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1 Introduction 
1.1 Background 

The existing floating-point types in the C language are defined in terms of a model that describes a 
representation of floating-point numbers and values that provide information about an 
implementation’s floating-point arithmetic; the standard does not require the floating-point types to 
be a specific representation or radix. For this Technical Report, the committee considered both 
adding decimal floating-point support without introducing additional data types, as well as the 
current proposal of adding three new types (as per IEEE 754-2007) to the language. 
 
Most applications do not care how floating-point is done. Many applications would be better off 
using decimal floating-point. Very few applications need the better error bounds of binary floating-
point. There will be applications that will need both kinds of floating-point (many will be 
conversion programs used to convert existing data files from binary floating-point to decimal 
floating-point). There will be a few applications that will need to run a mixture of third party 
libraries that only know about binary floating-point, and other third party libraries that only know 
about decimal floating-point. 
 
Binary floating-point and decimal floating-point (as defined in IEEE 754-2007) occupy the same 
amount of storage, and they could be treated the same for all data movement and register usage.  
This means that a function call whose prototype is binary floating-point, but is called with decimal 
floating-point (and vice versa), can be made to work (as the same number of bytes are passed in 
the same manner).  Hence, adding several functions to the library to convert between binary 
floating-point and decimal floating-point (for the same sized data) would allow applications to mix 
both kinds of floating-point. Of course, this means that the application needs to add explicit 
function calls to do the conversions. 
 
The floating-point unit (FPU) does a binary float operation versus a decimal float operation either 
by a different opcode or by a switchable mode bit in some control word.  In either case, code 
generation must be controllable by the user. Switching the mode bit at runtime could be done by a 
function call. But, generating different opcodes require translation time control - a pragma seems 
like the logical choice; this also works for switching the mode bit. 
 
Based on the above, one might come to the conclusion that adding decimal floating-point support 
to the language can be done by reusing the existing floating-point types, with some combination of 
compiler switch, pragma, and conversion routines to enable a mixed binary/decimal floating-point 
operations. This approach, however, does present several problems. 
 
Variable argument functions do float to double promotion. This will be incorrect if the 
hardware promotes as if the data is binary, but the data is really decimal, and vice versa. Explicit 
calls to some conversion routines would make it work; however, it would be cumbersome to use. 
 
Debugging tools would have no clue if a floating-point object is decimal or binary. That is, a 
float, double, or long double declaration does not imply the base that will be used for that 
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object. In fact, the object could be binary floating-point some places in the program and decimal 
floating-point in others. 
 
Introducing three additional floating-point data types to the language resolves some of these issues. 
However, adding new data types can be seen as making the language, as well as their use alongside 
the existing floating-point data types, unnecessarily complex. Some arguments presented for 
having separate decimal floating-point types are: 
 

1. The fact that there are two sets of floating-point types in itself does not mean the language 
would become more complex. The complexity question should be answered from the 
perspective of the user's program; that is, do the new data types add complexity to the 
user's code? The answer is probably no except for the issues surrounding implicit 
conversions. For a program that uses only binary floating-point types, or uses only decimal 
floating-point types, the programmer is still working with three floating-point types. 
Having additional data types is not making the program more difficult to write, understand, 
or maintain. 

 
2. Implicit conversions, other than simple assignment, return statement, and function 

argument passing, can be handled by simply disallowing them (except maybe for cases that 
involve literals). If we do this, for programs that have both binary and decimal floating-
point types, the code is still clean and easy to understand. 

 
3. If we only have one set of data types, and if we provide STDC pragmas to allow programs 

to use both representations, in a large source file with STDC pragmas changing the meaning 
of the types back and forth, the code is actually a field of land mines for the maintenance 
programmer, who might not immediately be aware of the context of the piece of code. 
 
Since the effect of a pragma is a lexical region within the program, additional debugger 
information is needed to keep track of the changing meaning of data types. 
 

4. Giving two meanings to one data type hurts type safety. A program may bind by mistake to 
the wrong library, causing runtime errors that are difficult to trace. It is always preferable to 
detect errors during compile time. Overloading the meaning of a data type makes the 
language more complicated, not simpler. 

 
5. A related advantage of using separate types is that it facilitates the use of source 

checking/scanning utilities (or scripts). They can easily detect which floating-point types 
are used in a piece of code with just local processing. If a STDC pragma can change the 
representation of a type, the use of grep, for example, as an aid to understand and to search 
program text would become very difficult. 

 
6. Suppose the standard only defines a library for basic arithmetic operations. A C program 

would have to code an expression by breaking it down into individual function calls. This 
coding style is error prone, and the resulting code difficult to understand and maintain. A 
C++ programmer would almost definitely provide his/her own overloaded operators. 
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Rather than having everyone to come up their own, we should define it in the standard. If 
C++ defines these types as classes, C should provide a set of types matching the behavior. 

 
This is not a technical issue for an implementation, as it might seem on the surface initially - that 
is, it might seem easier to just provide new meaning to existing types using a compiler switch - but 
is an issue about usability for the programmer. The meaning of a piece of code can become 
obscure if we reuse the float, double, long double types. Also, we have a chance here to 
bind the C behavior directly with IEEE, reducing the number of variations among 
implementations. This would help programmer writing portable code, with one source tree 
building on multiple platforms. Using a new set of data types is the cleanest way to achieve this. 
 
Ultimately if the goal is to be able to bind to IEEE for floating-point arithmetic, C would have to 
support the data types and operations as specified in IEEE. Not only does IEEE 754-2007 include 
both binary format and decimal format, it also defines operations (e.g. conversion) between the 
two radices. Having three additional decimal data types allows such required mixed operations to 
happen more portably and intuitively within the same translation unit, as opposed to requiring 
mixing only across translation units. 
 

1.2 The Arithmetic Model 

Based on a model of decimal arithmetic1, which is a formalization of the decimal system of 
numeration (Algorism), as further defined and constrained by the relevant standards: IEEE 854, 
ANSI X3-274, and the proposed revision of IEEE 754. The latter is also known as IEEE 754-2007. 
 

1.3 The Formats 

Based on the current IEEE 754-2007 proposal. 
 
C99 specifies floating-point arithmetic using a two-layer organization. The first layer provides a 
specification using an abstract model. The representation of a floating-point number is specified in 
an abstract form where the constituent components of the representation are defined (sign, 
exponent, significand) but not the internals of these components. In particular, the exponent range, 
significand size, and the base (or radix) are implementation defined. This allows flexibility for an 
implementation to take advantage of its underlying hardware architecture. Furthermore, certain 
behaviors of operations are also implementation defined, for example in the area of handling of 
special numbers and in exceptions. 
 
The reason for this approach is historical. At the time when C was first standardized, there were 
already various hardware implementations of floating-point arithmetic in common use. Specifying 
the exact details of a representation would make most of the existing implementations at the time 
not conforming. 

                                                
1 A description of the arithmetic model can be found in http://www2.hursley.ibm.com/decimal/decarith.html. 
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C99 provides a binding to IEEE 754 by specifying an annex F and adopting that standard by 
reference. An implementation not conforming to IEEE 754 can choose to do so by not defining the 
macro __STDC_IEC_559__. This means not all implementations need to support IEEE 754, and 
the floating-point arithmetic need not be binary. 
 
The technical report specifies decimal floating-point arithmetic according to the IEEE 754-2007, 
with the constituent components of the representation defined. This is more stringent than the 
existing C99 approach for the floating types. Since it is expected that all decimal floating-point 
hardware implementations will conform to the revised IEEE 754, binding to this standard directly 
benefits both implementers and programmers. 
 

2 General 
2.1 Scope 

The technical report is intended to follow the IEEE 754-2007 specification; any conflict between 
the requirements described in the technical report and IEEE 754-2007 is unintentional. The 
technical report defers to IEEE 754-2007. 

2.2 References 

 

3 Predefined macro name 
 
A macro is provided to allow users to determine if the technical report is supported by the 
implementation. 
 

4 Decimal floating types 
 
The three new decimal floating-point data types introduced in the technical report have names 
similar to and characteristics matching those defined in IEEE 754-2007. An alternative naming 
convention that encapsulates the base (or radix) and precision in the name had also been suggested; 
for example: decfp7, decfp16, and decfp34, which indicate decimal representation (dec), floating 
point type (fp), with the specified number of coefficient digits (7, 16, or 34). However, it was felt 
that names similar to those used in IEEE 754-2007 may be more appropriate. 
 
Furthermore, a single token used as a type name would make it easier for C++ to implement any  
types as classes. A more generic single token naming convention, not unlike names like 
uint32_t, can be considered in the future; for example: _Flt_2_24, _Cmplx_10_7, Imag_16_6, 
etc. Such names can easily be introduced as typedefs to existing types. 
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Decimal floating types are distinct types from the real floating types float, double, and long 
double, even if an implementation chooses the same decimal representation for the real floating 
types. 
 
IEEE 754-2007 specifies its 32-bit decimal format as a storage format; i.e. it’s intended for 
efficient storage only and not for computation. The technical report, however, provides operations 
for the C _Decimal32 type, as it was felt that 32-bit operations are widely used in the embedded 
community, particularly for signal processing. There are many classes of applications that have 
very restricted range and precision requirements. 
 
The technical report does not specify decimal complex nor decimal imaginary types; however, this 
does not mean that they can not be added in the future. 
 

5 Characteristics of decimal floating types <float.h> 
 
The characteristics for the new decimal floating types are defined in <float.h> by a set of 
macros similar to the ones defined for real floating types. However, these macros have names that 
do not match reserved identifiers. To prevent this from making an implementation not conform to 
ISO/IEC 9899, the functions, type names, and macros added by the technical report are under the 
control of a macro named __STDC_WANT_DEC_FP__, whose name does match the pattern of 
reserved names in ISO/IEC 9899. 
 
The use of evaluation formats for the new decimal floating types is characterized by the 
implementation-defined value of DEC_EVAL_METHOD, similar to how the evaluation of generic 
floating types are indicated by the value of FLT_EVAL_METHOD. 
 
The xxx_MAXDIG10 macros originated from a WG14 paper N1151. Although not necessarily 
related to decimal floating types, it was nevertheless deemed useful by the committee, and 
therefore added to this technical report. 
 
IEEE 754-2007 uses a floating-point model where normal numbers have one significant digit to 
the left of the decimal point. This model is different from the model used in C99 for the generic 
floating-point types, where normal numbers have all significant digits to the right of the decimal 
point. To avoid possible confusion when dealing with the two floating-point types in C, the 
technical report adopts the C99 model for decimal floating-point types. Hence, the 
DECxx_MIN_EXP and DECxx_MAX_EXP macros are off by one from IEEE 754-2007. 
 
The technical report also introduces the concept of integer coefficient and quantum exponent of 
finite decimal numbers, which are essential to decimal semantics. Each decimal number can be 
represented by a triple of integers (s, c, q). 
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6 Conversions 
6.1 Conversions between decimal floating and integer 

When the new type is a decimal floating type, we have three choices: the most positive/negative 
number representable, positive/negative infinity, and quiet NaN. The first provides no indication to 
the program that something exceptional has happened. The second provides indication, and since 
other operations that produce infinity also raise exception, an exception would be raised here for 
consistency. The third allows the program to detect the condition and provides a way for the 
implementation to encode the condition (for example, where it occurs). 
 
When the new type is an unsigned integral type, the values that create problems are those less than 
0 and those greater than Utype_MAX. There is no overflow/under-flow processing for unsigned 
arithmetic. A possible choice for the result would be Utype_MAX if the original value is positive, 
or 0 if negative. Also, implementations are not required to raise signals for signed integer 
arithmetic. When the new type is a signed integral type, the values that create problems are those 
less than type_MIN and those greater than type_MAX. The result here should be type_MIN or 
type_MAX depending on whether the original value is negative or positive. 
 
Conversions between decimal floating and integer formats follow the operation rules as defined in 
IEEE 754-2007. 
 
In the case where the value being converted is outside the range of values that can be represented, 
the result is dependent on the rounding mode as specified in the technical report. Note that with 
decimal floating type, there are two flavors of round to nearest: FE_DEC_TONEAREST and 
FE_DEC_TONEARESTFROMZERO; the effect is the same for both modes. 
 

6.2 Conversions among decimal floating types, and between 
decimal floating types and generic floating types 

The specification is similar to the existing ones for float, double and long double, except 
that when the result cannot be represented exactly, the behavior is defined to become correctly 
rounded. 
  

6.3 Conversions between decimal floating and complex 

When a value of decimal floating type is converted to a complex type, the real part of the complex 
result value is determined by the rules of conversion in 6.2 and the imaginary part of the complex 
result value is a positive zero or an unsigned zero. 
 

6.4 Usual arithmetic conversions 



 WG14 N1242 
 

7 

In an application that is written using decimal arithmetic, mixed operations between decimal and 
other real types might not occur frequently. Situations where this might occur are when interfacing 
with other languages, calling an existing library written in binary floating-point arithmetic, or 
accessing existing data. The programmer will want to use an explicit cast to control the behavior in 
such cases to make the code maximally portable. One way to handle usual arithmetic conversion is 
therefore to disallow mixed operations. The disadvantage of this approach is usability - for 
example, it could be tedious to add explicit casts in assignments and in function calls when the 
compiler can correctly handle such situations. Allowing implicit conversions only in simple 
assignment, return statement, and in argument passing solves this issue. 
 
One major difficulty of allowing mixed operation is in the determination of the common type. C99 
does not specify exactly the range and precision of the generic real types. The pecking order 
between them and the decimal types is therefore unspecified. Given two (or more) mixed type 
operands, there is no simple rule to define a common type that would guarantee portability in 
general. 
 
For example, we can define the common type to be the one with greater range. But since a 
double type may have different range under different implementations, a program cannot assume 
the resulting type of an addition, say, involving both _Decimal64 and double. This imposes 
limitations on how to write portable programs. 
 
If the generic real type is a type defined in IEEE 754-2007, and if we use the greater-range rule, 
the common type is easily determined. When mixing decimal and binary types of the same type 
size, decimal type is the common type. When mixing types of different sizes, the common type is 
the one with larger size. The alternate suggested change in Annex A uses this approach but does 
not assume the generic real type to follow IEEE 754-2007. This guarantees consistent behaviors 
among implementation that uses IEEE 754 in their binary floating-point arithmetic, and at the 
same time provides reasonable behavior for those that don't. 
 
The committee felt that few programs will require mixed operations, and that requiring explicit 
cast may result in less error-prone programs. 
  

6.5 Default argument promotion 

There is no default argument promotion specified for the decimal floating types in the technical 
report. 
 

7 Constants 
 
New suffixes are introduced to denote decimal floating constants. Also, due to the introduction of 
translation-time data type described in 7.1, it is no longer possible to specify constants of type 
double; the d and D suffixes are added for this purpose. 
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Note that decimal floating-point constants that have the same numeric value may be represented 
differently; e.g. 1.23 (1, 123, -2) has a different representation than 1.230 (1, 1230, -3). In order to 
preserve the quantum exponent, which is essential to decimal semantics, translation time constant 
conversion must match runtime conversion. 

7.1 Unsuffixed decimal floating constant  

The proposal for a translation-time data type (TTDT) to allow for the use of unsuffixed floating-
point constants originated in WG14 paper N1108. At the Lillehammer meeting, the committee felt 
that the idea was too important to leave out, and as a minimum it should be a recommended 
practice in this technical report. There were extensive discussions on whether TTDT should be 
made part of the rules, i.e. 'required'. In the end the committee decided to make it a separate section 
in the TR. Note also TTDT could apply to TR 18037. 
 

7.1.1 Translation time data type 
 
Translation time data type (TTDT) is an abstract data type which the translator uses as the type for 
unsuffixed floating constants. A floating constant is kept in this type and representation until an 
operation requires it to be converted to an actual type. The value of the constant remains exact for 
as long as possible during the translation process. The concept can be summarized as follows: 
 
1. The implementation is allowed to use a type different from double and long double as 

the type of unsuffixed floating constant. This is an implementation defined type. The intention 
is that this type can represent the constant exactly if the number of decimal digits is within an 
implementation specified limit. For an implementation that supports decimal floating pointing, 
a possible choice is the widest decimal floating type. 

2. The range and precision of this type are implementation defined and are fixed throughout the 
program. 

3. TTDT is an arithmetic type. All arithmetic operations are defined for this type. 
4. Usual arithmetic conversion is extended to handle mixed operations between TTDT and other 

types. If an operation involves both TTDT and an actual type, the TTDT is converted to an 
actual type before the operation. There is no "top-down" parsing context information required 
to process unsuffixed floating constants. Technically speaking, there is no deferring in 
determining the type of the constant. 

 
Examples: 
 

double f; 
f = 0.1; 

 
Suppose the implementation uses _Decimal128 as the TTDT. 0.1 is represented exactly after 
the constant is scanned. It is then converted to double in the assignment operator. 
 

f = 0.1 * 0.3; 
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Here, both 0.1 and 0.3 are represented in TTDT. If the compiler evaluates the expression during 
translation time, it would be done using TTDT, and the result would be TTDT. This is then 
converted to double before the assignment. If the compiler generates code to evaluate the 
expression during execution time, both 0.1 and 0.3 would be converted to double before the 
multiply. The result of the former would be different but more precise than the latter. 
 

float g = 0.3f; 
f = 0.1 * g; 

 
When one operand is a TTDT and the other is one of float, double, long double, the 
TTDT is converted to double with an internal representation following the specification of 
FLT_EVAL_METHOD for constant of type double. Usual arithmetic conversion is then applied to 
the resulting operands. 
 

_Decimal32 h = 0.1; 
 
If one operand is a TTDT and the other a decimal floating type, the TTDT is converted to 
_Decimal64 with an internal representation specified by DEC_EVAL_METHOD. Usual 
arithmetic conversion is then applied. 
 
If one operand is a TTDT and the other a fixed point type, the TTDT is converted to the fixed point 
type. If the implementation supports fixed point type, it is a recommended practice that the 
implementation chooses a representation for TTDT that can represent floating and fixed point 
constants exactly, subjected to a predefined limit on the number of decimal digits. 
 

8 Arithmetic Operations 
8.1 Operators 

Since mixed operations between decimal and generic floating types are not allowed, any operation 
between a decimal float operand and a generic float operand will result in a constraint violation 
requiring a diagnostic. The only exceptions are simple assignment, return statement, and function 
argument passing. 
  

8.2 Functions 

 

8.3 Conversions 
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9 Library 
9.1 Standard headers 

C99 section 7.1.3 prohibits the addition of identifiers to the standard headers unless the names 
match certain patterns of reserved identifiers. This section of the technical report adds to existing 
headers many functions and macros that do not match reserved identifiers. To prevent this from 
making an implementation not conform to ISO/IEC 9899, the functions, type names, and macros 
added by the technical report are under the control of a user-defined macro named 
__STDC_WANT_DEC_FP__, whose name does match the pattern of reserved names in ISO/IEC 
9899. 
 

9.2 Floating-point environment <fenv.h> 

The new, unique rounding mode FE_DEC_TONEARESTFROMZERO for decimal floating-point 
operations corresponds to the IEEE 754-2007 rounding mode “Round to Nearest, Ties Away from 
Zero”. The other FE_DEC_xxx rounding modes are similar to the existing FE_xxx rounding 
modes. 
 
A set of get/set function is added for controlling the rounding direction of decimal floating 
operations, independent of the rounding direction of generic floating operations. 
 

9.3 Decimal mathematics <math.h> 

The list of elementary functions specified in the mathematics library is extended to handle decimal 
floating-point types. 
 
The frexp function breaks a floating-point number into a normalized fraction and an integer 
exponent. For decimal floating-point types, the exponent should be base-10. 
 
The ldexp function multiples a floating-point number by an integer exponent. For decimal 
floating-point types, the exponent should be base-10. 
 
The remquo function is not being extended to handle decimal floating-point types, since it is 
unclear whether a base-10 version is useful or required. 
 
C99 suggests coding the classification macros (example in 7.12.3.1) using the sizeof operator to 
distinguish float from double from long double. However, this is no longer a sufficient 
solution with the introduction of decimal data types. There appears to be no C99 conforming 
solution for a library provider to code these macros. It has been suggested that we add a language 
operator like typeof of radixof to help determine if a value is decimal or binary. However, it was 
felt that an implementation is already given enough latitude, and the issue can be resolved by 
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‘compiler magic’. The committee agreed that the operator can be reconsidered in a future revision 
of the standard. 
  

9.4 New <math.h> functions 

IEEE 754-2007 specifies two additional decimal floating-point operations: samequantum and 
quantize. These are implemented as new library functions in C99. The library functions have the 
same semantics as the IEEE operations. 
 
The quantexp function returns the quantum exponent of a decimal floating-point value. It can be 
used with scalbn to compute the signed coefficient in decimal floating format. For example, for 
finite _Decimal64 x, the signed coefficient is equal to scalbnd64(x, -quantexpd64(x)), 
which printf with %.0DF renders as an integer decimal character sequence. Note that integer 
types might not have enough precision to represent coefficients. 
 
Note that a set of encode/decode functions to manage alternate encodings (as required by IEEE 
754-2007) was considered for the technical report. However, it was felt that these functions were 
too esoteric and incomplete, and that serialization (using printf/scanf) is the only portable 
way to stream data in and out of storage. 
 

9.5 Formatted input/output specifiers 

New length modifiers are introduced for decimal floating types. 
 
One suggestion was to simply add D to existing conversion specifiers to indicate decimal floating 
types; e.g. Df for _Decimal64 and DLf for _Decimal128. However, there's no existing 
length specifier for float, as floats are default promoted to doubles. Therefore a specifier for 
_Decimal32 does not exist with this scheme. 
 
The precision of the length modifiers is defaulted to 6, similar to the current specification for 
generic floating type. Since the precision of the decimal floating type is encoded in the 
representation, it has been suggested that we use the encoded precision as the default instead. The 
committee felt that having a default precision that’s predictable and consistent with the generic 
floating type is important, so the quantum has no effect on e/E/f/F/g/G output conversions. The 
committee chose instead to define a/A conversions for decimal floating-point to reflect the 
quantum in a reasonably intuitive way. 
 

9.6 strtod32, strtod64, and strtod128 functions <stdlib.h> 

The latest IEEE 754-2007 draft requires that floating-point overflow be raised for values that are 
too large or too small.  As such, setting errno to ERANGE as currently proposed does not meet 
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those requirements (but does match the strtod family).  Perhaps the requirements of 7.12.1#4 of 
math_errhandling should be applied to the strto* functions. 
 
Note that IEEE 754-2007 requires conversions from internal decimal formats to external decimal 
character sequences and back that preserve the representation in the internal format. The technical 
report supports this requirement. 
 

9.7 wcstod32, wcstod64, and wcstod128 functions <wchar.h> 

 

9.8 Type-generic macros <tgmath.h> 

According to C99 7.22p3, “if any argument for generic parameters has type double or is of 
integer type, the type determined is double.” That is, 
 

sqrt(9);  // expands to the double version of sqrt 
 

Therefore the new rules for type-generic macro handling for decimal floating types can not change 
this behavior. 
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Annex A 
 
The following is an alternate suggestion to usual arithmetic conversions using the greater-range 
rule. 
 
Insert the following to 6.3.1.8#1, after "This pattern is called the usual arithmetic conversions:" 
 
6.3.1.8[1] 
 
... This pattern is called the usual arithmetic conversions: 
 
If one operand is a decimal floating type and there are no complex types in the operands: 
 

If either operand is _Decimal128 or long double, the other operand is converted to 
_Decimal128. 
 
Otherwise, if either operand is _Decimal64 or double, the other operand is converted 
to _Decimal64. 
 
Otherwise, if either operand is _Decimal32, the other operand is converted to 
_Decimal32. 

 
If one operand is a decimal floating type and the other is a complex type, the decimal floating type 
is converted to the first type in the following list that can represent the value range: float, 
double, long double. It is converted to long double if no type in the list can represent its 
value range. In either case, the complex type is converted to a type whose corresponding real type 
is this converted type. Usual arithmetic conversions is then applied to the converted operands. 
 
During any of the above conversions, if the value being converted can be represented exactly in the 
new type, it is unchanged. If the value being converted is in the range of values that can be 
represented but cannot be represented exactly, the result is correctly rounded. If the value being 
converted is outside the range of values that can be represented, the result is dependent on the 
rounding mode. If the rounding mode is: 
 

near, if the value being converted is less than the maximum representable value of the 
target type plus 0.5 ulp, there is no overflow and the result is the maximum value of the 
target type2; otherwise the absolute value of the result is one of HUGE_VAL, HUGE_VALF, 
HUGE_VALL, HUGE_VAL_D64, HUGE_VAL_D32 or HUGE_VAL_D128 depending on 
the result type and the sign is the same as the value being converted. 
 
zero, the value is the most positive finite number representable if the value being converted 
is positive, and the most negative finite number representable otherwise. 

                                                
2 That is, the values that are between MAX and MAX+10Emax*ulp/2 
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positive infinity, the value is same as for rounding mode zero if the value being converted is 
negative; otherwise the result is one of positive HUGE_VAL, HUGE_VALF, HUGE_VALL, 
HUGE_VAL_D64, HUGE_VAL_D32 or HUGE_VAL_D128 depending on the result type. 
 
negative infinity, the value is same as for rounding mode zero if the value being converted 
is postive; otherwise the result is one of negative HUGE_VAL, HUGE_VALF, HUGE_VALL, 
HUGE_VAL_D64, HUGE_VAL_D32 or HUGE_VAL_D128 depending on the result type. 

 
If there are no decimal floating type in the operands: 
 

First, if the corresponding real type of either operand is long double, the other operand 
is converted, without ... <the rest of 6.3.1.8#1 remains the same> 


