
Doc. No.: WG14/N1188
Date: 2006-09-04
Project: Programming Language C
Reply to: Thomas Plum <tplum@plumhall.com> +1-808-882-1255

Sequence Points

A clearer presentation of the sequence-points rules could be useful for C, and also for
C++ because specification of concurrency and threading involves sequence-point issues.
Obviously, this clearer presentation should avoid making any substantive changes to the
sequence-point rules as they are understood by implementers of C and C++. This paper
is proposed as additional material for the Rationale, if approved by WG14.

Greater clarity might result from a more graphical presentation of the rules. Each C
and/or C++ program can (to a certain level of detail) be presented as a conventional flow-
chart using boxes for actions and diamonds for choices:

1. Each full-expression is shown as a box.
2. If there is a side-effect within a condition (inside an if, switch, for, while, do-

while, etc.), the evaluation takes place within a box, followed by a diamond
specifying a test (e.g., upon a temporary) without side-effects.

3. If the top-level operator within a box is a comma, question-colon, logical-and, or
logical-or (the “sequenced” operators), then the box is subdivided into smaller
boxes, one for each operand of the top-level operator.

4. Each statement produces a flow-chart according to its semantics.

For example, the statement (block) { ++x; ++y; } produces the following flow-
chart (as does the expression-statement ++x, ++y;):

++x

++y

We can remove any enclosing boxes, leaving only the innermost boxes (call them the
“little boxes”). Then the if-statement if (p != 0) ++n; produces the following
flow-chart:

The result of this process is a flow-chart composed of the “little boxes”. Each arrow that
flows into a box or out of a box specifies one sequence point. By and large, this much of
the sequence-point model is well-understood by programmers and implementers.
However, it is only the top-level sequenced operators that produce little boxes in the flow
chart; that detail is sometimes not fully understood.

So we have gotten the relatively easy part out of the way first. Most of the subtleties of
the sequence-point model concern the contents of the little boxes. The rules of C and/or
C++ will in general permit a finite set of allowable orderings for the expressions and
side-effects within each little box. The operative rule for C is described in 6.5p2:

Between the previous and next sequence point an object shall have its stored
value modified at most once by the evaluation of an expression. Furthermore,
the prior value shall be read only to determine the value to be stored.

In C++, the corresponding words are in 5p4:

Except where noted, the order of evaluation of operands of individual
operators and subexpressions of individual expressions, and the order in
which side effects take place, is unspecified. Between the previous and next
sequence point a scalar object shall have its stored value modified at most
once by the evaluation of an expression. Furthermore, the prior value shall
be accessed only to determine the value to be stored. The requirements of this
paragraph shall be met for each allowable ordering of the subexpressions of
a full expression; otherwise the behavior is undefined.

The C++ version explicitly specifies the role of the “allowable orderings”. (In C, the
same rule was implicitly understood in the process of interpreting 6.5p2. Obviously, the
explicit rule in C++ is the preferable approach to “standardese”, but the committees do
not differ on the substance of the rule.)

We propose to represent the allowable orderings of each little box in a vertical column of
operations. Within each little box there may be sequence points; we represent each
sequence point as a semicolon on a line by itself. Consider this sequence of statements:

a = 0; b = (a = 1, 2*a) + 3*a;

This produces two little boxes, one for each expression-statement. The second little box
permits a set of allowable orderings:

Ordering #1 Ordering #2 Ordering #3 Ordering #4 …
store 1 in a
 ;
T1=2*a
T2=3*a
T3=T1+T2
store T3 in b

T1=3*a
store 1 in a
 ;
T2=2*a
T3=T1+T2
store T3 in b

store 1 in a
 ;
T1=3*a
T2=2*a
T3=T1+T2
store T3 in b

store 1 in a
T1=3*a
 ;
T2=2*a
T3=T1+T2
store T3 in b

Orderings #2 and #4 (and others) violate the rule about “the prior value shall be accessed
only to determine the value to be stored”, and therefore this statement has undefined
behavior.

Assuming that the code within one little box passes the rule about “behavior of allowable
orderings”, then we can start each ordering by indicating a conceptual “cacheing” of the
initial value of each fetched object. For example, consider this statement:

c = a++ + b++;

There is no top-level sequenced operator, so this produces one little box. We will add the
initial-value fetch as the first step in each ordering. There are twelve allowable orderings:

Ordering #1 Ordering #2 Ordering #3 … Ordering #12
Ta=a, Tb=b Ta=a, Tb=b Ta=a, Tb=b Ta=a, Tb=b
incr a
incr b
T1=Ta+Tb
store T1 in c

incr a
T1=Ta+Tb
store T1 in c
incr b

incr a
T1=Ta+Tb
incr b
store T1 in c

 T1=Ta+Tb
incr b
incr a
store T1 in c

In general, the set of allowable orderings is a kind of cross-product of all the alternative
orderings permitted. For example, the order of evaluation of function arguments is
unspecified, but there is a sequence point after evaluation of all arguments. For a
function invocation with N arguments there may be 2N (or more) orderings of argument
evaluation. Consider this statement:

f(g(), b++);

There are twelve allowable orderings (using the abbreviation “ret” for the returned value
from the preceding function call):

Ordering #1 Ordering #2 Ordering #3 … Ordering #12
Tb=b Tb=b Tb=b Tb=b
 ;
call g
Arg1=ret
Arg2=Tb
incr b
 ;
call f

Arg2=Tb
incr b
 ;
call g
Arg1=ret
 ;
call f

Arg2=Tb
 ;
call g
incr b
Arg1=ret
 ;
call f

 incr b
Arg2=Tb
 ;
call g
Arg1=ret
 ;
call f

There is a sequence point prior to each of the two function calls, and the operation of
calling f is always the last operation performed, so there are four operations whose order
varies among the allowable orderings: “call g”, “Arg1=ret”, “Arg2=Tb”, and “incr b”.
Complete freedom to order these would produce 4! orderings, but half of those are
excluded because “Arg1=ret” must occur after “call g”. Therefore, there are 4!/2
allowable orderings, i.e. twelve orderings (again).

Note that it is unspecified whether the incrementation of b takes place before or after the
call to g, but it definitely takes place before the call to f.

One interesting result of the discussions within the C++ Concurrency Extensions
Subgroup was the discovery that some modern hardware architectures may execute a
different ordering of the same instructions at different points in the computation. Until
this discovery, many of us had assumed that prior to code generation one specific
allowable ordering was chosen to define the semantics as determined by the abstract
machine; then optimization and code generation would proceed by the “as-if” rule to
produce the observable semantics. Allowing multiple orderings does not fundamentally
change the model; each time a little box is executed, one specific allowable ordering will
be executed on this iteration.

The C++ Concurrency subgroup intends to define certain aspects of the threading model
in terms of two or more abstract machines interacting with each other.

