsuffixed constants it uses outside of macro definitions (e.g. in initializers or inline functions)
will be given type _Decimal64. Similarly, if the pragma is in the “on” state when a macro
defined in such a header is expanded, the constant in the macro expansion will be given type
_Decimal64. Existing C header files containing constants of type double can be made safe
from this kind of misinterpretation by adding an explicit d or D suffix to each such constant
conditionally, when the preprocessor expression:

(__STDC_DEC_FP__ >= 200805L)

is true. But unless and until it is known that all the headers used by a program have been modified
to use an explicit d or D suffix on constants of type double, setting this pragma to the “on” state
requires extreme caution.

ISO/IEC DTR 24732 WG14 N1312

 14

Suggested changes to C99:

Add the following paragraphs after 6.4.4.2:

6.4.4.2a The FLOAT_CONST_DECIMAL64 pragma

The type given to an unsuffixed floating-point constant is normally type double. However, the
following pragma may be used to change this behavior:

#pragma STDC FLOAT_CONST_DECIMAL64 on-off-switch

This pragma directs the implementation to treat unsuffixed floating-point constants as having type
double (where the state is “off”) or type _Decimal64 (where the state is “on”). The pragma
shall occur either outside external declarations or preceding all explicit declarations and statements
inside a compound statement. When outside external declarations, the pragma takes effect from its
occurrence until another FLOAT_CONST_DECIMAL64 pragma is encountered, or until the end of
the translation unit. When inside a compound statement, the pragma takes effect from its
occurrence until another FLOAT_CONST_DECIMAL64 pragma is encountered (including within a
nested compound statement), or until the end of the compound statement; at the end of a
compound statement the state for the pragma is restored to its condition just before the compound
statement. If this pragma is used in any other context, the behavior is undefined. The default state
for the pragma is “off”.

Add the following to the list of STDC pragmas in 6.10.6:

#pragma STDC FLOAT_CONST_DECIMAL64 on-off-switch

8 Arithmetic Operations
8.1 Operators

The operators Add (C99 6.5.6), Subtract (C99 6.5.6), Multiply (C99 6.5.5), Divide (C99 6.5.5),
Relational operators (C99 6.5.8), Equality operators (C99 6.5.9), Unary Arithmetic operators
(C99 6.5.3.3), and Compound Assignment operators (C99 6.5.16.2) when applied to decimal
floating type operands shall follow the semantics as defined in IEEE 754-2008.

Suggested changes to C99:

Add the following after 6.5.5 paragraph 2:

[2a] If either operand has decimal floating type, the other operand shall not have generic floating
type, complex type, nor imaginary type.

ISO/IEC DTR 24732 WG14 N1312

 15

Add the following after 6.5.6 paragraph 3:

[3a] If either operand has decimal floating type, the other operand shall not have generic floating
type, complex type, nor imaginary type.

Add the following after 6.5.8 paragraph 2:

[2a] If either operand has decimal floating type, the other operand shall not have generic floating
type.

Add the following after 6.5.9 paragraph 2:

[2a] If either operand has decimal floating type, the other operand shall not have generic floating
type, complex type, nor imaginary type.

Add the following bullet to 6.5.15 paragraph 3:

• one operand has decimal floating type, and the other has arithmetic type other than generic

floating type, complex type, or imaginary type;

Add the following after 6.5.16.2 paragraph 2:

[2a] If either operand has decimal floating type, the other operand shall not have generic floating
type, complex type, nor imaginary type.

8.2 Functions

The headers and library supply a number of functions and macros that implement support for
decimal floating point data with the semantics specified in IEEE 754-2008, including producing
results with the preferred exponent where appropriate. That support is provided by the following:

From <math.h>, the decimal floating-point type versions of:

sqrt, fma, fabs, fmax, fmin, ceil, floor, trunc, round, rint, lround,
llround, ldexp, frexp, ilogb, logb, scalbn, scalbln, copysign,
nextafter, remainder, isnan, isinf, isfinite, isnormal, signbit,
fpclassify, isunordered, isgreater, isgreaterequal, isless,
islessequal, quantize, and samequantum.

From <fenv.h>, facilities dealing with decimal context:

feraiseexcept, feclearexcept, fetestexcept, fesetexceptflag,
fegetexceptflag, fe_dec_getround, fe_dec_setround, fesetenv,
fegetenv, feupdateenv, and feholdexcept.

From <stdio.h>, decimal floating-point modified format specifiers for:

ISO/IEC DTR 24732 WG14 N1312

 16

The printf/scanf family of functions.

From <stdlib.h> and <wchar.h>, the decimal floating-point type versions of:

strtod and wcstod.

From <wchar.h>, decimal floating-point modified format specifiers for:

The wide printf/scanf family of functions.

8.3 Conversions

Conversions between different formats and to/from integer formats are covered in section 6.

9 Library
9.1 Standard headers

The functions, macros, and types declared or defined in Clause 9 and its subclauses are only
declared or defined by their respective headers if the macro __STDC_WANT_DEC_FP__ is
defined at the point in the source file where the appropriate header is included.

9.2 Floating-point environment <fenv.h>

The floating point environment specified in C99 7.6 applies to both generic floating types and
decimal floating types. This is to implement the context defined in IEEE 754-2008. The existing
C99 specification gives flexibility to an implementation on which part of the environment is
accessible to programs. The decimal floating-point arithmetic specifies a more stringent
requirement. All the rounding directions and flags are supported.

DEC Macros Existing C99 macros for

generic floating types
IEEE 754

FE_DEC_TOWARDZERO FE_TOWARDZERO Toward zero
FE_DEC_TONEAREST FE_TONEAREST To nearest, ties even
FE_DEC_UPWARD FE_UPWARD Toward plus infinity
FE_DEC_DOWNWARD FE_DOWNWARD Toward minus infinity
FE_DEC_TONEARESTFROMZERO n/a To nearest, ties away from

zero

Suggested changes to C99:

Add the following after 7.6 paragraph 7:

ISO/IEC DTR 24732 WG14 N1312

 17

7.6
...
[7a] Each of the macros

FE_DEC_DOWNWARD
FE_DEC_TONEAREST
FE_DEC_TONEARESTFROMZERO
FE_DEC_TOWARDZERO
FE_DEC_UPWARD

is defined and used by fe_dec_getround and fe_dec_setround functions for getting and
setting the rounding direction of decimal floating-point operations. The default rounding direction
for decimal floating-point operations shall be FE_DEC_TONEAREST.

Add the following after 7.6.3.2:

7.6.3.3 The fe_dec_getround function

Synopsis

#define __STDC_WANT_DEC_FP__
#include <fenv.h>
int fe_dec_getround(void);

Description

The fe_dec_getround function gets the current rounding direction for decimal floating-point
operations.

Returns

The fe_dec_getround function returns the value of the rounding direction macro representing
the current rounding direction for decimal floating-point operations, or a negative value if there is
no such rounding macro or the current rounding direction is not determinable.

7.6.3.4 The fe_dec_setround function

Synopsis

#define __STDC_WANT_DEC_FP__
#include <fenv.h>
int fe_dec_setround(int round);

Description

ISO/IEC DTR 24732 WG14 N1312

 18

The fe_dec_setround function establishes the rounding direction for decimal floating-point
operations represented by its argument round. If the argument is not equal to the value of a
rounding direction macro, the rounding direction is not changed.

If FLT_RADIX is not 10, the rounding direction altered by the fesetround function is
independent of the rounding direction altered by the fe_dec_setround function; otherwise if
FLT_RADIX is 10, whether the fesetround and fe_dec_setround functions alter the
rounding direction of both generic floating type and decimal floating type operations is
implementation defined.

Returns

The fe_dec_setround function returns a zero value if and only if the argument is equal to a
rounding direction macro (that is, if and only if the requested rounding direction was established).

9.3 Decimal mathematics <math.h>

The list of elementary functions specified in the mathematics library is extended to handle decimal
floating-point types. These include functions specified in 7.12.4, 7.12.5, 7.12.6, 7.12.7, 7.12.8,
7.12.9, 7.12.10, 7.12.11, 7.12.12, and 7.12.13. The macros HUGE_VAL_D32, HUGE_VAL_D64,
HUGE_VAL_D128, DEC_INFINITY and DEC_NAN are defined to help using these functions.
With the exception of the decimal floating-point functions listed in 8.2, which have accuracy as
specified in IEEE 754-2008, the accuracy of decimal floating-point results is implementation-
defined. The implementation may state that the accuracy is unknown. All classification macros
specified in C99 7.12.3 are also extended to handle decimal floating-point types. The same applies
to all comparison macros specified in 7.12.14.

The names of the functions are derived by adding suffixes d32, d64 and d128 to the double
version of the function name.

Suggested changes to C99:

Add after 7.12 paragraph 2.

7.12

[2a] The types

 _Decimal32_t
 _Decimal64_t

are decimal floating types at least as wide as _Decimal32 and _Decimal64, respectively,
and such that _Decimal64_t is at least as wide as _Decimal32_t. If DEC_EVAL_METHOD

ISO/IEC DTR 24732 WG14 N1312

 19

equals 0, _Decimal32_t and _Decimal64_t are _Decimal32 and _Decimal64,
respectively; if DEC_EVAL_METHOD equals 1, they are both _Decimal64; if
DEC_EVAL_METHOD equals 2, they are both _Decimal128; and for other values of
DEC_EVAL_METHOD, they are otherwise implementation-defined.

Add at the end of 7.12 paragraph 3 the following macros.

7.12

[3] The macro

HUGE_VAL_D64

expands to a constant expression of type _Decimal64 representing infinity. The macros

HUGE_VAL_D32
HUGE_VAL_D128

are respectively _Decimal32 and _Decimal128 analogs of HUGE_VAL_D64.

Add at the end of 7.12 paragraph 4 the following macro.

7.12

[4] The macro

DEC_INFINITY

expands to a constant expression of type _Decimal32 representing positive infinity.

Add at the end of 7.12 paragraph 5 the following macro.

7.12

[5] The macro

DEC_NAN

expands to a constant expression of type _Decimal32 representing a quiet NaN.

Add at the end of 7.12 paragraph 7 the following macro.

7.12

[7] The macro

ISO/IEC DTR 24732 WG14 N1312

 20

 FP_FAST_FMAD32
 FP_FAST_FMAD64
 FP_FAST_FMAD128

are, respectively, _Decimal32, _Decimal64 and _Decimal128 analogs of FP_FAST_FMA.

Suggested changes to C99:

Add the following list of function prototypes to the synopsis of the respective subclauses:

 7.12.4 Trigonometric functions

 _Decimal64 acosd64(_Decimal64 x);
 _Decimal32 acosd32(_Decimal32 x);
 _Decimal128 acosd128(_Decimal128 x);

 _Decimal64 asind64(_Decimal64 x);
 _Decimal32 asind32(_Decimal32 x);
 _Decimal128 asind128(_Decimal128 x);

 _Decimal64 atand64(_Decimal64 x);
 _Decimal32 atand32(_Decimal32 x);
 _Decimal128 atand128(_Decimal128 x);

 _Decimal64 atan2d64(_Decimal64 y, _Decimal64 x);
 _Decimal32 atan2d32(_Decimal32 y, _Decimal32 x);
 _Decimal128 atan2d128(_Decimal128 y, _Decimal128 x);

 _Decimal64 cosd64(_Decimal64 x);
 _Decimal32 cosd32(_Decimal32 x);
 _Decimal128 cosd128(_Decimal128 x);

 _Decimal64 sind64(_Decimal64 x);
 _Decimal32 sind32(_Decimal32 x);
 _Decimal128 sind128(_Decimal128 x);

 _Decimal64 tand64(_Decimal64 x);
 _Decimal32 tand32(_Decimal32 x);
 _Decimal128 tand128(_Decimal128 x);

 7.12.5 Hyperbolic functions

 _Decimal64 acoshd64(_Decimal64 x);
 _Decimal32 acoshd32(_Decimal32 x);

ISO/IEC DTR 24732 WG14 N1312

 21

 _Decimal128 acoshd128(_Decimal128 x);

 _Decimal64 asinhd64(_Decimal64 x);
 _Decimal32 asinhd32(_Decimal32 x);
 _Decimal128 asinhd128(_Decimal128 x);

 _Decimal64 atanhd64(_Decimal64 x);
 _Decimal32 atanhd32(_Decimal32 x);
 _Decimal128 atanhd128(_Decimal128 x);

 _Decimal64 coshd64(_Decimal64 x);
 _Decimal32 coshd32(_Decimal32 x);
 _Decimal128 coshd128(_Decimal128 x);

 _Decimal64 sinhd64(_Decimal64 x);
 _Decimal32 sinhd32(_Decimal32 x);
 _Decimal128 sinhd128(_Decimal128 x);

 _Decimal64 tanhd64(_Decimal64 x);
 _Decimal32 tanhd32(_Decimal32 x);
 _Decimal128 tanhd128(_Decimal128 x);

 7.12.6 Exponential and logarithmic functions

 _Decimal64 expd64(_Decimal64 x);
 _Decimal32 expd32(_Decimal32 x);
 _Decimal128 expd128(_Decimal128 x);

 _Decimal64 exp2d64(_Decimal64 x);
 _Decimal32 exp2d32(_Decimal32 x);
 _Decimal128 exp2d128(_Decimal128 x);

 _Decimal64 expm1d64(_Decimal64 x);
 _Decimal32 expm1d32(_Decimal32 x);
 _Decimal128 expm1d128(_Decimal128 x);

 _Decimal64 frexpd64(_Decimal64 value, int *exp);2
 _Decimal32 frexpd32(_Decimal32 value, int *exp);
 _Decimal128 frexpd128(_Decimal128 value, int *exp);

 int ilogbd64(_Decimal64 x);
 int ilogbd32(_Decimal32 x);
 int ilogbd128(_Decimal128 x);

 _Decimal64 ldexpd64(_Decimal64 x, int exp);3

2 See suggested changes to the frexp function description below.

ISO/IEC DTR 24732 WG14 N1312

 22

 _Decimal32 ldexpd32(_Decimal32 x, int exp);
 _Decimal128 ldexpd128(_Decimal128 x, int exp);

 _Decimal64 logd64(_Decimal64 x);
 _Decimal32 logd32(_Decimal32 x);
 _Decimal128 logd128(_Decimal128 x);

 _Decimal64 log10d64(_Decimal64 x);
 _Decimal32 log10d32(_Decimal32 x);
 _Decimal128 log10d128(_Decimal128 x);

 _Decimal64 log1pd64(_Decimal64 x);
 _Decimal32 log1pd32(_Decimal32 x);
 _Decimal128 log1pd128(_Decimal128 x);

 _Decimal64 log2d64(_Decimal64 x);
 _Decimal32 log2d32(_Decimal32 x);
 _Decimal128 log2d128(_Decimal128 x);

 _Decimal64 logbd64(_Decimal64 x);
 _Decimal32 logbd32(_Decimal32 x);
 _Decimal128 logbd128(_Decimal128 x);

 _Decimal64 modfd64(_Decimal64 value, _Decimal64 *iptr);
 _Decimal32 modfd32(_Decimal32 value, _Decimal32 *iptr);
 _Decimal128 modfd128(_Decimal128 value, _Decimal128 *iptr);

 _Decimal64 scalbnd64(_Decimal64 x, int n);
 _Decimal32 scalbnd32(_Decimal32 x, int n);
 _Decimal128 scalbnd128(_Decimal128 x, int n);

 _Decimal64 scalblnd64(_Decimal64 x, long int n);
 _Decimal32 scalblnd32(_Decimal32 x, long int n);
 _Decimal128 scalblnd128(_Decimal128 x, long int n);

 7.12.7 Power and absolute-value functions

 _Decimal64 cbrtd64(_Decimal64 x);
 _Decimal32 cbrtd32(_Decimal32 x);
 _Decimal128 cbrtd128(_Decimal128 x);

 _Decimal64 fabsd64(_Decimal64 x);
 _Decimal32 fabsd32(_Decimal32 x);
 _Decimal128 fabsd128(_Decimal128 x);

3 See suggested changes to the ldexp function description below.

ISO/IEC DTR 24732 WG14 N1312

 23

 _Decimal64 hypotd64(_Decimal64 x, _Decimal64 y);
 _Decimal32 hypotd32(_Decimal32 x, _Decimal32 y);
 _Decimal128 hypotd128(_Decimal128 x, _Decimal128 y);

 _Decimal64 powd64(_Decimal64 x, _Decimal64 y);
 _Decimal32 powd32(_Decimal32 x, _Decimal32 y);
 _Decimal128 powd128(_Decimal128 x, _Decimal128 y);

 _Decimal64 sqrtd64(_Decimal64 x);
 _Decimal32 sqrtd32(_Decimal32 x);
 _Decimal128 sqrtd128(_Decimal128 x);

 7.12.8 Error and gamma functions

 _Decimal64 erfd64(_Decimal64 x);
 _Decimal32 erfd32(_Decimal32 x);
 _Decimal128 erfd128(_Decimal128 x);

 _Decimal64 erfcd64(_Decimal64 x);
 _Decimal32 erfcd32(_Decimal32 x);
 _Decimal128 erfcd128(_Decimal128 x);

 _Decimal64 lgammad64(_Decimal64 x);
 _Decimal32 lgammad32(_Decimal32 x);
 _Decimal128 lgammad128(_Decimal128 x);

 _Decimal64 tgammad64(_Decimal64 x);
 _Decimal32 tgammad32(_Decimal32 x);
 _Decimal128 tgammad128(_Decimal128 x);

 7.12.9 Nearest integer functions

 _Decimal64 ceild64(_Decimal64 x);
 _Decimal32 ceild32(_Decimal32 x);
 _Decimal128 ceild128(_Decimal128 x);

 _Decimal64 floord64(_Decimal64 x);
 _Decimal32 floord32(_Decimal32 x);
 _Decimal128 floord128(_Decimal128 x);

 _Decimal64 nearbyintd64(_Decimal64 x);
 _Decimal32 nearbyintd32(_Decimal32 x);
 _Decimal128 nearbyintd128(_Decimal128 x);

 _Decimal64 rintd64(_Decimal64 x);
 _Decimal32 rintd32(_Decimal32 x);

ISO/IEC DTR 24732 WG14 N1312

 24

 _Decimal128 rintd128(_Decimal128 x);

 long int lrintd64(_Decimal64 x);
 long int lrintd32(_Decimal32 x);
 long int lrintd128(_Decimal128 x);

 long long int llrintd64(_Decimal64 x);
 long long int llrintd32(_Decimal32 x);
 long long int llrintd128(_Decimal128 x);

 _Decimal64 roundd64(_Decimal64 x);
 _Decimal32 roundd32(_Decimal32 x);
 _Decimal128 roundd128(_Decimal128 x);

 long int lroundd64(_Decimal64 x);
 long int lroundd32(_Decimal32 x);
 long int lroundd128(_Decimal128 x);

 long long int llroundd64(_Decimal64 x);
 long long int llroundd32(_Decimal32 x);
 long long int llroundd128(_Decimal128 x);

 _Decimal64 truncd64(_Decimal64 x);
 _Decimal32 truncd32(_Decimal32 x);
 _Decimal128 truncd128(_Decimal128 x);

 7.12.10 Remainder functions4

 _Decimal64 fmodd64(_Decimal64 x, _Decimal64 y);
 _Decimal32 fmodd32(_Decimal32 x, _Decimal32 y);
 _Decimal128 fmodd128(_Decimal128 x, _Decimal128 y);

 _Decimal64 remainderd64(_Decimal64 x, _Decimal64 y);
 _Decimal32 remainderd32(_Decimal32 x, _Decimal32 y);
 _Decimal128 remainderd128(_Decimal128 x, _Decimal128 y);

 7.12.11 Manipulation functions

 _Decimal64 copysignd64(_Decimal64 x, _Decimal64 y);
 _Decimal32 copysignd32(_Decimal32 x, _Decimal32 y);
 _Decimal128 copysignd128(_Decimal128 x, _Decimal128 y);

 _Decimal64 nand64(const char *tagp);
 _Decimal32 nand32(const char *tagp);
 _Decimal128 nand128(const char *tagp);

4 There is no decimal floating-point type versions of the remquo function.

ISO/IEC DTR 24732 WG14 N1312

 25

 _Decimal64 nextafterd64(_Decimal64 x, _Decimal64 y);
 _Decimal32 nextafterd32(_Decimal32 x, _Decimal32 y);
 _Decimal128 nextafterd128(_Decimal128 x, _Decimal128 y);

 _Decimal64 nexttowardd64(_Decimal64 x, _Decimal128 y);
 _Decimal32 nexttowardd32(_Decimal32 x, _Decimal128 y);
 _Decimal128 nexttowardd128(_Decimal128 x, _Decimal128 y);

 7.12.12 Maximum, minimum, and positive difference functions

 _Decimal64 fdimd64(_Decimal64 x, _Decimal64 y);
 _Decimal32 fdimd32(_Decimal32 x, _Decimal32 y);
 _Decimal128 fdimd128(_Decimal128 x, _Decimal128 y);

 _Decimal64 fmaxd64(_Decimal64 x, _Decimal64 y);
 _Decimal32 fmaxd32(_Decimal32 x, _Decimal32 y);
 _Decimal128 fmaxd128(_Decimal128 x, _Decimal128 y);

 _Decimal64 fmind64(_Decimal64 x, _Decimal64 y);
 _Decimal32 fmind32(_Decimal32 x, _Decimal32 y);
 _Decimal128 fmind128(_Decimal128 x, _Decimal128 y);

 7.12.13 Floating multiply-add

 _Decimal64 fmad64(_Decimal64 x, _Decimal64 y, _Decimal64 z);
 _Decimal32 fmad32(_Decimal32 x, _Decimal32 y, _Decimal32 z);
 _Decimal128 fmad128(_Decimal128 x, _Decimal128 y, _Decimal128 z);

Add to the end of 7.12.14 paragraph 1:

[1] … If either argument has decimal floating type, the other argument shall have decimal floating
type as well.

Replace 7.12.6.4 paragraphs 2 and 3 with the following:

[2] The frexp functions break a floating-point number into a normalized fraction and an integer
exponent. They store the integer in the int object pointed to by exp. If value is a decimal
floating-point number, the exponent is an integral power of 10; otherwise it is an integral power of
2.

[3] If value is not a floating-point number, the results are unspecified. Otherwise, the frexp
functions return the value x, such that x has a magnitude in the interval [1/10, 1) or zero, and
value equals x * 10*exp when value is a decimal floating-point number, or x has a magnitude
in the interval [1/2, 1) or zero, and value equals x * 2*exp when value is a generic floating-
point number. If value is zero, both parts of the result are zero.

ISO/IEC DTR 24732 WG14 N1312

 26

Replace 7.12.6.6 paragraphs 2 and 3 with the following:

[2] The ldexp functions multiply a decimal floating-point number by an integral power of 10, or
a generic floating-point number by an integral power of 2. A range error may occur.

[3] If x is a decimal floating-point number, the ldexp functions return x * 10exp; otherwise they
return x * 2exp.

Replace 7.12.6.11 paragraph 2 with the following:

The logb functions extract the exponent of x, as a signed integer value in floating-point format. If
x is subnormal it is treated as though it were normalized; thus, for positive finite x,

 1 ≤ x * b-logb(x) < b

where b = 10 if x is a decimal floating-point number; otherwise b = FLT_RADIX.

A domain error or range error may occur if the argument is zero.

Replace 7.12.6.13 paragraphs 2 and 3 with the following:

[2] The scalbn and scalbln functions compute x * bn (where b = 10 if x is a decimal floating-
point number; otherwise b = FLT_RADIX) efficiently, not normally by computing bn explicitly. A
range error may occur.

[3] The scalbn and scalbln functions return x * bn.

9.4 New <math.h> functions

The following are new functions added to <math.h>.

Suggested addition to C99:

7.12.11.5 The quantize functions

Synopsis

#define __STDC_WANT_DEC_FP__
#include <math.h>
_Decimal32 quantized32 (_Decimal32 x, _Decimal32 y);
_Decimal64 quantized64 (_Decimal64 x, _Decimal64 y);
_Decimal128 quantized128(_Decimal128 x, _Decimal128 y);

ISO/IEC DTR 24732 WG14 N1312

 27

Description

The quantize functions set the exponent of argument x to the exponent of argument y, while
attempting to keep the value the same. If the exponent is being increased, the value shall be
correctly rounded according to the current rounding mode; if the result does not have the same
value as x, the “inexact” floating-point exception shall be raised. If the exponent is being
decreased and the significand of the result has more digits than the type would allow, the result is
NaN and the “invalid” floating-point exception shall be raised. If one or both operands are NaN the
result is NaN. Otherwise if only one operand is infinity, the result is NaN and the “invalid”
floating-point exception shall be raised. If both operands are infinity, the result is
DEC_INFINITY with the sign as x, converted to the type of the function. The quantize
functions do not signal underflow.

Returns

The quantize functions return the number which is equal in value (except for any rounding) and
sign to x, and which has an exponent set to be equal to the exponent of y.

7.12.11.6 The samequantum functions

Synopsis

#define __STDC_WANT_DEC_FP__
#include <math.h>
_Bool samequantumd32 (_Decimal32 x, _Decimal32 y);
_Bool samequantumd64 (_Decimal64 x, _Decimal64 y);
_Bool samequantumd128 (_Decimal128 x, _Decimal128 y);

Description

The samequantum functions determine if the quantum exponents of the x and y are the same. If
both x and y are NaN, or infinity, they have the same quantum exponents; if exactly one operand
is infinity or exactly one operand is NaN, they do not have the same quantum exponents. The
samequantum functions raise no exception.

Returns

The samequantum functions return true when x and y have the same quantum exponents,
false otherwise.

7.12.11.7 The quantexp functions

Synopsis

#define __STDC_WANT_DEC_FP__
#include <math.h>

ISO/IEC DTR 24732 WG14 N1312

 28

int quantexpd32 (_Decimal32 x);
int quantexpd64 (_Decimal64 x);
int quantexpd128 (_Decimal128 x);

Description

The quantexp functions compute the quantum exponent of a finite argument. If x is infinite or
NaN, they compute INT_MIN and a domain error occurs.

Returns

The quantexp functions return the quantum exponent of x.

9.5 Formatted input/output specifiers

Suggested changes to C99:

Add the following to 7.19.6.1 paragraph 7, to 7.19.6.2 paragraph 11, to 7.24.2.1 paragraph 7, and
to 7.24.2.2 paragraph 11:

H Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a

_Decimal32 argument.

D Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a

_Decimal64 argument.

DD Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a

_Decimal128 argument.

Change all occurrences of:

A double argument representing …

in the descriptions of the e, E, f, F, g, and G conversion specifiers in 7.19.6.1 paragraph 8 and
7.24.2.1 paragraph 8 to:

A double or decimal floating type argument representing …

Change the second paragraph in the description of the a,A conversion specifier in 7.19.6.1
paragraph 8 and 7.24.2.1. paragraph 8 to:

A double or decimal floating type argument representing an infinity or NaN is converted in the
style of an f or F conversion specifier.

ISO/IEC DTR 24732 WG14 N1312

 29

Add the following to 7.19.6.1 paragraph 8 and 7.24.2.1 paragraph 8, under a,A conversion
specifiers:

If an H, D, or DD modifier is present and the precision is missing, then for a decimal floating type
argument represented by a triple of integers (s, c, q), where n is the number of digits in the
coefficient c,

• if 0 >= q >= -(n+5), use style f formatting with formatting precision equal to -q,
• otherwise, use style e formatting with formatting precision equal to n - 1, with the

exceptions that if c = 0 then the digit-sequence in the exponent-part shall have the value q
(rather than 0), and that the exponent is always expressed with the minimum number of
digits required to represent its value (the exponent never contains a leading zero).

If the precision modifier is present and at least as large as the precision p (5.2.4.2.2) of the decimal
floating type, the conversion is as if the precision modifier were missing. If the precision modifier
is present and less than the precision p of the decimal floating type, the conversion first rounds the
input, in the type, according to the current rounding direction for decimal floating-point operations,
to the number of digits specified by the precision modifier, then converts the result as if the
precision modifier were missing.

Examples:

Following are representations of _Decimal64 arguments as triples (s, c, q) and the
corresponding character sequences printf produces with %Da:

 (1, 123, 0) 123
 (-1, 123, 0) -123
 (1, 123, -2) 1.23
 (1, 123, 1) 1.23e+3
 (-1, 123, 1) -1.23e+3
 (1, 123, -8) 0.00000123
 (1, 123, -9) 1.23e-7
 (1, 1234567890123456, 0) 1234567890123456
 (1, 1234567890123456, 1) 1.234567890123456e+16
 (1, 1234567890123456, -1) 123456789012345.6
 (1, 1234567890123456, -21) 0.000001234567890123456
 (1, 1234567890123456, -22) 1.234567890123456e-7
 (1, 0, 0) 0
 (-1, 0, 0) -0
 (1, 0, -6) 0.000000
 (1, 0, -7) 0e-7
 (1, 0, 2) 0e+2
 (1, 5, -6) 0.000005
 (1, 50, -7) 0.0000050
 (1, 5, -7) 5e-7

ISO/IEC DTR 24732 WG14 N1312

 30

To illustrate the effects of a precision modifier, the sequence:

 _Decimal32 x = 6543.00DF; // represented by the triple (1, 654300, -2)
 printf(“%Ha\n”, x);
 printf(“%.6Ha\n”, x);
 printf(“%.5Ha\n”, x);
 printf(“%.4Ha\n”, x);
 printf(“%.3Ha\n”, x);
 printf(“%.2Ha\n”, x);
 printf(“%.1Ha\n”, x);

results in:

 6543.00
 6543.00
 6543.0
 6543
 6.54e+3
 6.5e+3
 7e+3

9.6 strtod32, strtod64, and strtod128 functions <stdlib.h>

The specifications of these functions are similar to those of strtod, strtof, and strtold as
defined in C99 7.20.1.3. These functions are declared in <stdlib.h>.

Suggested addition to C99:

7.20.1.5 The strtod32, strtod64, and strtod128 functions

Synopsis

[1] #define __STDC_WANT_DEC_FP__

#include <stdlib.h>
_Decimal32 strtod32 (const char * restrict nptr, char ** restrict endptr);
_Decimal64 strtod64 (const char * restrict nptr, char ** restrict endptr);
_Decimal128 strtod128(const char * restrict nptr, char ** restrict endptr);

Description

[2] The strtod32, strtod64, and strtod128 functions convert the initial portion of the
string pointed to by nptr to _Decimal32, _Decimal64, and _Decimal128 representation,
respectively. First, they decompose the input string into three parts: an initial, possibly empty,
sequence of white-space characters (as specified by the isspace function), a subject sequence
resembling a floating-point constant or representing an infinity or NaN; and a final string of one or

ISO/IEC DTR 24732 WG14 N1312

 31

more unrecognized characters, including the terminating null character of the input string. Then,
they attempt to convert the subject sequence to a floating-point number, and return the result.

[3] The expected form of the subject sequence is an optional plus or minus sign, then one of the
following:

• a nonempty sequence of decimal digits optionally containing a decimal-point character,

then an optional exponent part as defined in 6.4.4.2;
• INF or INFINITY, ignoring case
• NAN or NAN(d-char-sequenceopt), ignoring case in the NAN part, where:

d-char-sequence:

digit
d-char-sequence digit

The subject sequence is defined as the longest initial subsequence of the input string, starting with
the first non-white-space character, that is of the expected form. The subject sequence contains no
characters if the input string is not of the expected form.

[4] If the subject sequence has the expected form for a floating-point number, the sequence of
characters starting with the first digit or the decimal-point character (whichever occurs first) is
interpreted as a floating constant according to the rules of 6.4.4.2, except that it is not a
hexadecimal floating number, that the decimal-point character is used in place of a period, and that
if neither an exponent part nor a decimal-point character appears in a decimal floating point
number, an exponent part of the appropriate type with value zero is assumed to follow the last digit
in the string. If the subject sequence begins with a minus sign, the sequence is interpreted as
negated. A character sequence INF or INFINITY is interpreted as an infinity. A character
sequence NAN or NAN(d-char-sequenceopt), is interpreted as a quiet NaN; the meaning of the d-char
sequences is implementation-defined.5 A pointer to the final string is stored in the object pointed to
by endptr, provided that endptr is not a null pointer.

[5] If the sequence is negated, the sign s is set to -1, else s is set to 1.

[6] If the subject sequence has the expected form for a floating-point number, then the result shall
be correctly rounded as specified in IEEE 754-2008.

[7] The coefficient c and the quantum exponent q of a finite converted floating-point number are
determined from the subject sequence as follows:

• The fractional-constant or digit-sequence and the exponent-part (if any) are extracted from

the subject sequence. If there is an exponent-part, then q is set to the value of signopt digit-
sequence in the exponent-part. If there is no exponent-part, q is set to 0.

5 An implementation may use the d-char sequence to determine extra information to be represented in the NaN's
significand.

ISO/IEC DTR 24732 WG14 N1312

 32

• If there is a fractional-constant, q is decreased by the number of digits to the right of the
decimal point and the decimal point is removed to form a digit-sequence.

• c is set to the value of the digit-sequence (after any decimal point has been removed).
• Rounding required because of insufficient precision or range in the type of the result will

round c to the full precision available in the type, and will adjust q accordingly within the
limits of the type, provided the rounding does not yield an infinity (in which case an
appropriately signed internal representation of infinity is returned). If the full precision of
the type would require q to be smaller than the minimum for the type, then q is pinned at
the minimum and c is adjusted through the subnormal range accordingly, perhaps to zero.

Examples:

Following are subject sequences of the decimal form and the resulting triples (s, c, q) produced by
strtod64. Note that for _Decimal64, the precision (maximum coefficient length) is 16 and
the quantum exponent range is -398 <= q <= 369.

 "0" (1,0,0)
 "0.00" (1,0,-2)
 "123" (1,123,0)
 "-123" (-1,123,0)
 "1.23E3" (1,123,1)
 "1.23E+3" (1,123,1)
 "12.3E+7" (1,123,6)
 "12.0" (1,120,-1)
 "12.3" (1,123,-1)
 "0.00123" (1,123,-5)
 "-1.23E-12" (-1,123,-14)
 "1234.5E-4" (1,12345,-5)
 "-0" (-1,0,0)
 "-0.00" (-1,0,-2)
 "0E+7" (1,0,7)
 "-0E-7" (-1,0,-7)
 "12345678901234567890" (1, 1234567890123457, 4) or (1, 1234567890123456, 4)
depending on rounding mode
 "1234E-400" (1, 12, -398) or (1, 13, -398) depending on rounding mode
 "1234E-402" (1, 0, -398) or (1, 1, -398) depending on roundingmode
 "1000." (1,1000,0)
 ".0001" (1,1,-4)
 "1000.e0" (1,1000,0)
 ".0001e0" (1,1,-4)
 "1000.0" (1,10000,-1)
 "0.0001" (1,1,-4)
 "1000.00" (1,100000,-2)
 "00.0001" (1,1,-4)
 "001000." (1,1000,0)
 "001000.0" (1,10000,-1)

ISO/IEC DTR 24732 WG14 N1312

 33

 "001000.00" (1,100000,-2)
 "00.00" (1,0,-2)
 "00." (1,0,0)
 ".00" (1,0,-2)
 "00.00e-5" (1,0,-7)
 "00.e-5" (1,0,-5)
 ".00e-5" (1,0,-7)

[8] In other than the "C" locale, additional locale-specific subject sequence forms may be
accepted.

[9] If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

Returns

[10] The functions return the converted value, if any. If no conversion could be performed, the
value +0.E0dd is returned. If the correct value is outside the range of representable values, plus or
minus HUGE_VAL_D64, HUGE_VAL_D32, or HUGE_VAL_D128 is returned (according to the
return type and sign of the value), and the value of the macro ERANGE is stored in errno. If the
result underflows (7.12.1), the functions return a value whose magnitude is no greater than the
smallest normalized positive number in the return type; whether errno acquires the value
ERANGE is implementation-defined.

9.7 wcstod32, wcstod64, and wcstod128 functions <wchar.h>

The specifications of these functions are similar to those of wcstod, wcstof, and wcstold as
defined in C99 7.24.4.1.1. They are declared in <wchar.h>.

Suggested addition to C99:

7.24.4.1.3 The wcstod32, wcstod64, and wcstod128 functions

Synopsis

[1] #define __STDC_WANT_DEC_FP__

#include <wchar.h>
_Decimal32 wcstod32 (const wchar_t * restrict nptr, wchar_t ** restrict endptr);
_Decimal64 wcstod64 (const wchar_t * restrict nptr, wchar_t ** restrict endptr);
_Decimal128 wcstod128(const wchar_t * restrict nptr, wchar_t ** restrict endptr);

ISO/IEC DTR 24732 WG14 N1312

 34

Description

[2] The wcstod32, wcstod64, and wcstod128 functions convert the initial portion of the
wide string pointed to by nptr to _Decimal32, _Decimal64, and _Decimal128
representation, respectively. First, they decompose the input string into three parts: an initial,
possibly empty, sequence of white-space wide characters (as specified by the iswspace
function), a subject sequence resembling a floating-point constant or representing an infinity or
NaN; and a final wide string of one or more unrecognized wide characters, including the
terminating null wide character of the input wide string. Then, they attempt to convert the subject
sequence to a floating-point number, and return the result.

[3] The expected form of the subject sequence is an optional plus or minus sign, then one of the
following:

• a nonempty sequence of decimal digits optionally containing a decimal-point wide

character, then an optional exponent part as defined in 6.4.4.2;
• INF or INFINITY, ignoring case
• NAN or NAN(d-wchar-sequenceopt), ignoring case in the NAN part, where:

d-wchar-sequence:

digit
d-wchar-sequence digit

The subject sequence is defined as the longest initial subsequence of the input wide string, starting
with the first non-white-space wide character, that is of the expected form. The subject sequence
contains no wide characters if the input wide string is not of the expected form.

[4] If the subject sequence has the expected form for a floating-point number, the sequence of wide
characters starting with the first digit or the decimal-point wide character (whichever occurs first)
is interpreted as a floating constant according to the rules of 6.4.4.2, except that it is not a
hexadecimal floating number, that the decimal-point wide character is used in place of a period,
and that if neither an exponent part nor a decimal-point wide character appears in a decimal
floating point number, an exponent part of the appropriate type with value zero is assumed to
follow the last digit in the string. If the subject sequence begins with a minus sign, the sequence is
interpreted as negated. A wide character sequence INF or INFINITY is interpreted as an infinity.
A wide character sequence NAN or NAN(d-wchar-sequenceopt), is interpreted as a quiet NaN; the
meaning of the d-wchar sequences is implementation-defined.6 A pointer to the final wide string is
stored in the object pointed to by endptr, provided that endptr is not a null pointer.

[5] If the sequence is negated, the sign s is set to -1, else s is set to 1.

[6] If the subject sequence has the expected form for a floating-point number, then the result shall
be correctly rounded as specified in IEEE 754-2008.

6 An implementation may use the d-char sequence to determine extra information to be represented in the NaN's
significand.

ISO/IEC DTR 24732 WG14 N1312

 35

[7] The coefficient c and the quantum exponent q of a finite converted floating-point number are
determined from the subject sequence as follows:

• The fractional-constant or digit-sequence and the exponent-part (if any) are extracted from

the subject sequence. If there is an exponent-part, then q is set to the value of signopt digit-
sequence in the exponent-part. If there is no exponent-part, q is set to 0.

• If there is a fractional-constant, q is decreased by the number of digits to the right of the
decimal point and the decimal point is removed to form a digit-sequence.

• c is set to the value of the digit-sequence (after any decimal point has been removed).
• Rounding required because of insufficient precision or range in the type of the result will

round c to the full precision available in the type, and will adjust q accordingly within the
limits of the type, provided the rounding does not yield an infinity (in which case an
appropriately signed internal representation of infinity is returned). If the full precision of
the type would require q to be smaller than the minimum for the type, then q is pinned at
the minimum and c is adjusted through the subnormal range accordingly, perhaps to zero.

[8] In other than the "C" locale, additional locale-specific subject sequence forms may be
accepted.

[9] If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

Returns

[10] The functions return the converted value, if any. If no conversion could be performed, the
value +0.E0dd is returned. If the correct value is outside the range of representable values, plus or
minus HUGE_VAL_D64, HUGE_VAL_D32, or HUGE_VAL_D128 is returned (according to the
return type and sign of the value), and the value of the macro ERANGE is stored in errno. If the
result underflows (7.12.1), the functions return a value whose magnitude is no greater than the
smallest normalized positive number in the return type; whether errno acquires the value
ERANGE is implementation-defined.

9.8 Type-generic macros <tgmath.h>

All new functions added to <math.h> are subjected to the same requirement as specified in C99
7.22 to provide support for type-generic macro expansion. When one of the type-generic
arguments has a decimal floating type, use of the type-generic macro invokes a function whose
parameters have the types determined as follows:

If there is more than one real floating type arguments, usual arithmetic conversions are applied to
the real floating type arguments so that they have compatible types. Then,

ISO/IEC DTR 24732 WG14 N1312

 36

• If any argument has type _Decimal128, the type determined is _Decimal128.
• Otherwise, if any argument has type _Decimal64, or if one argument has an integer type

and another argument has type _Decimal32, the type determined is _Decimal64.
• Otherwise, if any argument has type _Decimal32, the type determined is _Decimal32.
• Otherwise, the specification in C99 7.22 paragraph 3 applies.

EXAMPLE

 pow(2,3.0) // expands to the double version of pow:
 // pow((double)2, (double)3.0)
 pow(2,3.DD) // expands to the _Decimal64 version of pow:
 // powd64((_Decimal64)2, (_Decimal64)3.DD)

ISO/IEC DTR 24732 WG14 N1312

 37

Index

__STDC_DEC_FP__ macro, 5
__STDC_WANT_DEC_FP__ macro, 7, 16
_Decimal128 type specifier, 6
_Decimal32 type specifier, 6
_Decimal32_t type, 18
_Decimal64 type specifier, 6
_Decimal64_t type, 18
<fenv.h> header, 16
<float.h> header, 6
<math.h> header, 18
<tgmath.h> header, 35
arithmetic operations, 14
coefficient, 7
constants, 12

suffixed, 12
unsuffixed, 13

conversions, 9
decimal and generic floating, 10
decimal floating and integer, 9
usual arithmetic conversions, 11

DEC_EVAL_METHOD, 8
DEC_INFINITY macro, 19
DEC_NAN macro, 19
DEC128_EPSILON macro, 9
DEC128_MANT_DIG macro, 8
DEC128_MAX macro, 9
DEC128_MAX_EXP macro, 8
DEC128_MIN macro, 9
DEC128_MIN_EXP macro, 8
DEC128_SUBNORMAL_MIN macro, 9
DEC32_EPSILON macro, 9
DEC32_MANT_DIG macro, 8
DEC32_MAX macro, 9
DEC32_MAX_EXP macro, 8
DEC32_MIN macro, 9
DEC32_MIN_EXP macro, 8
DEC32_SUBNORMAL_MIN macro, 9
DEC62_SUBNORMAL_MIN macro, 9
DEC64_EPSILON macro, 9
DEC64_MANT_DIG macro, 8
DEC64_MAX macro, 9

DEC64_MAX_EXP macro, 8
DEC64_MIN macro, 9
DEC64_MIN_EXP macro, 8
default argument promotion, 11
error and gamma functions, 23
exponential and logarithmic functions, 21
FE_DEC_DOWNWARD macro, 17
fe_dec_getround function, 17
fe_dec_setround function, 17
FE_DEC_TONEAREST macro, 17
FE_DEC_TONEARESTFROMZERO macro, 17
FE_DEC_TOWARDZERO macro, 17
FE_DEC_UPWARD macro, 17
FLOAT_CONST_DECIMAL64, 13
floating multiply-add functions, 25
formatted I/O specifiers, 28
FP_FAST_FMAD128 macro, 20
FP_FAST_FMAD32 macro, 20
FP_FAST_FMAD64 macro, 20
HUGE_VAL_D128 macro, 19
HUGE_VAL_D32 macro, 19
HUGE_VAL_D64 macro, 19
hyperbolic functions, 20
manipulation functions, 24
maximum, minimum, and positive difference

functions, 25
nearest integer functions, 23
power and absolute-value functions, 22
preferred quantum exponent, 7
quantexp functions, 27
quantize functions, 26
quantum exponent, 7
remainder functions, 24
samequantum functions, 27
strto* functions, 30
translation time data type, 13
trigonometric functions, 20
type-generic macros, 35
wcsto* functions, 33

