
Possible Defects in TR 24731-1 Randy Meyers N1261

1. Possible Defects in TR 24731-1
Since the last meeting, I have received email pointing out possible defects in the Bounds-
checking TR. This paper summarizes those issues.

2. Typos

2.1 scanf family 6.5.3.*, 6.9.1.*
In the Runtime-constraints, “Any argument indirected though” should be “Any argument
indirected through” (the “r” in “through” is missing). Due to cut’n’paste, the problem
occurs with all scanf functions.

Recommendation: add to Technical Corrigendum.

2.2 6.9.3.1 para 1
“Unlike wcrtomb, wcrtoms_s” should be “Unlike wcrtomb, wcrtomb_s” (“wcrtomb_s” is
misspelled.

Recommendation: add to Technical Corrigendum.

3. rsize_t
A valued committee member pointed out two issues:

3.1 A careful reading of the TR is required…
It can be challenging for a reader to determine whether the bounds of some of the wide
character arrays is the number of wchar_t elements as opposed to number of bytes. This
is true: the Standard rarely tells you what the parameters are. Instead, the Standard
describes how the parameters are used in the function. The Bounds-checking TR follows
in that tradition. I believe the TR is correct, but does require the infamous “careful
reading.” For example, mbstowcs_s (N1225 Subclause 6.6.5.1), the dstmax
parameter is the number of wchar_t elements in the dst array.

Recommendation: Leave it alone, or explain the parameters in the Rationale.

3.2 rsize_t number of elements of a wchar_t array
The C Standard declares parameters in library functions to have type size_t when the
parameter is used to hold a size in bytes or the number of elements in an array. In some
cases, the arrays have char elements. In others, the arrays have wchar_t elements.

Likewise, the TR declares parameters in library functions to have type rsize_t.
Sometimes, the value in the rsize_t parameteris a number of bytes; sometimes is a
number of wchar_ts. What might be surprising is that the runtime-constraint on the TR
functions is that the parameter must have a value less than RSIZE_MAX.

Page 1 of 6

Possible Defects in TR 24731-1 Randy Meyers N1261

This was done intentionally, and was discussed in a previous committee meeting. The
idea is that RSIZE_MAX is an upper bound on the value in an rsize_t parameter. The
constraint is the same for all functions in the TR, and is easy to remember.

What might surprise some is that if sizeof (wchar_t) is 4, then you can potentially
copy four times as many bytes using wmemcpy_s than memcpy_s since the size for
wmemcpy_s is number of wchar_ts, not the number of bytes.

An implementation that sets RSIZE_MAX to the maximum number of bytes actually
allowed in an object under that implementation could (but is not required to) issue a
runtime-constraint if a wide character function had an array of over RSIZE_MAX
elements. This comes from the license to turn any undefined behavior into a runtime-
constraint.

Recommendation: Add this discussion to the Rationale.

4. May programmers lie about bounds?
Mark Terrel asked the question whether we really prohibit programmers from lying about
the size of their arrays when calling the bounds-checking functions. It is clear that the
functions prohibit accessing elements beyond the bounds that the programmer passes to
the functions, but what prohibits the programmer from claiming the bounds are bigger
than the destination array if the amount of data copied happens to fit within the true size
of the destination.

Mark’s message and my reply appear below. Note that the reflector was dropping
messages when these were first sent.

Note that the macro RSIZE_MAX is the largest number guaranteed to be not greater than
RSIZE_MAX. An evil programmer might think we gave him a convenient macro for the
bounds value that turns off bounds checking!

4.1 Mark Terrel’s message
Subject: TR24731: Should pointer overflow be a runtime constraint
Date: Tue, 3 Jul 2007 14:56:50 -0700
From: "Mark Terrel" <mterrel@cisco.com>
To: "WG14" <sc22wg14@open-std.org>, <rmeyers@ix.netcom.com>
[Resending due to delivery failure. Apologies if you get this twice.]

Randy and all-

My team came up with a question on strcpy_s() and friends while looking at our
implementation. Should we have required a runtime constraint violation when the
programmer passes in a buffer that, during the course of performing it's work, might
overflow a pointer? And if so, how strict should we be about it? Please consider the
following examples and, just for example purposes, assume a platform with 32-bit

Page 2 of 6

Possible Defects in TR 24731-1 Randy Meyers N1261

memory space and 32-bit pointers. In each case, should the library function be required
to detect a runtime constraint violation? Of course any given implemenation could
choose to do whatever additional checks they want, so I think the real question is whether
this should be a defect against the TR. Alternately, I suppose we could give a little
guidance in the rationale document. Also note that I've used strcpy_s here, but similar
issues apply to several other functions.

Example 1:
// In this example, dst+len wraps around the end of memory.
// But the actual copy does not.
#define RSIZE_MAX 0x80000000
char *dst = malloc(10); // assume allocated addr > 0x80000000
char *src = "abc";
strcpy_s(dst, RSIZE_MAX, src);

Example 2:
// In this example, the copy to dst does wrap around the end of memory.
#define RSIZE_MAX 0x80000000
char *dst = malloc(5); // assume allocated addr = 0xfffffff0
char *src = "abcdefghijklmnopqrst"; // more than 16 bytes
strcpy_s(dst, RSIZE_MAX, src);

We've pondered this for a bit and am interested in what others think. But here's our $.02:

Example 1: We think this is worth checking because clearly the input parameters are
incorrect if the operation dst+len causes overflow. This check is inexpensive and
automatically encompasses Example 2. The only counter argument that we've come up
with is that lazy programmers may wish to actually pass in RSIZE_MAX (or some other
arbitrarily large and obviously incorrect size) to purposely disable the buffer length
checking. Thus, in most cases, the null terminator would be encountered before causing
pointer overflow. While this is a terrible argument, and counter to the whole point of the
function, it may become more relevant as systems choose to completely remove the
older, unsafe strcpy and friends.

Example 2: This seems like a real corner case to me. Although some embedded 16-bit
platforms may often have memory all the way to 0xffff, it seems like there's not much
value in trying to catch this error while specifically not catching the error from example
1. If you try to catch the error in example 2 without catching example 1, then you must
know the actual length of src to check this. That makes this check much more expensive
and therefore, in our humble opinion, not worth doing independent of Example 1. Plus,
on most systems, I'm guessing you're more likely to hit the end of your memory space
(either virtual or physical) before hitting pointer overflow and I'm fairly certain there's no
portable way to check for end of memory.

So I'm interested in 1) whether you think checking for Example 1 is the right approach
and 2) whether you think the TR should change to require this.

Page 3 of 6

Possible Defects in TR 24731-1 Randy Meyers N1261

Thanks in advance for your thoughts.
Mark

4.2 My Reply
Date: Thu, 05 Jul 2007 22:43:45 -0400
From: Randy Meyers <rmeyers@ix.netcom.com>
To: "Mark Terrel (mterrel)" <mterrel@cisco.com>
CC: WG14 <sc22wg14@open-std.org>
Subject: Re: TR24731: Should pointer overflow be a runtime constraint

Our clear intent was that the functions in the Bounds-checking TR prevent buffer
overflows. Any attempted use of these functions that lies by exaggerating the number of
elements in the destination array completely subverts that goal. I don't think that the
committee can bless any such usage under any conditions.

You mention a "terrible argument" (your words) that some programmers might wish to
call the new bounds-checking functions with bad lengths because the old functions are
flagged or even inaccessible. I agree completely that this is terrible, and I'll observe that
such programmers have made their programs much worse than if they left them alone. At
least if they were calling the old functions, it would be easy to find all of the dangerous
calls. If they start using the new bounds-checking functions with exaggerated bounds,
they have all the old problems, but now have made those problems harder to find. That
type of usage cannot be tolerated.

As for the examples in your message, there is good justification for the runtime-
constraints you wish to add. TR Subclause 6.7.1.3 paragraph 5 says:

"All elements following the terminating null character (if any) written by strcpy_s in the
array of s1max characters pointed to by s1 take unspecified values when strcpy_s
returns.38"

Footnote 38 says:

"This allows an implementation to copy characters from s2 to s1 while simultaneously
checking if any of those characters are null. Such an approach might write a character to
every element of s1 before discovering that the first element should be set to the null
character."

While strcpy_s may stop storing elements of the destination array as soon as it sees a null
character, it need not do so. Paragraph 5 gives strcpy_s a license to alter every element
of s1 (the destination array) from s1[0] to s1[s1max-1]. Therefore, s1[s1max-1] must be
a legitimate element of the array pointed to by s1. If s1[s1max-1] is not a legitimate
element, there is undefined behavior.

Page 4 of 6

Possible Defects in TR 24731-1 Randy Meyers N1261

As you point out, both the TR and its Rationale encourage implementations to diagnose
additional cases of undefined behavior by making them runtime-constraints. If an
implementation can cheaply diagnose that s1[s1max-1] is not a legitimate element
(because the address has wrapped around or the address is too big for the data segment),
it is free to trigger a runtime-constraint.

The TR does not require this undefined behavior to be a runtime-constraint. I suspect
that the cases where is can be easily diagnosed are too machine specific (like the address
arithmetic wrapping) to be a requirement. But, it is a good idea.

Here's the list of functions that include some version of paragraph 5:
gets_s, mbstowcs_s, wcstombs_s, strcpy_s, strncpy_s, strcat_s, strncat_s, wcscpy_s,
wcsncpy_s, wcscat_s, wcsncat_s, mbsrtowcs_s, wcsrtombs_s

At one point I suggested to the committee that there be some sort of blanket statement
like paragraph 5 applying to all of the functions in the TR. That was rejected basically
because any blanket wording would be clumsy (functions don't use the same names for
the array and bounds parameters, for example), and the committee worried that a blanket
statement might apply in unexpected and undesired ways.

strcpy_s and a few other functions, like memcpy_s, have a runtime-constraint if the
objects being copied overlap. I believe that your examples have a 50% chance of
triggering the overlap runtime-constraint even without checking the reasonableness of the
address arithmetic. I believe that the overlap runtime-constraint is a further argument to
programmers that using any sort of exaggerated array bounds is likely trouble (you never
know if the source lies within the exaggerated bounds of the destination).

While my "Paragraph 5" and "overlap" arguments apply to the examples in your
message, they don't apply to other functions in the TR. For example, calling asctime_s
with a destination array of 26 characters but a claimed bounds of RSIZE_MAX
characters. The result will fit, but array size is wrong, and simple checks can determine
that. I believe the committee has to take the position that:
1. Such programming is bad, and programmers should not do it.
2. An implementation must be free to raise a runtime-constraint.

Perhaps we need to say more to make this clear. I'm not pushing for a DR against the
TR, but I don't oppose one either. I could imagine adding to the Description part of each
function a paragraph saying something like:

It undefined behavior if s1[s1max-1] is not an element of the array pointed to by s1.

for every array and bounds referenced by the function. That would make clear to
programmers that the implementation is free (but not required) to nail them if they
exaggerate the array bounds.

Page 5 of 6

Possible Defects in TR 24731-1 Randy Meyers N1261

Perhaps something could be added to the Rationale instead. I believe that this should be
brought up at the next committee meeting. Unless there is strong opposition, I'll submit
Mark's and my messages as a paper.

Page 6 of 6

	1. Possible Defects in TR 24731-1
	2. Typos
	2.1 scanf family 6.5.3.*, 6.9.1.*
	2.2 6.9.3.1 para 1

	3. rsize_t
	3.1 A careful reading of the TR is required…
	3.2 rsize_t number of elements of a wchar_t array

	4. May programmers lie about bounds?
	4.1 Mark Terrel’s message
	4.2 My Reply

