
-1-

MINUTES FOR OCTOBER 2007 (DRAFT)
MEETING OF ISO/JTC1/SC22/WG14 AND INCITS J11

WG14/N1231

Meeting Location:

Monday, Wednesday, Thursday April 23, 25, & 26:

The Window Venue Hire
13 Windsor Street
Islington
London N1 8QG
UK
+44 (0)20 7288 7008
+44 (0)7977 049094

Tuesday 24th
London Art House
2-18 Britannia Row
Islington
London N1 8PA
UK
+44 (0)207 359 5195

Host:

 Neil Martin (personal host, not BSI)

Host Contact information:
Neil B. Martin
TFJ Ltd
P. O. Box 506
Milton Keynes
MK7 8JD, United Kingdom
+44 (0)1908 645 717
+44 (0)8701 602 754 (Fax)

-2-

1. Opening activities

1.1 Opening Comments (Martin, Benito)
Neil Martin, TFJ Ltd, welcomed us to the Window Venue Hire. He apologized for
the last minute change of venue, and for the fact that we are in a different venue
for Tuesday. The Institute of Chartered Accounts is helping paying for this, since
they bounced our original booking. Snacks and beverages will be available
throughout the meeting, so breaks can be taken at any time. Rooms will be
locked as required. Lunch is not provided.

NB, this meeting is hosted by TFJ Ltd, and not BSI.

1.2 Introduction of Participants/Roll Call
John Benito Blue Pilot USA WG14 Convener
Randy Meyers Silverhill Systems USA J11 Chair
Douglas Walls Sun Microsystems USA HOD
Fred Tydeman Tydeman Consulting USA
Arjun Bijanki Microsoft USA
David Schwab Oracle USA
P. J. Plauger Dinkumware, Ltd USA
Tana L. Plauger Dinkumware, Ltd USA
Nick Stoughton Usenix USA
John Parks Intel USA
Clark Nelson Intel USA
Bill Seymour self USA
Robert Seacord CERT-CC USA
Tom Plum Plum Hall USA
Christopher Walker Dinkumware, Ltd USA
David Keaton Self USA
Mark Terrel Cisco USA
Rich Peterson Hewlett Packard USA
Keith Derrick Plantronics USA
Derek Jones Knowledge Software UK HOD
Neil Martin TFJ Ltd UK
Joseph Myers Code Sourcery UK
Lois Goldthwaite Self UK (Thursday only)

-3-

Willem Wakker ACE Netherlands HOD
Randy Marques ATOS Origin Netherlands
Edison Kwok IBM CANADA HOD

1.3 Procedures for this Meeting (Benito)
The Chair, Benito, announced the procedures are as per normal. Everyone is
encouraged to participate in straw polls. INCITS J11 members are reminded of
the requirement to follow the INCITS Anti-Trust Guidelines which can be viewed
at http://www.incits.org/inatrust.htm.

All 'N' document numbers in these minutes refer to JTC1 SC22/WG14
documents unless otherwise noted.

1.4 Approval of Previous Minutes (N1198) (Hedquist)
Comments from Fred Tydeman:

1.2: Column alignment could be improved. Already done ... see update on
Wiki.

Minutes approved as modified.

1.5 Review of Action Items and Resolutions (Stoughton)
ACTION: Ulrich Drepper and a small team to write a liaison report on threads to
WG21, in response to Lawrence Crowl's presentation, N1196. JB, Nick, Tom
Plum, and Bill Seymour to work on this with Ulrich.
OPEN

ACTION: Stoughton Editorial Group (Stoughton, Benito, PJ Plauger, Randy
Meyers, Martyn Lovell, Ulrich Drepper) to edit N1193, TR 24731-2, as needed,
and forward the revised document to the Convenor.
DONE

ACTION: Convenor to forward TR24731-2, as revised by the Stoughton Editorial
Group, to SC22 for CD Registration.
DONE

ACTION: Convenor to change the C99 Rationale as proposed in N1189.
OPEN

ACTION: Tom Plum to notify WG21 as a liaison of a new macro,
__STDC_MB_MIGHT_NEQ_WC_ , being added to C99: 6.10.8;p2.
DONE

-4-

ACTION: Edison Kwok and Editorial Group (PJ, Fred, Jim Thomas, Janis
Johnson) to revise DTR 24732, and forward to Convenor.
DONE

ACTION: Convenor to forward DTR 24732, as revised by the Edison Kwok
editorial group, to SC22 for DTR ballot.
OPEN

ACTION: Rich Peterson to submit paper for additional comments on TR 24732.
DONE

ACTION: Convenor to forward TR 18037, Support for Embedded Systems, to
SC22 for publication, again.
DONE

1.6 Approval of Agenda (N1211)
Revised agenda approved.

1.7 Information on Next Meeting. (Plum)
Kona in October, following the C++ meeting. Should reserve quickly if not done
yet. October 8-11 (Monday-Thursday).

1.8 Identification of National Bodies (Benito)
US, UK, Canada, Netherlands.

1.9 Identification of J11 voting members (Tydeman)
15 voting members present. Plantronics is a new member (non voting).

2. Liaison Activities

2.1 J11 (Walls, Meyers)

2.2 WG11 (Wakker)
Not much to report. LIA will be revised. LID is ready for publication. Document is being
converted to MS Word, and this is causing substantial delay.

2.3 WG14 (Note: Cover current status of TR 18037 and TR
24731-1.) (Benito)
TR24731-1 (bounds checking) is in publication. TR 18037 (embedded) has had
all defects addressed. SC 22 secretariat is requiring a NWI ballot for revising this,
which is against the JTC 1 procedures.

-5-

2.4 J16/WG21 (Note: C++ consider TC I, TC II and TC III - all
defects that are closed.)
WG21 met last week in Oxford. Very overloaded. Adding extra meetings to meet
the goal of publishing a revision of the standard in 2009. Threading support (i.e.
memory model) looks like it will be palatable to C. Actual threads will be library
level, and modeled closely on POSIX pthreads (though Windows threads could
also be used for implementing). Still issues around thread cancellation.
Special Math (in C++ this is in TR1, in C it is a separate TR) is going to move to
its own IS. We should take appropriate action to move our TR to be a part of this
IS.
Clark Nelson proposed new text for Sequence Points, and if we revise our
standard, we should align with this new wording.

2.5 FSG (Free Standards Group) (Stoughton)
Nick posted document to wiki (now N1230). FSG has merged with OSDL to become the
Linux Foundation. LSB TC1 is in preparation.

2.6 OWG:Vunerability (Plum)
Motivation from two sources: safety critical community (Ada leads the way), and
software security community (e.g. Homeland Security, NSA, CERT-CC)

Safety is well understood, special tools exist. Spark-Ada.

Security has different perspective.

Overall direction is still uncertain.

2.7 Other Liaisons
None

3. Defect report status
(Note: Cover what should be in TC III. Also cover the N1124 change to fwprintf
that was not included in TC II) (Benito)

10:30 - 10:45 - Morning break -
4. Potential defect reports

N1203, Fred Tydeman (USA); Missing semantics of comparision
macros. This is a defect. Becomes DR334.

N1204, Fred Tydeman (USA); _Bool bit-fields. This is a defect.
Becomes DR335.

-6-

N1206, Nick Stoughton (USA); TMP_MAX. This is a defect. Becomes
DR336.

N1207, Nick Stoughton (USA); stdio.h macro definition problems. This
is a defect. Becomes DR337.

N1208, Rich Peterson (USA); C99 seems to exclude indeterminate
value from being an uninitialized register. This is a defect. Becomes
DR338.

N1220, Joseph Myers (UK); Variably modified compound literals. This
is a defect. Becomes DR339.

N1221, Joseph Myers (UK); Composite types for variable-length
arrays. This is a defect. Becomes DR340.

N1222, Joseph Myers (UK); [*] in abstract declarators. This is a defect.
Becomes DR341.

N1223, Joseph Myers (UK); VLAs and conditional expressions. This is
a defect. Becomes DR342.

N1224, Joseph Myers (UK); Initializing qualified wchar_t arrays. This
is a defect. Becomes DR343.

(SC22WG14.11300) Preprocessor DR from WG21: this is a defect.
ACTION Clark Nelson to write up preprocessor issue with casts from WG21
in DR format. Will become DR344.

Derek Jones introduced a potential defect from Rob Arthan (UK) on
parameter scopes (see
http://wiki.dinkumware.com/twiki/pub/Wg14london/Documents/arthandr.htm
). This is a defect. Becomes DR345.

5. Decimal Floating-point
(N1212, N1213, N1214, N1215, N1216, N1217, N1218, N1219, N1227,
N1228) (Kwok, Peterson)

N1212:
A set of minor edits from HP.

1. Point 1: non-controversial.

2. Point 2 will move to rationale.

-7-

3. Point 3: will use a consistent name throughout.

4. Point 4: will use 200704L for next edit.

5. Point 5. Should use “*SUBNORMAL_MIN” to match C++ usage.

6. Point 6 is being withdrawn by submitter.

7. Point 7: Agreed we should defer to 754R here.

8. Point 8: Agreed there is a deficiency here.

9. Point 9: Remove the troublesome sentence? NOT AGREED ... leave
this open for now and revisit. DR318 is relevant to this discussion.

10. Point 10: Agreed.

11. Point 11: Editorial, OK.

12. Point 12: Agreed.

13. Point 13: Agreed.

14. Point 14: Agreed.

15. Point 15: Agreed.

N1213.
Two problems from HP.
PJ objects to removal of _Decimal32. It is widely used in the embedded
community, particularly for signal processing (Problem 1). Derek Jones
agrees that there are many classes of applications that have very restricted
range or precision requirements. Rich Peterson requests that at least there
is a rationale expressing that IEEE recommend the 32 bit format only for
storage, not computation. Would prefer words in the main TR itself
somewhere. A non-normative note. Second para of problem 1 still has one
thing that should be done: remove "; and for other
values of DEC_EVAL_METHOD, they are otherwise implementation-defined".
Problem 2. Not a problem, no changes required.

N1214
HP problem with floating-point model for decimal
Problem 1: Agreed ... we should stick to our model.
Problem 2: Agreed.

-8-

Implement the changes described in N1214. One typo: where s, b, e, p,
and fk are as in 5.2.4.2.2. Should be where s, b, e, p, and f[k] are as in
5.2.4.2.2.

N1215
printf problems from HP.
Paper proposes changing the handling of %g. However, discussions leading up
to this meeting has modified this proposal to use %z. This format should not have
leading zeroes for the exponent. PJ argued for using (re-using?) %a (%Da) for
this (“actual”). TR already prohibits hexadecimal output of decimal floating
numbers. Use the term “subnormal” not “denormal” as appropriate (page 2, first
para, change “c is adjusted through the subnormal range accordingly,...”).
Agreed. ACTION Fred to provide additional (potentially troublesome) examples
for the Decimal FP input functions.

N1216
HP problems with TTDT
The proposal in N1216 removes the concept of TTDT. Edison believes that this is
not necessary. Lot of discussion; does not look like consensus to remove TTDT.
Soften the language to not require breakage (as it does now) when mixing
unsuffixed floating point constants. Using a #pragma will lead to issues with C++.
ACTION Bill Plauger and Rich Peterson to propose new words for N1216,
unsuffixed floating point numbers and TTDT.

N1217
Terminology inconsistencies.
Agreed. Willem: we need to check the existing standard to ensure we don't use
the terms “format” and “encoding”. Rich: C standard uses the term “value
representation”, not “encoding”. ACTION: Derek Jones to make a pass through
the C standard itself to ensure that the terms “format” and “encoding” are not
used in any inconsistent manner. This is not tied to this paper.

N1218
Obtaining the quantum is important; previous meeting asserted that it was
possible to get, but we now believe this assertion to be wrong. Agreed to add
these functions.

N1219
Encode/decode. PJ suggests that these are esoteric and incomplete; are they
worthwhile? Serialization (e.g. using printf/scanf) is the only portable way to get
floating point numbers in and out. Rich pointed out that these functions are
described in 754R. But we don't have every single function from 754R anyway.
No consensus for this paper.

-9-

6. Decimal Floating-point continued.

N1227
Miscellaneous edits 1-4 are all accepted. Edits 5 and 6 are subsumed by the
changes in N1215, ensuring that that document uses the term “subnormal”.
Comments requiring further discussion:

1. Discussed in Portland and agreed there, but missed the minutes. ldexp()
will be given the same treatment that frexp() gets for base 10.

2. General feeling is that the given expression should be a constraint
violation. The TR does not currently say this. Fix.the TR

3. The current words match the binary description, and most people feel it is
right. However, the proposed words are not wrong either. No change.

4. This is correct. Words about overflow should be removed.
5. See N1214. (answer to question is yes, these are all different cohorts of

the same value). Also add recommended practice along the lines of that in
the main standard (6.4.4.2).

6. See N1228 for further details.

N1228
This paper introduces the gcc extension typeof to help determine if a value is
decimal or binary. Alternative is radix operator from 754R. A TR is probably not
the right place to sneak in typeof as a fix for one small issue! It will likely be
discussed under the revision discussion later this week.
Shouldn't do anything half-baked. This issue may need compiler or library magic
for fpclassify() to return the right answer. “Do it right or don't do it at all.”
This paper could be reconsidered if (and only if) both typeof and Decimal FP are
added to a revision of the standard.

7. Special Math
(N1182, N1185) (Plauger)

N1182 has passed CD registration ballot. Some comments received. N1185 lists
these comments.

1. Missing a rationale. Yes, true. There should be a brief rationale. TR is
based on ISO 31. Should include things like why we removed the hyper-
geometric functions. Rationale would be a separate document. There are
also a couple of functions that don't exactly follow ISO 31; this deviation
should be explained. ACTION PJ to produce a rationale for N1182 before
the FDPTR ballot.

-10-

2. Should the m argument on the Associated Laguerre, Associated
Legendre, and Spherical Legendre be implementation-defined for values
>= 128? ACTION Chris Walker to investigate if the m argument should be
implementation defined in the functions mentioned in item 2 of N1185.
Add if required. --- Yes, it should be implementation defined for m>128.

3. Specify a macro that would hide the new functions — something along the
lines of __STDC_WANT_MATH_SPEC_FUNCS__. Yes, we should follow
this practice.

4. Should there be a reference to J in 2.1.10 and 2.1.19? Add a reference.
5. Should there be a reference to N in 2.1.21? Same as above.
6. Should Jerome Spanier and Keith B. Oldham: An Atlas of Functions,

Hemispere Publishing Corp, 1987 be added to the Bibliography? Not
normative. Might add confusion if formulas are different in some way.
Useful reference book. Lots of discussion. Straw poll – 2-8. Should not
add this. Perhaps add extra bibliography to rationale. Split bibliography
into normative references and bibliography. Bibliography will be in the
rationale.

7. 2.1.2 associated Legendre functions, should (-1)**M be added to
definition? PJ believes not. Sentence or two in rationale explaining why
not.

8. 2.1.2 associated Legendre functions, should for odd M then |x|<=1 be
added? Yes. The constraint on the range of x is wrong for associate
Legendre. Should be |x| <=1.

9. 2.1.3 beta function, what happens when X and/or Y is a zero or negative
integer? The value is currently not constrained. Would make sense to add
some implementation-defined constraints. ACTION Chris Walker to
investigate sensible constraints for the beta function, and make
recommendation for disposal of comment 9 in N1185.

10. 2.1.3 beta function, should the following text be added? [text in N1185].
No.

11. 2.1.4 (complete) elliptic integral of the first kind, should 0<=k<=1 be
added? Yes, this range constraint should be added.

12. 2.1.4 (complete) elliptic integral of the first kind, should K(1.) is +INF be
added? This follows clearly from the formula.

13. 2.1.5 (complete) elliptic integral of the second kind, in Atlas of Functions
has E(k) not E(k,pi/2). Document is based on ISO 31, not on the Atlas of
Functions. There is variation in the literature on this definition.

14. 2.1.5 (complete) elliptic integral of the second kind, should 0<=k<=1 be
added? Yes, this is an omission.

15. 2.1.5 (complete) elliptic integral of the second kind, should E(1.) is +1. Not
pointing out special cases.

-11-

16. 2.1.6 (complete) elliptic integral of the third kind, should effects use k and
nu? Yes ... typo here. There is probably a global sweep required to ensure
such the relationship between arguments and greek letters is correct.

17. 2.1.6 (complete) elliptic integral of the third kind, Atlas of Functions has
(1+nu*sin(theta)**2) in denominator; not (1-nu*sin(theta)**2). Same as 13.

18. 2.1.6 (complete) elliptic integral of the third kind, should it be PI(nu,k)
instead of PI(nu,k,pi/2)? Add a cross reference to 2.1.13 and eliminate the
repeated definition.

19. 2.1.6 (complete) elliptic integral of the third kind, should |k| <= 1 be
added? Yes.

20. 2.1.6 (complete) elliptic integral of the third kind, should PI(nu,1.) is
sign(nu)*INF; PI(-1,k) is INF not sure of its sign be added? No ... we
picked one of a variety of definitions.

21. 2.1.6 (complete) elliptic integral of the third kind, Why is C function f(k,nu),
while math function is f(nu,k)? Seems like the C function argument order
should be swapped. This follows a stylistic decision made early on in the
process. No change required.

22. 2.1.7 regular modified cylindrical Bessel functions, should the note ... be
added? Add to the rationale, not to the TR.

23. 2.1.7 regular modified cylindrical Bessel functions, should the text ... be
added? No. This is not a text book. Uniformity of style.

24. 2.1.8 cylindrical Bessel functions (of the first kind), should the text ... be
added? Uniformity of style. A simple knowledge of advanced math and 20
years of experience is all that is needed.

25. 2.1.8 cylindrical Bessel functions (of the first kind), should ... be replaced
by ...? No, this follows a direct request from Fermi Lab to restrict the
range. Rationale required.

26. 2.1.8 cylindrical Bessel functions (of the first kind), should (x/2)**nu before
the summation sign in the math formula be removed? We could, but it is
there for uniformity of style. Style is generally not to remove the common
factors.

27. 2.1.9 irregular modified cylindrical Bessel functions, should the note ... be
added? Maybe to the rationale.

28. 2.1.9 irregular modified cylindrical Bessel functions, should K(0.) is +INF
be added? No.

29. 2.1.13 (incomplete) elliptic integral of the third kind, should the formula in
the denomerator be changed to (1 + nu*sin(phi)**2)? No.

30. 2.1.13 (incomplete) elliptic integral of the third kind, should the arguments
be reorder to nu, k, phi to match the math function? No.

-12-

31. 2.1.14 exponential integral, should the formula be changed from Ei(-INF) =
integral from -INF to x of exp(t)dt/t? Stylistic. No.

32. 2.1.14 exponential integral, should the following be added Ei(-INF) is 0,
Ei(0) is -INF, Ei(+INF) is +INF? No.

33. 2.1.15 Hermite polynomials, should following be added ...? No. Style.
34. 2.1.17 Legendre polynomials, why |x| <= 1? Functions are defined for all x.

This is an intentional restriction.
35. 2.1.18 Riemann zeta function, zeta(0.5) does not match the Handbook of

Mathematical Function. This definition clearly needs fixing. There is a hole
here.

36. 2.1.18 Riemann zeta function, should zeta(1.) is +INF be added? No.
Additional points: John noted that he left the C++ clause names in there because
he didn't have time to alter the LaTex macros that add them and believes they
are useful. Everyone believes these are good and useful, and we should
consider doing them elsewhere.
ACTION: Bill, Fred, & JB to review changes made to N1182 and the rationale
when the updated document is available.
ACTION: Convener to forward the updated document for PDTR ballot when
ready.
NB The next ballot will not be the last ... there will be another ballot after that.
Bill also wants to add an implementation-defined range to the beta() function. No
objection.
On the IS/TR question. Most people agree that this is a useful approach. It is not
Language Independent.

8. Possible defects in ISO/IEC TR 24731-1
 (N1210) (Seacord)
Some file I/O issues from CERT-CC.
Issue 1. Exclusive open access through fopen_s(). Add a new mode character
'x'. Some people suggest adding this to part 2. We haven't succeeded in our goal
for the fopen_s function. Is it a defect? Does not fit the part 2 scope. Do a DR for
this and immediately publish rationale.
Issue 2. There is a problem relating to the fact that C does not define directories.
The POSIX mkstemp() function is the closest to what is being requested (but
returns an fd, not a FILE *). Cover this with text in the rationale.
Issue 3. There is no requirement for non-predictability of filenames. Could be
recommended practice, not normative. Even non-predictability is not perfect. A
recommended practice could easily be added to the rationale right now without
any problems. General consensus is that this is the best approach for this issue.

-13-

ACTION Randy Meyers, Robert Seacord and Nick Stoughton to write additional
rationale for the issues raised in N1210.

9. CERT C Programming Language Secure Coding
Standard (DRAFT)

 (N1209) (Seacord)

Arising from discussions following the managed string library proposal, Robert
has prepared this document describing “good programming practices”. Idea is to
provide both rules and recommendations. Could comply to rules.
Recommendations are generally more useful, but not enforceable.
Document is currently being built on a wiki (http://www.securecoding.cert.org),
and there is a wg14 username that can edit.
Three criteria: severity of vulnerability, likelihood of attack, and remediation cost.
Goals are to:

 establish secure coding practices within an organization

 may be extended with organization-specific rules

 cannot replace or remove existing rules

 Train software professionals

 Certify programmers in secure coding

 Establish base-line requirements for software analysis tools

 Certify software systems

Nick encouraged Robert to continue to develop this, with the possible future goal
of a type 3 TR in the future.
There is a level of concern ... Robert would prefer to get us to rip his document
apart rather than just say “good work, keep going!” Possibly need smaller review
groups to go through specific parts in detail. Especially looking to mine this
document for future revision features. ACTION Tom, Nick, Mark, David to review
N1209.
In particular, the INT, ARR, STR, MEM, FIO sections are well baked and worthy
of mining for future revisions. Other sections need review for completeness.
There are several sources for the base material, and the idea is not to provide a
subset of the language.
Joseph had a specific comment:

1. Compliant solution (signed) on page 110 has an overflow possibility.
Updates to the document should be made directly through the wiki, rather than
by submitting written requests.

-14-

10. Defect Reports
TC3 is being prepared. Goal is to have all of the defects known about at this
meeting should have been at least reviewed. What is to be included in TC3 is to
be decided here. What does not get into TC3 will be targeted at a future revision.
We will not run the defect report mechanism as such during a revision.
If any National Body is considering submitting a DR while a revision is under way
should consider submitting a paper for the revision instead.
Clark Nelson was volunteered to run the DR review.
First look at the “review” status DRs.

DR 298
Validity of constant in unsigned long long range
This change clarifies the wording. The UINT64_C() macro is a macro, and its
argument is a pre-processing token, and not an integer constant at this point.
Perhaps we should use “a pp-number in the form of an unsuffixed integer
constant” for the UINT64_C macro text (7.18.4 para 2). Derek believes this is
wrong, since we only care about things is phase 5 or later at this point. Can we
use other macros as arguments to this macro? Original words seem good
enough. Agreed. Move to CLOSED.

DR 311
Definition of variably modified types
Submitter agrees current proposed words solve the problem adequately. Agreed.
Move to CLOSED.

DR 325
Is an implementation permitted to return an empty string for strerror()?
No action required. Move to CLOSED.

DR 326
asctime() tm_year gt 9999
Note there is an editorial issue with “If any of the fields ... contain” (American v
British English usage). The editor can handle this as he sees fit when applying
this change. Move to CLOSED.

DR 327
Italicize definition of variable length array type, add forward references.
Almost entirely editorial. A revision project might want to consider rewriting the
definition if VLA in more positive terms. Move to CLOSED.

-15-

DR 332
gets is generally unsafe.
Agreed. Move to CLOSED.

DR 333
Missing Predefined Macro Name
There is an error on the DR index page that has the wrong title for this defect.
Move to CLOSED.

Open Defects

DR 314
There is a paper from Randy Meyers on this, N1226. The defect deals with
structure tag compatibility across translation units. 6.2.7 para 1 deals with this
issue.
Randy believes the current proposed answer to question 3 (Is an implementation
required to accept compiling the three translation units above together into a
program?) is wrong. The answer to Q2 is “Yes, undefined behavior”, and our
previous reasoning was correct.
There is no requirement that struct tags themselves are some sort of global
entity; it is quite possible to have two incompatible structures with the same
name in two translation units that refer to different objects (see example 5 and 6).
The thing that is surprising in Q3 is, looking at TU2 ,g1 is dealing with a different
set of types than g2. There appears to be nothing in the rules that should prevent
this program from compiling and linking. However, it is unlikely that such a
program should have defined behavior, and we need language to permit a
compiler/linker to fail it.
It is important to allow example 7 from N1226, which deals with permitting
overlapping namespaces between different modules.
It does seem to be late in the life of the standard to break things rather than go
for fixing this in a revision. Joseph suggested the following words:
6.2.7 after paragraph 2 insert:
There shall exist a partition of all the structure and union types in the program
into disjoint classes such that (a) if two types are in the same class, then they are
compatible and (b) whenever two structure or union types are required to be
compatible, including by (a), they are in the same class. If there does not exist
such a partition, the behavior is undefined.

Nick suggested that the Committee response to Q3 should be: “The committee
believes there should be no such requirement in the Standard, and are
considering this issue for the next revision.”

-16-

Fred Tydeman reminded us that N522 (1996) spoke to this issue.
This DR will never affect TC3 anyway. Leave OPEN. Do not change proposed
response. ACTION Joseph Myers to submit his words for DR314 as a proposal
for C1x in the post-London mailing.

DR 315
Implementation-defined bit-field types
The “Fall 2007” discussion should be “Fall 2006”. The proposed TC effectively
allows an implementation to choose to follow either the C90 defect reports or the
C++ behavior.
This should be discussed in more detail for the potential revision.
Agreed that the current words are a masterful way of hiding the problem, and
should move this to REVIEW.

DR 328
String literals in compound literal initialization
In Portland we appear to have decided to leave 6.5.2.5 para 1 alone, but cannot
currently understand why we did this. Rich thinks it can't just be deleted, since
this is a constraint on the list, while the 6.7.8 constraint is on the type of the entity
to be initialized. This is an argument for leaving the proposed TC as it is.
Agreed that this is good enough. Move to REVIEW.

DR 329
Math functions and directed rounding
Note that the line is in the wrong place ... should be above “Committee
Discussion”. Also the <\p> should become </p>.
On F.9.8.3 The nextafter functions should be updated along the lines of:

Even though underflow or overflow may happen, the returned value is
independent of the current rounding direction mode.

Note that the use of “may” is problematic with the ISO style rules. Use “can
occur” instead of “may happen” here. Better is to remove the “Even though
underflow or overflow may happen,”. Same for nexttoward.
Committee Discussion says “They might break an existing implementation
(possible). Therefore, only add these to annex F.” These changes only apply to
annex F in the first place.
There are still a lot of actual edit changes to make the words something that can
be voted on. Globally change “Should be updated along the lines of” or “Could be
updated along the lines of” to “Add the following sentence”.

-17-

DR 330
Externally visible exceptional conditions.
In the proposed TC, 7.21.1 should be 7.12.1, and “exceptions” should be
“exceptional”. It is sometimes extremely difficult to catch intermediate inexact
exceptional conditions, and we shouldn't try too hard to force this behavior. Even
underflow is difficult to avoid. Should exclude inexact and underflow.
Footnote “spurious”, or move existing footnote closer.
State the requirements positively: “Each function shall execute as if it were a
single operation without generating any of the exceptions invalid, divide-by-zero,
or overflow except to reflect the result of the function.”
Fred sent email to the reflector reminding us about discussion in Portland:

In the Rationale, please add to section 6.5 Expressions, as a new
paragraph, words along the lines of:
The "inexact" floating-point exception is NOT an exceptional condition
because "inexact" arises from computing a mathematically defined value
in the range of representable values, therefore, from the definition,
"inexact" is not exceptional. This matters for spurious exceptional
conditions in the math library (7.12.1).

These words should be in the committee discussion, and added to the rationale.
Move to REVIEW, with proposed TC:
Each function shall execute as if it were a single operation without generating
any of the exceptions invalid, divide-by-zero, or overflow except to reflect the
result of the function.

DR 331
permit FE_DIVBYZERO when errno says EDOM
Some belief that previous consensus was “no change required”.
Source of this DR was actually PJ, though it is noted as Plum/Plm.
Consensus at this meeting is no change required, move to REVIEW.

DR 334
This is a new defect from this meeting. See N1203.
Missing semantics of comparison macros.
The paper suggests adding a constraint violation. General feeling is that this is
inappropriate. Current compilers (using extensions) accept this, and a constraint
violation would render their extensions illegal.
Some people believe that there is no question that these comparison functions
are underspecified.

-18-

Current wording says “In the synopses in this subclause, real-floating indicates
that the argument shall be an expression of real floating type.” This is well
defined. (see 6.2.5 para 10). However, several people believe there should be
explicit language explaining whether or not the two arguments to a comparison
macro must be the same real-floating type or allowed to be different real-floating
type.
There are no suggested words for a proposed TC at this time.
Fred asked for the following to be added to the Committee Discussion: IEEE-754
(and IEEE-754R) require that comparison operations work in all supported
formats, even if the operands' format differ.C99+TC1+TC2, Annex F.3, printed
page 445, first bullet says that the comparison macros (along with the relational
and equality operators) are the IEC 60559 comparisons.
Leave OPEN.

DR 335
This is a new defect from this meeting. See N1204.
_Bool bit-fields.
Also related to DR315 (leave things implementation defined).
To be consistent with DR315, it should be implementation defined how a _Bool
bit-field is represented.
Looking at the first question: What is the maximum width of a _Bool bit-field
allowed that does not cause a constraint violation? The standard does not
specify the size of a _Bool. _Bool has a lower rank than char. However rank is
not used in the sizing of an unsigned integer type. DR 262 (published in TC2)
says “The expression that specifies the width of a bit-field shall be an integer
constant expression that has nonnegative value that shall not exceed the width of
an object of the type that is specified if the colon and expression are omitted.”
It used to say “number of bits”, the intent of the change was to exclude using the
padding bits, but only the value bits. 6.2.6.1 para 4 talks about the values stored
in bit-field objects.
A _Bool can really only hold the values 0 and 1 (see 6.2.5 para 2 and 6.3.1.2
para 1). Other bits are padding. Perhaps implementation defined if bigger widths
could be supported. Certainly no-one could portably rely on anything bigger than
width 1.
Things like memcpy could end up putting other non-zero but bigger than width 1
values into an object of type _Bool (or an object containing a _Bool bit-field).
Question is simply how wide can you make a Bool before you get a diagnostic.
You can take sizeof(_Bool), and address of, etc. So it is reasonable to expect
that it is at least CHAR_BITS wide in reality.
Anything wider than 1 should be implementation defined.

-19-

6.7.2.1 para 9 also seems to support the idea that a _Bool bitfield is really just a
_Bool.
A _Bool bit-field should have the semantics of a _Bool (and not an unsigned int).
It is unclear what conformance category any _Bool bitfield width > 1 falls into.
The width of a _Bool bit-field is at most the implementation defined width of the
type _Bool.
Should also consider repudiating DR262. However, see http://open-
std.org/jtc1/sc22/wg14/10778.
Proposed TC: None.
Committee Discussion:
The width of a _Bool bit-field is at most the implementation defined width of the
type _Bool. A _Bool bit-field has the semantics of a _Bool (and not an unsigned
int).
Leave OPEN.

DR 336
This is a new defect from N1206, arising from the Austin Group. TMP_MAX.
Is this an invalidating change? Does it break any existing systems? This is not
intended to be so. There is a suggested TC. This also affects TR24731-1. Copy
the suggested TC to Proposed TC and move to REVIEW.

DR 337
This is a new defect from N1207, arising from the Austin Group. Macro definition
problem in stdio.h.
FOPEN_MAX is required to be at least 8 (7.19.3 para 13). So FOPEN_MAX
does not require any additional words.
BUFSIZ likewise must be at least 256 (7.19.2 para 7).
FILENAME_MAX 7.19.1 para 3 requires that FILENAME_MAX must be at least
1.
Proposed Committee Response: All of these constants already have required
minimum values that are positive, non-zero. No changes are required.
Move to REVIEW.

DR 338
This is a new defect from N1208. C99 seems to exclude indeterminate value
from being an uninitialized register.
On some hardware (e.g. Itanium), an 8-bit value may have as many as 257
different values (0-255 and a “Not a Thing” value). However, c99 explicitly forbids
such a value for an unsigned char.

-20-

Fred believes 5.1.2.3 para 12 shows our intent.
Values are independent of whether they are represented in a register
or in memory.

Add to committee discussion:
Page 6, 3.17.2, change the definition of "indeterminate value" to:
either an unspecified value or a trap representation; or in the case of an object of
automatic storage duration whose address is never taken, a value that behaves
as if it were a trap representation.
5.1.2.3 para 5 second bullet speaks to this also.
Leave OPEN.

DR 339
This is a new defect from N1220. Variably modified compound literals.
NB the paragraph in question (6.5.2.5 para 3) is deleted by DR 328.
Everyone agrees that such code should violate some constraint.
6.7.2.1 para 8 (and footnote 103) says that identify-ability matters.
Expressions with variably modified types do exist, and you can cast to a variably
modified type, so a variably modified type is an ordinary identifier.
Committee Discussion should say:
The suggested TC looks appropriate. However, this may be redundant.
Leave OPEN.

DR 340
This is a new defect from N1221. Composite types for variable-length arrays.
Implementations differ in the way they interpret the current words.
See reflector messages 11145-11147 for discussion.
VLA should not be treated differently than one of a known constant size.
Suggested TC will make this clearer. The change will make the following code
unambiguously invalid:

typedef void (*T1)(int);
typedef void (*T2)();

int x, y;
void *p, *q;

void

-21-

f (void)
{
 T1 (*a)[] = p;
 T2 (*b)[x] = q;
 (y ? a : b)[0][0]();
}

Suggested TC affects the first element of the dash list in 6.7.2 para 3:
— If one type is an array of known constant size, the composite type is an array
of that size; otherwise, if one type is a variable length array, the composite type is
.is an array of that size; in either case, the element type of the composite type is
the composite type of the two element types
Douglas feels more word-smithing is needed.
Committee Discussion.
The element types are composed. Suggested TC is close, but not quite right. The
example from 11145 should be included here.
Leave OPEN.
ACTION Joseph Myers to provide updated TC for DR 340.

DR 341
This is a new defect from N1222. [*] in abstract declarators.
Parameter declarations are such even without an identifier. This answers the first
question affirmatively.
All agreed that first example is/should be valid. Second is/should be invalid.
“Attractive” wording still needed.
ACTION: Randy Meyers and Joseph Myers to propose new words for a TC for
DR 341.
Leave OPEN.

DR 342
This is a new defect from N1223. VLAs and conditional expressions.
NB DR#XXX-2 refers to DR340.
There are no rules for specifying a composite type when it depends on an
expression and the expression is not evaluated. The proposal makes an implicitly
undefined behavior explicitly undefined.
General consensus is that implicitly undefined is satisfactory, and we should
issue an RR stating this (therefore making it explicit but only in an external
document).

Deleted: that type

-22-

Proposed Committee Response: The standard does not speak to this issue, and
as such the behavior is undefined.
Leave OPEN.

DR 343
This is a new defect from N1224. Initializing qualified wchar_t arrays.
General agreement that this is non-controversial. Copy Suggested TC to
Proposed TC and move to REVIEW.

DR344
On the wiki as dr_344.htm, coming from WG21. Casts in preprocessor
conditional expressions.
General agreement that this is non-controversial. Copy Suggested TC to
Proposed TC. Late arrival so leave OPEN.

DR 345
This is the new defect submitted during the meeting from Rob Arthan. See
arthandr.htm on the wiki.
Q1: The committee believes that 6.9.1p9 is a comment on the storage duration
and does not override the lexical scope described 6.2.1p7.
Proposed Committee Response:
As above.
Q2 needs Proposed TC: not ready yet.
Leave OPEN.

Defect Summary
N1191 shows TC/RR status of all closed defects before this meeting. Create TC3
based on these PLUS DRs 298, 311, 322, 323, 324, 332, 333. Some of these
were closed at this meeting (298, 332 and 333). Blue lines are recent closes.
Yellow lines are TC type reports that have been closed for a long time. Two
documents will result: RR1 and TC3. N1124 + TC3 will be used as the base
document for C1x. ACTION Convenor to add change to fwprintf to match the
change for fprintf %g made in TC2 to TC3.
ACTION Fred, Derek, David to review TC3 draft when available.

11. Separate WG14 administration (Benito) and J11/U.S.
TAG meetings (Meyers, Walls)
The registration ballot for TR 24731-2 closed, with 9 approve votes, and 0 no
votes. ACTION Nick to prepare draft words for an additional “asprintf” function for
this document.

-23-

For J11 minutes, see end of document.

12. Defect Reports, continued.
(Note: Should close with a summary of decisions.)

13. Potential Extensions For Inclusion In a Revision of
ISO/IEC 9899

 (N1229)

JB introduced the topic and asked if anyone was prepared to speak against
revising. Willem asked for justification for a revision, particularly with respect to
backward compatibility. The current language needs cleaning up, not just
extending. Embedded systems need less, not more. Should remove floating point
and complex arithmetic.
Clark's biggest concern about opening up the standard for revision is the
shortage of progress that Microsoft has made toward C99 compatibility. What's
the point in extending the language if existing vendors haven't caught up with ten
year old stuff? PJ spoke in Microsoft's defense; there is no customer demand for
some features. We should consider removing some poorly adopted features.
There are three classes of things in C: things that have been there forever, work,
well, and fully understand. There are some portions that have been added that
tidy up loose ends (e.g. _Bool and VLAs). There are other things that just aren't
worth it. There is a burning need for a revision based on concurrency
requirements from multi-core processors, to fix up some known weaknesses, and
to adopt common existing practice.
Joseph talked about subsetting, and noted that there is already language to
permit certain subsetting particularly with regard to complex and certain floating
point support.
Customer demand should be the driving factor.
Bill said options can end up with hundreds or thousands of different “conforming”
systems that are all different.
There are several DRs that effectively ask for new features.
Randy asked for vendor feedback.
Douglas responded with “No invention”. Don't change existing practice to bring in
some feature. Must be a widely implemented, widely understood feature.
Threading support, dynamic libraries, security features.
JP motivation is to find cross platform portability. C has lost relevance, too many
important extensions needed to write sensible, large programs. Wants at least 2
implementations of a feature before it is adopted.
Tom spoke about C++ experience, including being experimental, breaking new
ground and inventing features out of whole-cloth. Responsibility of this group is to

-24-

be more restrictive. C is the more reliable language. The language with less room
for argument (!!) - focus on the practical, useful features for most users. Our
language is more reliable. If we adopt any inventions, they should have been
implemented. Don't want users to have to jump to C++ to get some small feature
of that language we don't support. C99 probably went too far. We probably have
enough mathematical support. POSIX was the driver for C99 adoption ... when
POSIX mandated it, a lot of vendors felt compelled to get their compilers up to
scratch.
Rich: One of the things that help people to write good code is good diagnostics.
We have some good constraint conditions. But we also have a lot of undefined
behavior. Some of these could move toward diagnostic requirements.
It was suggested that better portability warnings from compilers should be
addressed.
C++ often regards the “must be implemented” as a joke.
Need to be careful about use in user namespace ... should we use _ or not?
We also need to ensure that we clean up the corner cases of new features
coming in, however well defined they may be.
Another big area where we should be looking to cover is to harmonize MSVC
and gcc.
We need to create a process, not everything will be accepted. Mistakes were
made last time, learn from them. Last time one mistake was thinking our
competitor was Fortran. Security, parallelism, dynamic libraries, vendor specific
additions. Also extended characters and embedded systems. Our charter for the
C9x revision was basically good, and we should re-adopt it, at least in spirit. See
http://www.open-std.org/jtc1/sc22/wg14/www/charter.
The process is extremely important. We are a JTC 1 working group, and we
should be careful to follow their rules.
We do need better Unicode support, and should include the extended character
TR.
Arjun asked what users expected from the new revision. Would they convert old
code to new?
Thread-local storage and statement expressions are two big user pushes.
Must have a large value gain to make changing worthwhile. New code might do
things the new way, but little code will be retrofitted.
“Strict” mode is generally used to improve portability. Get better diagnostics. But
loses lots of valuable extensions. Controls for data-layout, alignment, packing etc
are critical missing features.
There is a lot of legacy code. Must not break this, or at least too badly. There is a
huge base of 8-bit systems that use C; embedded community is really there,
really big. Very short production cycles.

-25-

Is IEEE 754 binary floating point used by Cisco or Oracle? Essentially no. And
decimal probably won't help.
Many embedded programmers do not want C99 features, they reduce portability.
POSIX has some subsetting/sub-profiling rules that have worked for them. They
might be worth consideration.
Tom brought up declspec v attribute (MSVC v GCC); lots of useful attributes.
C++ has gone with declspec, though it is a late inclusion, and might drop out.
How do we deal with implementations that have done similar things but used a
different syntax? C++ are using [[attribute]] – i.e. neither of the existing practice
names. Allows for vendor extensions to the set of attributes. We should co-
ordinate closely with C++ here.
On this topic, is it the job of the standards group to pick a winner? Why did they
end up with different syntaxes? Is it our job to harmonize. Some say yes.
_Pragmas could have some overlap with attributes, but are not popular. But
pragmas don't integrate well with the language. Pragmas are regarded as vendor
extension space. Attributes are not perfectly designed/documented at this point
either.
Should bounds checking functions be included?
Adoption rate of C99; POSIX has been the biggest single driver. Most customers
haven't really moved. GCC compatibility is probably biggest driver for most
compiler vendors.
Migration is a big issue. Must be able to mix and match C89, C99 and C1x based
code easily. It has been easy to creep into C99 from a user perspective. Inline
declarations, in-loop declarations, // comments were easy early wins. VLAs
popular.
Namespaces (as in C++) are pretty attractive. We rejected these in C99. Looks
like they might be low-hanging fruit, but C++ have many issues. Are they
implemented in C? No, just C++.
JB notes that nobody is speaking against the idea of a revision. First pass should
be a cleanup one, deprecating or removing unwanted features. Produce a
document with the plan ... what should go, what should be added. Existing
practice should be in a shipping compiler ... a commercial implementation, not an
experimental one.
Each new feature should be covered by a single document, sort of like a TR.
Covering all cases, using standardeze. Folding them in is the final step.
Proposals could be built on a wiki. Most important is that proposals are complete.
David Keaton said don't gate the revision by the pruning of the previous version.
Some removal things may take a long time to agree on. Implicit int removal in
C99 was a good example. Also separate proposals can lead to problems with the
interaction of two; Compound literals and VLAs were two separate proposals.
Both well specified independently. Missed a lot of cases in the overlap of the two.

-26-

JB says when we open the door to the revision; we know exactly what the base
document is. In particular, TC3 is a big gate.
JP asked when cleaning up the document are we talking about improving the
language, or removal/deprecation? Both.
Undefined v unspecified v imp def. Tom believes we should improve on this. For
example some implementations all do the same definition of “undefined” for
some feature. Other undefined's are really portability issues. Static analysis tools
have a hard job with weakly defined things. These (undefined behaviors) end up
being the real expense of most static analysis tools.
Should also consider the real hardware profile we are targetting. Should we
support one's complement, 9-bit systems?
Most of our “mistakes” weren't really mistakes. C is supposed to be efficient.
Must give implementers wiggle-room to do things efficiently. Undefined is used
for this a lot. Use undefined, unspecified, and imp def. We need to use undefined
more judiciously.
POSIX defines a byte as 8 bits. It also defines a void * as being able to hold a
pointer to a function.
There is a small list of “critical undefined” behaviors ... buffer overflow, bad
pointers etc. Should work on defining this list as small as possible, and use
appropriate language for these. Tom has a draft paper on this. ACTION Tom to
submit a paper on critical undefined behavior.
David Keaton said people look to us for guidance. E.g. Looking for guidance from
the language in designing new hardware. Hardware vendors want to be compiler
friendly. Compatibility with legacy hardware will continue to be an issue, but we
should certainly consider dropping support for platform types that simply don't
exist any more.
LUNCH
Looking at the charter, Point 1 is about supporting existing code. New keywords
should be permissible (e.g. typeof). The idea is that the burden of migration
should be very small.
Point 6 is the most intriguing to JB: Keep the spirit of C.
Some of the facets of the spirit of C can be summarized in phrases like

(a) Trust the programmer.
(b) Don't prevent the programmer from doing what needs to be done.
(c) Keep the language small and simple.
(d) Provide only one way to do an operation.
(e) Make it fast, even if it is not guaranteed to be portable.

Points a and b are directly at odds with the security and safety aspects. Perhaps
something along the lines of “I don't trust myself, please check me!”.
Point b is felt critical.

-27-

Tom suggests the language should be capable of being verified. There are some
specific proposals being discussed that may deal with limit enforcement ...
saturated integer arithmetic for example. We don't want overflow exceptions in
the language, but saturation can help.
Joseph suggests adding an item to the list to support safety and security rather
than remove the existing points. The language should not be accident prone.
Derek argues that C is the way it is, and saturated integers don't really solve the
problems. Add an additional point to the “Additional Principles” list. Lois asked
are we more concerned with Murphy or Machiavelli? Both.
ACTION John Benito to rewrite the C9x charter as the C1x charter for the post
London mailing. All to review.
Who are we writing the standard for? Compiler writers or programmers? When
we came to revise C in the 90's it was the dominant language, but is it still? Who
are the competition, and what should we learn from them?
A lot of C++ is C with classes. Same with C#.
Should a standards committee care about competition at all? In some senses we
should be thinking in marketing terms: who are our constituents? How can we
win back those who went away because of the overreaches in C99? We do have
a responsibility to lead the way as the basic, fundamental programming
language.
Where did the original success or C come from? Being close to the hardware
while embodying some higher level techniques.
We should avoid adding features most of our community doesn't need. The
embedded community is a major customer. They need better static analysis
tools. The market is too fragmented for tools vendors to support. How many have
implemented the embedded TR as it stands? GCC. EDG. ACE. DinkumWare.
Implementing the Embedded TR as part of the revision is possibly too much
detail for this meeting today. Might be a profile. Should consider some sort of
sub-setting for the embedded community.
We are run by the people who show up and champion proposals. If you care
about a feature that you think should be in the revision, you will need to drive it
through.
Walk through N1229 looking for anything we don't want. ACTION Arjun and JB to
prepare a similar paper based on MSVC extensions that might be appropriate for
standardizing.
ACTION PJ to produce a paper on EDG extensions that might be appropriate for
standardizing.

 Statements and Declarations in Expressions. MSVC doesn't have this.
Has been discussed in C++. Important for function-like macros. Inline
functions have many shortfalls. This fills a need.

-28-

 Locally Declared Labels. Needed.
 Labels as Values. Some opposition. At one point in the distant past they

were in some other implementations, but not generally thought useful.
There are code examples that use these. REMOVE!

 Referring to a Type with typeof. Important.
 Conditionals with Omitted Operands. REMOVE.
 Case Ranges. Has its uses. Not critical. REMOVE.
 Inquiring on Alignment of Types or Variables. Critical.
 Thread Local Storage. Critical.
 Attribute Syntax. Critical.

 Declaring Attributes of Functions
 Specifying Attributes of Variables
 Specifying Attributes of Types

 The try-except Statement. Don't want exception handling in C. Different
from C++. Don't throw it out yet. Don has pre-processor support for
something like this. Use (or not) of volatile introduces subtle errors; this
would help remove some of this. Clark has misgivings; UNIX / Linux users
don't seem to need it. No clean migration path. Bad interaction with
setjmp/longjmp. How common is usage of this? Too many semantics to
nail down to feel comfortable about it. Should have a very high hurdle.
Arjun addressed the usage question: in some classes of code, it is very
frequently used. What is an exception?If it is done well, it could be very
powerful. Interaction with multi-threading also has issues. Can be done
without this machinery, but this machinery makes it look better. Lots of
reservations.

 The try-finally Statement. Solves the same problem as attribute(cleanup).
This and try-except deserve more work, but have potential merit.

 Branch prediction. Useful? There may be utility, but many users may get it
wrong. Not intended for novice users, this is a kernel/library/embedded
system support. This is like “register”. No. Derek argues that branch
prediction is a solved problem, and we don't need support for it. Like
restrict – programmers may get it wrong. No general support.

14. Open for any unfinished business.

15. Administration

15.1 Future Meetings

15.1.1 Future Meeting Schedule
October 8-11, 2007, Kona, Hawaii
April 14-18, 2008 Delft, Netherlands. NEN as host.
October 2008, Boulder Colorado. Cisco as host.

-29-

The April meeting will not be synchronized or co-located with the C++ committee
(nor is it likely that later meetings will be for some time). NB C++ are planning to
meet in Nov 2008 in Silicon Valley. We might reconsider and move to Silicon
Valley to co-locate when the C++ dates are known. During a revision of both C
and C++, it is particularly important to keep the two groups closely aligned.
Should we move to a three times a year schedule for the revision?
Teleconferences have proved very effective for the Austin Group. We can spend
several hours discussing the width of a single bit ... will one hour teleconferences
work? Use a single wiki rather than one per meeting.

15.1.2 Future Agenda Items

15.1.3 Future Mailings
Post London- May 28.
Pre Kona – September 10

15.2 Resolutions

15.2.1 Review of Decisions Reached

15.2.2 Review of Action Items
ACTION: Ulrich Drepper and a small team to write a liaison report on threads to
WG21, in response to Lawrence Crowl's presentation, N1196. JB, Nick, Tom
Plum, and Bill Seymour to work on this with Ulrich.
OPEN

ACTION: Convenor to change the C99 Rationale as proposed in N1189.
OPEN

ACTION: Convenor to forward DTR 24732, as revised by the Edison Kwok
editorial group, to SC22 for DTR ballot.
OPEN

ACTION Clark Nelson to write up preprocessor issue with casts from WG21
in DR format. This will become DR344.

DONE

ACTION Fred to provide additional (potentially troublesome) examples for
the Decimal FP input functions.
DONE
ACTION Bill Plauger and Rich Peterson to propose new words for N1216,
unsuffixed floating point numbers and TTDT. Editorial Group is PJ, Fred,
Jim Thomas, Janis Johnson, and Rich Peterson.

-30-

OPEN
ACTION: Derek Jones to make a pass through the C standard itself to
ensure that the terms “format” and “encoding” are not used in any
inconsistent manner, especially with respect to IEEE 754r.
OPEN
ACTION PJ to produce a rationale for N1182 before the FPDTR ballot.
ACTION Chris Walker to investigate sensible constraints for the beta
function, and make recommendation for disposal of comment 9 in N1185.
OPEN
ACTION: Bill, Fred, & JB to review changes made to N1182 and the rationale
when the updated document is available.
OPEN
ACTION: Convener to forward the updated Special Math TR for FPDTR
ballot when ready.
OPEN
ACTION Randy Meyers, Robert Seacord and Nick Stoughton to write
additional rationale for the issues raised in N1210.
OPEN
ACTION Tom, Nick, Mark, David to review N1209 (CERT Secure
Programming Guidelines).
OPEN
ACTION Joseph Myers to submit his words for DR314 as a proposal for
C1x in the post-London mailing.
OPEN.
ACTION Joseph Myers to provide updated TC for DR 340.
OPEN
ACTION: Randy Meyers and Joseph Myers to propose new words for a TC
for DR 341.
OPEN
ACTION Convenor to add change to fwprintf to match the change for fprintf
%g made in TC2 to TC3.
OPEN
ACTION Fred, Derek, David to review TC3 draft when available.
ACTION Convenor to forward TC3 to SC22 secretariat for ballot when
ready.

-31-

ACTION Convenor to write rationale for changing the SC 22 programme of
work to make TR 24747 special math to IS. Bill to review.
ACTION Barry Hedquist to take the minutes at the next meeting.
ACTION Nick to prepare draft words for an additional “asprintf” function for
TR24731-2.
ACTION Tom to submit a paper on critical undefined behavior.
DONE
ACTION John Benito to rewrite the C9x charter as the C1x charter for the post
London mailing. All to review.
ACTION Arjun and JB to prepare a paper based on MSVC extensions that
might be appropriate for standardizing.
ACTION PJ to produce a paper on EDG extensions that might be
appropriate for standardizing.

15.2.3 Thanks to Host
Acclamation for Neil Martin. Another successful meeting!

15.3 Other Business

6. Adjournment
Adjourned at 15.40.

Agenda for the J11/U.S. TAG Meeting, Tuesday April 24th 4:53pm

Attendees

John Benito Blue Pilot
Randy Meyers Silverhill Systems J11 Chair
Douglas Walls Sun Microsystems J11 IR
Fred Tydeman Tydeman Consulting J11 Vice Chair
David Schwab Oracle
P. J. Plauger Dinkumware, Ltd
Tana L. Plauger Dinkumware, Ltd

-32-

Nick Stoughton Usenix Secretary
John Parks Intel
Clark Nelson Intel
Bill Seymour self
Arjun Bijanki Microsoft
Tom Plum Plum Hall
Christopher Walker Dinkumware, Ltd
Keith Derrick Plantronics
Rich Peterson Hewlett Packard
David Keaton self
Edison Kwok IBM
Robert Seacord CERT
Mark Terrel Cisco

1. 15 voting members present, the total voting members are 18.

2. Select US delegation for the next two meetings.
Not required at this meeting.

3. INCITS official designated member/alternate information.

Be sure to let INCITS know if your designated member or alternate changes, or if
their email address changes. Send contact info to Lynn Barra at ITI,
lbarra@itic.org.

4. Anti Trust

INCITS J11 members are reminded of the requirement to follow the INCITS Anti-
Trust Guidelines which can be viewed at http://www.incits.org/inatrust.htm.

5. Five year maintenance of the Numerical C Extensions document.

Time to renew/revise/withdraw this document. Deborah Spittle said it didn't
matter to INCITS if we keep it or kill it. This is INCITS TR17. Originally published
in 1997, and hasn't changed since then.

Motion to recommend that INCITS/TR-17 “Numerical C Extension” be reaffirmed
for another 5 years (Keaton). Second (Peterson). Motion requires 2/3rds vote.
Vote is 15-0-0-3-18.

6. Adjourn at 17:03.

-33-

