
Doc. No.: WG14/N1227
Date: 2007-03-20
Project: Programming Language C (TR 24732)
Subject: Comments on N1201

The following is a collection of comments on the Decimal TR document N1201.

Misc. edits:

1. 8.1 (pg 16 & 17): Perhaps "or imaginary" should be "nor imaginary"
in five places.

2. 8.1 (pg 16 & 17): The constraint for C99 6.5.8p2 can be
simplified. Remove ", complex type, or imaginary type". It is
already covered by the 1st existing C99 constraint: -- both
operands have real type;

3. 9.3 (pg 25) Should there be a footnote attached to 7.12.10
Remainder functions that remquo is missing and why?

4. 9.3 (pg 26) The description is wrong. The interval is [1/10,1) for
DFP, and is [1/2,1) for generic FP types.

5. 9.6 (pg 30) strtod*, [#5] "denormalized" seems wrong. Perhaps
"subnormal" or "subnormalized" is meant.

6. 9.7 (pg 32) wcstod*, [#5] "denormalized" seems wrong. Perhaps
"subnormal" or "subnormalized" is meant.

Comments requiring further committee discussions:

1. I believe, that at the Portland meeting, we agreed that if frexp
will be base-10 for DFP arguments, then ldexp should also be base-
10 for DFP arguments. I do not see that in the paper.

2. I have a question/issue.

Given vars:
 _Decimal32 dfp = ...;
 float bfp = ...;

It is clear to me that
 if(dfp * bfp) ...

is a constraint violation by DFP TR 8.1

As I read the DFP TR
 if(exp1() ? dfp : bfp) ...

is undefined behaviour, not a constraint violation. Seems unusual
to me that this operator does not have a constraint violation on
mixing DFP with binary FP. Was this done on purpose, or was this
something overlooked?

3. Since DEC_INFINITY is of type _Decimal32, quantized64 and
quantized128 cannot return DEC_INFINITY. Perhaps, "If both
operands are infinity, the result is DEC_INFINITY and the sign is
the same as x." should be "If both operands are infinity, the
result is x."

4. I do not see how quantize() can overflow. Hence, I do not
understand why the spec for quantize mentions overflow.

5. When Decimal FP constants are converted into internal format, are
there any constraints on the conversion process? Consider these
equivalent values:

 1e6DF
 10e5DF
 100e4DF
 1000e3DF
 10000e2DF
 100000e1DF
1000000e0DF

Do they all convert to the same internal format? Or, do they
convert into 7 different formats? Implementation defined?

What about the value zero:

0e-95DF
0e0DF
0e+95DF

Same or different internal formats?

6. fp_classify macro issue (see WG14/N???? by Raymond Mak describing
the problem)

