
Version 1.4 Page 1 of 37 7:53 AM 4/29/2006

Editors Notes

Revisions to this document since the Berlin meeting include.

1. Revisions based on comments submitted by Fred Tydeman (Tydeman
Consulting).

2. Revisions based on comments submitted by Douglas Walls (Sun Microsystems).
3. The setallocators_m function was added to set the memory allocation

functions used by the managed string library.

Version 1.4 Page 2 of 37 7:53 AM 4/29/2006

ISO/IEC JTC1 SC22 WG14 N1175

Date: 2006-04-24

Reference number of document: N1175

Committee identification: ISO/IEC JTC1 SC22 WG14

SC22 Secretariat: ANSI

Information Technology —

Programming languages, their environments and system software

interfaces —

Specification for Managed Strings —

Hal Burch
CERT/CC

Carnegie Mellon University

Dr. Fred Long
Department of Computer Science

University of Wales, Aberystwyth

Robert C. Seacord
CERT/CC

Carnegie Mellon University

Version 1.4 Page 3 of 37 7:53 AM 4/29/2006

Table of Contents

Introduction... 4
1 Scope.. 6
2 Normative references ... 6
3 Terms, definitions, and symbols .. 6

3.1 Runtime-constraint.. 7
4 Conformance.. 7
5 Predefined macro names .. 7
6 Library.. 7

6.1 Use of errno... 7
6.2 Runtime-Constraint Violations ... 7
6.3 Errors <errno.h> .. 8
6.4 Managed String Type <string_m.h> .. 9

7 Library functions.. 10
7.1 Utility functions .. 10
7.2 Copying functions... 15
7.3 Concatenation functions.. 17
7.4 Comparison functions ... 20
7.5 Search functions.. 23
7.6 Configuration functions .. 26
7.7 printf-derived functions ... 27
7.8 scanf-derived functions.. 31
7.9 String slices... 34

Version 1.4 Page 4 of 37 7:53 AM 4/29/2006

Introduction

String manipulation errors
Many software vulnerabilities in C programs arise through the use of the standard C
string manipulating functions. String manipulation programming errors include buffer
overflow through string copying, truncation errors, termination errors and improper data
sanitization.

Buffer overflow can easily occur when copying strings if the fixed-length destination of
the copy is not large enough to accommodate the source of the string. This is a particular
problem when the source is user input, which is potentially unbounded. The usual
programming practice is to allocate a character array that is generally large enough. The
problem is that this can be exploited by a malicious user who supplies a carefully crafted
string that overflows the fixed length array in such a way that the security of the system is
compromised. This remains the most common exploit in fielded C code today.

In attempting to overcome the buffer overflow problem, some programmers limit the
number of characters that are copied. This can result in strings being improperly
truncated. This, in turn, results in a loss of data which may lead to a different type of
software vulnerability.

A special case of truncation error is a termination error. Many of the standard C string
functions rely on strings being null terminated. However, the length of a string does not
include the null character. If just the non-null characters of a string are copied, the
resulting string may not be properly terminated. A subsequent access may run off the end
of the string, corrupting data that should not have been touched.

Finally, inadequate data sanitization can also lead to software vulnerabilities. Many
applications require that data not contain certain characters to properly function. Often,
malicious users can be prevented from exploiting an application by ensuring that the
strings used by the application do not include illegal characters.

Proposed solution
A secure string library should provide facilities to guard against the programming errors
described above. Furthermore, it should satisfy the following requirements:

1. Operations should succeed or fail unequivocally.

2. The facilities should be familiar to C programmers so that they can easily be
adopted and existing code easily converted.

3. There should be no surprises in using the facilities. The new facilities should
have similar semantics to the standard C string manipulating functions. Again,
this will help with the conversion of legacy code.

Of course, some compromises are needed to meet these requirements. For example, it is
not possible to completely preserve the existing semantics and provide protection against
the programming errors described above.

Version 1.4 Page 5 of 37 7:53 AM 4/29/2006

Libraries that provide string manipulation functions can be categorized as static or
dynamic. Static libraries rely on fixed-length arrays. A static approach cannot easily
overcome the problems described. With a dynamic approach, strings are resized as
necessary. This approach can more easily solve the problems, but a consequence is that
memory can be exhausted if input is not limited. To mitigate this problem, the managed
string library supports an implementation defined maximum string length. The minimum
system-defined maximum string length for a conforming implementation is BUFSIZ-1
(see ISO/IEC 9899:1999 7.19.2 Streams). Additionally, the string creation function
allows for the specification of a per string maximum length.

The managed string library
This managed string library was developed in response to the need for a string library that
could improve the quality and security of newly developed C language programs while
eliminating obstacles to widespread adoption and possible standardization.

The managed string library is based on a dynamic approach in that memory is allocated
and reallocated as required. This approach eliminates the possibility of unbounded
copies, null-termination errors, and truncation by ensuring there is always adequate space
available for the resulting string (including the terminating null character). The exception
is if memory is exhausted, which is treated as a runtime-constraint violation. In this way,
the managed string library accomplishes the goal of succeeding or failing loudly.

The managed string library also provides a mechanism for dealing with data sanitization
by (optionally) checking that all characters in a string belong to a predefined set of “safe”
characters.

Wide character and null-terminated byte strings
A number of managed string functions accept either a null-terminated byte string or a
wide character string as input or provide one of these string types as a return value. The
managed string library works equally well with either type of string. For example, it is
possible to create a managed string from a wide character string and then extract a null-
terminated byte string (or vice versa). It is also possible to copy a null-terminated byte
string and then concatenate a wide character string. Managed string functions will handle
conversions implicitly when possible. If a conversion cannot be performed, the operation
is halted and a runtime-constraint error reported.

Strings are maintained in the format in which they are initially provided, until such a time
that a conversion is necessary. String promotions are relatively simple: performing an
operation on two null-terminated byte strings results in a null-terminated byte string. An
operation on a null-terminated byte string and a wide character string results in a wide
character string. Operations on two wide character strings results in a wide character
string. Conversions are performed as necessary in the locale defined at the time the
conversion occurs.

In addition to the actual managed strings, each managed string also supports the
definition of a restricted character set that identifies the set of allowable characters for the
string. When an operation requires that a null-terminated byte string be converted to a

Version 1.4 Page 6 of 37 7:53 AM 4/29/2006

wide character string, the restricted character set is also converted as part of the
operation.

1 Scope
This technical report specifies a library for the programming language C as specified by
International Standard ISO/IEC 9899:1999.

2 Normative references
The following normative documents contain provisions which, through reference in this
text, constitute provisions of this technical report. For dated references, subsequent
amendments to, or revisions of, any of these publications do not apply. For undated
references, the latest edition of the normative document referred to applies.

Members of ISO and IEC maintain registers of currently valid International Standards.

ISO/IEC 9899:1999, Information technology — Programming languages, their
environments and system software interfaces — Programming Language C

ISO/IEC 9899:1999/Cor 1:2001, Information technology — Programming languages,
their environments and system software interfaces — Programming Language C —
Technical Corrigendum 1

ISO/IEC 9899:1999/Cor 2:2004, Information technology — Programming languages,
their environments and system software interfaces — Programming Language C —
Technical Corrigendum 2

ISO 31−11:1992, Quantities and units — Part 11: Mathematical signs and symbols for
use in the physical sciences and technology

ISO/IEC 646, Information technology — ISO 7-bit coded character set for information
interchange

ISO/IEC 2382−1:1993, Information technology — Vocabulary — Part 1: Fundamental
terms

ISO 4217, Codes for the representation of currencies and funds

ISO 8601, Data elements and interchange formats — Information interchange —
Representation of dates and times

ISO/IEC 10646 (all parts), Information technology — Universal Multiple-Octet Coded
Character Set (UCS)

1IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems
(previously designated IEC 559:1989)

3 Terms, definitions, and symbols
For the purposes of this technical report, the following definitions apply. Other terms are
defined where they appear in italic type. Terms explicitly defined in this technical report
are not to be presumed to refer implicitly to similar terms defined elsewhere. Terms not
defined in this technical report are to be interpreted according to ISO/IEC 9899:1999 and

Version 1.4 Page 7 of 37 7:53 AM 4/29/2006

ISO/IEC 2382−1. Mathematical symbols not defined in this Technical Report are to be
interpreted according to ISO 31−11.

3.1 Runtime-constraint

requirement on a program when calling a library function

NOTE 1: Despite the similar terms, a runtime-constraint is not a kind of constraint.

NOTE 2: Implementations shall verify that the runtime-constraints for a library function
are not violated by the program.

4 Conformance
If a ‘‘shall’’ or ‘‘shall not’’ requirement that appears outside of a constraint or runtime-
constraint is violated, the behavior is undefined.

5 Predefined macro names
The following macro name is conditionally defined by the implementation:

__STDC_MANAGED_STRINGS__The integer constant 200603L, intended to indicate
conformance to this technical report.1

6 Library

6.1 Use of errno
An implementation may set errno for the functions defined in this technical report, but
is not required to.

6.2 Runtime-constraint violations
Most functions in this technical report include as part of their specifications a list of
runtime-constraints. These runtime-constraints are requirements on the program using
the library.

Implementations shall check that the runtime-constraints specified for a function are met
by the program. If a runtime-constraint is violated, the implementation shall call the
currently registered constraint handler (see set_constraint_handler in
<stdlib.h>). Multiple runtime-constraint violations in the same call to a library
function result in only one call to the constraint handler. It is unspecified which one of
the multiple runtime-constraint violations cause the handler to be called.

Sometimes, the runtime-constraints section for a function states an action to be performed
if a runtime-constraint violation occurs. Such actions are performed before calling the
runtime-constraint handler. Sometimes, the runtime-constraints section lists actions that

1 The intention is that this will remain an integer constant of type long int that is increased with each
revision of this technical report.

Version 1.4 Page 8 of 37 7:53 AM 4/29/2006

are prohibited if a runtime-constraint violation occurs. Such actions are prohibited to the
function both before calling the handler and after the handler returns.

The runtime-constraint handler might not return. If the handler does return, the library
function whose runtime-constraint was violated shall return some indication of failure as
given by the returns section in the function’s specification.

Although runtime-constraints replace many cases of undefined behavior from
International Standard ISO/IEC 9899:1999, undefined behavior still exists in this
technical report. Implementations are free to detect any case of undefined behavior and
treat it as a runtime-constraint violation by calling the runtime-constraint handler. This
license comes directly from the definition of undefined behavior.

6.3 Errors <errno.h>
The header <errno.h> defines a type.

The type is

errno_t

which is type int.

6.4 Common definitions <stddef.h>
The header <stddef.h> defines a type.

The type is

rsize_t

which is the type size_t.2

6.5 Integer types <stdint.h>
The header <stdint.h> defines a macro.

The macro is

RSIZE_MAX

which expands to a value3 of type size_t. Functions that have parameters of type
rsize_t consider it a runtime-constraint violation if the values of those parameters are
greater than RSIZE_MAX.

Recommended practice

2 See the description of the RSIZE_MAX macro in <stdint.h>.
3 The macro RSIZE_MAX need not expand to a constant expression.

Version 1.4 Page 9 of 37 7:53 AM 4/29/2006

Extremely large object sizes are frequently a sign that an object’s size was calculated
incorrectly. For example, negative numbers appear as very large positive numbers when
converted to an unsigned type like size_t. Also, some implementations do not support
objects as large as the maximum value that can be represented by type size_t.

For those reasons, it is sometimes beneficial to restrict the range of object sizes to detect
programming errors. For implementations targeting machines with large address spaces,
it is recommended that RSIZE_MAX be defined as the smaller of the size of the largest
object supported or (SIZE_MAX >> 1), even if this limit is smaller than the size of
some legitimate, but very large, objects. Implementations targeting machines with small
address spaces may wish to define RSIZE_MAX as SIZE_MAX, which means that there
is no object size that is considered a runtime-constraint violation.

6.6 Managed string type <string_m.h>
The header <string_m.h> defines an abstract data type:

 typedef void *string_m;

The structure referenced by this type is private and implementation defined. All managed
strings of this type have a maximum string length that is determined when the string is
created. For functions that have parameters of type string_m it is a runtime-constraint
violation if the maximum length of a managed string is exceeded.

Managed strings may also have a defined set of valid characters that can be used in the
string. For functions that have parameters of type string_m it is a runtime-constraint
violation if a managed string contains invalid characters. For functions that have
parameters of type string_m it is a runtime-constraint if the request requires allocating
more memory than available4.

Managed strings support both null and empty strings. An empty string is a string that has
zero characters. A null string is an uninitialized string, or a string that has been explicitly
set to null.

When computing the length of a string for determining if the maximum length is
exceeded, the length of a null terminated byte string is the number of bytes and the length
of a wide character string is the number of characters. Thus, promoting a multi-byte null
terminated byte string may change its length. eneral utilities <stdlib.h>
The header <stdlib.h> defines six types.

The types are

errno_t

4 The library depends on malloc() and realloc() returning NULL to signify insufficient
memory. On some systems, particularly systems utilizing optimistic memory allocation schemes, malloc()
may return a non-NULL pointer even when insufficient memory. On systems where there is no such
mechanism to detect out-of-memory conditions, the library will not be able to properly validate this
condition.

Version 1.4 Page 10 of 37 7:53 AM 4/29/2006

which is type int; and

rsize_t

which is the type size_t; and

constraint_handler_t

which has the following definition

typedef void (*constraint_handler_t)(
const char * restrict msg,
void * restrict ptr,
errno_t error);

and

malloc_handler_t

which has the following definition

typedef void * (*malloc_handler_t)(size_t size);

and

realloc_handler_t

which has the following definition

typedef void * (*realloc_handler_t)(
void * ptr, size_t size);

and

free_handler_t

which has the following definition

typedef void (*free_handler_t)(void *ptr);

7 Library functions

7.1 Utility functions

7.1.1 The isnull_m function

Synopsis
#include <string_m.h>

Version 1.4 Page 11 of 37 7:53 AM 4/29/2006

errno_t isnull_m(const string_m s, _Bool *nullstr);

Runtime-constraints
s shall reference a valid managed string. nullstr shall not be a null pointer.

Description
The isnull_m function tests whether the managed string s is null and delivers this
result in the parameter referenced by nullstr, given the managed string s.

Returns
The isnull_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.1.2 The isempty_m function

Synopsis
#include <string_m.h>
errno_t isempty_m(const string_m s,
 _Bool *emptystr);

Runtime-constraints
s shall reference a valid managed string. emptystr shall not be a null pointer.

Description
The isempty_m function tests whether the managed string s is empty and delivers
this result in the parameter referenced by emptystr, given the managed string s.

Returns
The isempty_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.1.3 Creating a string_m

7.1.3.1 The strcreate_m function

Synopsis
#include <string_m.h>
errno_t strcreate_m(string_m *s, const char *cstr,

const rsize_t maxlen, const char *charset);

Runtime-constraints
s shall not be a null pointer. charset shall not be an empty string (denoted by "").

Description
The strcreate_m function creates a managed string, referenced by s, given a
conventional string cstr (which may be null or empty). maxlen specifies the
maximum length of the string in characters. If maxlen is 0 the system-defined

Version 1.4 Page 12 of 37 7:53 AM 4/29/2006

maximum length is used. charset restricts the set of allowable characters to be those
in the null-terminated byte string cstr (which may be empty). If charset is NULL
no restricted character set is defined. If specified, duplicate characters in a charset are
ignored. Characters in the charset may be provided in any order. The \0 character
cannot be specified as part of charset.

Returns
The strcreate_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.1.3.2 The wstrcreate_m function

Synopsis
#include <string_m.h>
errno_t wstrcreate_m(string_m *s,

 const wchar_t *wcstr,
 const rsize_t maxlen,
 const wchar_t *charset);

Runtime-constraints
s shall not be a null pointer. charset shall not be an empty string (denoted by L"").

Description
The wstrcreate_m function creates a managed string, referenced by s, given a wide
character string wcstr (which may be null or empty). maxlen specifies the
maximum length of the string in characters. If maxlen is 0 the system-defined
maximum length is used. charset restricts the set of allowable characters to be those
in the wide character string wcstr (which may be empty). If charset is NULL, no
restricted character set is defined. Characters in the charset may be provided in any
order. The \0 character cannot be specified as part of charset.

Returns
The wstrcreate_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.1.4 The isntbs_m function

Synopsis
#include <string_m.h>
errno_t isntbs_m(const string_m s,
 _Bool *ntbstr);

Runtime-constraints
s shall reference a valid managed string. ntbstr shall not be a null pointer.

Description

Version 1.4 Page 13 of 37 7:53 AM 4/29/2006

The isntbs_m function tests whether the managed string s is a null-terminated byte
string and delivers this result in the parameter referenced by ntbstr, given the managed
string s.

Returns
The isntbs_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.1.5 The iswide_m function

Synopsis
#include <string_m.h>
errno_t iswide_m(const string_m s,
 _Bool *widestr);

Runtime-constraints
s shall reference a valid managed string. widestr shall not be a null pointer.

Description
The iswide_m function tests whether the managed string s is a wide character string
and delivers this result in the parameter referenced by widestr, given the managed
string s.

Returns
The iswide_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.1.6 The strdelete_m function

Synopsis
#include <string_m.h>
errno_t strdelete_m(string_m *s);

Runtime-constraints
s shall not be a null pointer. *s shall reference a valid managed string.

Description
The strdelete_m function deletes the managed string referenced by *s (which may
be null or empty). s is set to NULL.

Returns
The strdelete_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

Version 1.4 Page 14 of 37 7:53 AM 4/29/2006

7.1.7 The strlen_m function

Synopsis
#include <string_m.h>
errno_t strlen_m(const string_m s, rsize_t *size);

Runtime-constraints
s shall reference a valid managed string. size shall not be a null pointer.

Description
The strlen_m function computes the length of the managed string s and stores the
result into the variable referenced by size. If the managed string is either null or empty
the length is computed as zero. For a null-terminated byte string, the length is the
number of bytes. For a wide character string, the length is the number of characters.

Returns
The strlen_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.1.8 Extracting a conventional string

7.1.8.1 The cgetstr_m function

Synopsis
#include <string_m.h>
errno_t cgetstr_m(const string_m s, char **string);

Runtime-constraints
s shall reference a valid managed string. string shall not be a null pointer.
*string must be NULL.

Description
The cgetstr_m function allocates storage for, and returns a pointer to, a null-
terminated byte string represented by the managed string s and referenced by string .
The caller is responsible for freeing *string when the null-terminated byte string is no
longer required.

Example
 if (retValue = cgetstr_m(str1, &cstr)) {
 fprintf(stderr, "error %d from cgetstr_m.\n",

 retValue);
 } else {
 printf("(%s)\n", cstr);
 free(cstr); // free duplicate string
 }

Returns

Version 1.4 Page 15 of 37 7:53 AM 4/29/2006

The cgetstr_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned. If there is a runtime-constraint violation,
*string is set to null.

7.1.8.2 The wgetstr_m function

Synopsis
#include <string_m.h>
errno_t wgetstr_m(const string_m s, wchar_t **wcstr);

Runtime-constraints
s shall reference a valid managed string. wcstr shall not be a null pointer. *wcstr
must be NULL.

Description
The wgetstr_m function delivers a wide character string into the variable referenced
by wcstr, given the managed string s. The caller is responsible for freeing *wcstr
when the wide character string is no longer required.

Returns
The wgetstr_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned. If there is a runtime-constraint violation
*wcstr is set to null.

7.1.9 The strdup_m function

Synopsis
#include <string_m.h>
errno_t strdup_m(string_m *s1, const string_m s2);

Runtime-constraints
s1 shall not be a null pointer. s2 shall reference a valid managed string.

Description
The strdup_m function creates a duplicate of the managed string s2 and stores it in
s1. The duplicate shall have the same set of valid characters and maximum length.

Returns
The strdup_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.2 Copying functions

Version 1.4 Page 16 of 37 7:53 AM 4/29/2006

7.2.1 Unbounded string copy

7.2.1.1 The strcpy_m function

Synopsis
#include <string_m.h>
errno_t strcpy_m(string_m s1, const string_m s2);

Runtime-constraints
s1 and s2 shall reference valid managed strings.

Description
The strcpy_m function copies the managed string s2 into the managed string s1.
Note that the set of valid characters and maximum length are not copied as these are
attributes of s1.5

Returns
The strcpy_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.2.1.2 The cstrcpy_m function

Synopsis
#include <string_m.h>
errno_t cstrcpy_m(string_m s1, const char *cstr);

Runtime-constraints
s1 shall reference a valid managed string.

Description
The cstrcpy_m function copies the string cstr into the managed string s1.

Returns
The cstrcpy_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.2.1.3 The wstrcpy_m function

Synopsis
#include <string_m.h>
errno_t wstrcpy_m(string_m s1,

const wchar_t *wcstr);

Runtime-constraints

5 If s2 contains characters that are not in the set of valid characters or exceeds the maximum length defined
for s1, a runtime constraint violation occurs as described in Section 6.6.

Version 1.4 Page 17 of 37 7:53 AM 4/29/2006

s1 shall reference a valid managed string.

Description
The wstrcpy_m function copies the string wcstr into the managed string s1.

Returns
The wstrcpy_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.2.2 The strncpy_m function

Synopsis
#include <string_m.h>
errno_t strncpy_m (string_m s1,

const string_m s2,
rsize_t n);

Runtime-constraints
s1 and s2 shall reference valid managed strings.

Description
The strncpy_m function copies not more than n characters from the managed string
s2 to the managed string s1. If s2 does not contain n characters, the entire string is
copied. If s2 contains more than n characters, s1 is set to the string containing the first
n characters.

Returns
The strncpy_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.3 Concatenation functions

7.3.1 Unbounded concatenation

7.3.1.1 The strcat_m function

Synopsis
#include <string_m.h>
errno_t strcat_m(string_m s1, const string_m s2);

Runtime-constraints
s1 and s2 shall reference valid managed strings.

Description
The strcat_m function concatenates the managed string s2 onto the
end of the managed string s1.

Version 1.4 Page 18 of 37 7:53 AM 4/29/2006

Returns
The strcat_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.3.1.2 The cstrcat_m function

Synopsis
#include <string_m.h>
errno_t cstrcat_m(string_m s, const char *cstr);

Runtime-constraints
s shall reference a valid managed string.

Description
The cstrcat_m function concatenates the null-terminated byte string cstr onto the
end of the managed string s. If cstr is a null pointer this function returns without
modifying s.

Returns
The cstrcat_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.3.1.3 The wstrcat_m function

Synopsis
#include <string_m.h>
errno_t wstrcat_m(string_m s,
 const wchar_t *wcstr);

Runtime-constraints
s shall reference a valid managed string. wcstr shall not be a null pointer.

Description
The wstrcat_m function concatenates the wide character string wcstr onto the end
of the managed string s. If wcstr is a null pointer this function returns without
modifying s.

Returns
The wstrcat_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.3.2 Bounded concatenation

7.3.2.1 The strncat_m function

Synopsis
#include <string_m.h>

Version 1.4 Page 19 of 37 7:53 AM 4/29/2006

errno_t strncat_m (string_m s1,
const string_m s2,
rsize_t n);

Runtime-constraints
s1 and s2 shall reference valid managed strings.

Description
The strncat_m function appends not more than n characters from the managed
string s2 to the end of the managed string s1. If s2 is null strncat_m returns
without modifying s1.

Returns
The strncat_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.3.2.2 The cstrncat_m function

Synopsis
#include <string_m.h>
errno_t cstrncat_m (string_m s,

const char *cstr,
rsize_t n);

Runtime-constraints
s shall reference a valid managed string.

Description
The cstrncat_m function appends not more than n bytes from the null-terminated
byte string cstr to the end of the managed string s. If cstr is null cstrncat_m
returns without modifying s. The cstrncat_m function guarantees that the resulting
string s is properly terminated.

Returns
The cstrncat_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.3.2.3 The wstrncat_m function

Synopsis
#include <string_m.h>
errno_t wstrncat_m (string_m s,

const wchar_t *wcstr,
rsize_t n);

Runtime-constraints

Version 1.4 Page 20 of 37 7:53 AM 4/29/2006

s shall reference a valid managed string.

Description
The wstrncat_m function appends not more than n characters from the wide
character string wcstr to the end of the managed string s. If wcstr is null, the
wstrncat_m function returns without modifying s. The wstrncat_m function
guarantees that the resulting string s is properly terminated.

Returns
The wstrncat_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.4 Comparison functions
The sign of a non-zero value delivered by the comparison functions strcmp_m, and
strncmp_m is determined by the sign of the difference between the values of the first
pair of characters (both interpreted as unsigned char, but, promoted to int) that
differ in the objects being compared.

For the purpose of comparison, a null string is less than any other string including an
empty string. Null strings are equal and empty strings are equal.

The set of valid characters defined for each string is not a factor in the evaluation
although it is held as an invariant that each managed string contains only characters
identified as valid for that string.

7.4.1 Unbounded comparison

7.4.1.1 The strcmp_m function

Synopsis
#include <string_m.h>
errno_t strcmp_m (const string_m s1,

const string_m s2,
int *cmp);

Runtime-constraints
s1 and s2 shall reference valid managed strings. cmp shall not be null.

Description
The strcmp_m function compares the managed string s1 to the managed string s2
and sets cmp to an integer value greater than, equal to, or less than zero, accordingly as
s1 is greater than, equal to, or less than s2.

Returns
The strcmp_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

Version 1.4 Page 21 of 37 7:53 AM 4/29/2006

7.4.1.2 The cstrcmp_m function

Synopsis
#include <string_m.h>
errno_t cstrcmp_m (const string_m s1,

const char *cstr,
int *cmp);

Runtime-constraints
s1 shall reference valid a managed string. cmp shall not be null.

Description
The cstrcmp_m function compares the managed string s1 to the null-terminated byte
string cstr and sets cmp to an integer value greater than, equal to, or less than zero,
accordingly as s1 is greater than, equal to, or less than cstr.

Returns
The cstrcmp_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.4.1.3 The wstrcmp_m function

Synopsis
#include <string_m.h>
errno_t wstrcmp_m (const string_m s1,

const wchar_t *wstr,
int *cmp);

Runtime-constraints
s1 shall reference valid a managed string. cmp shall not be null.

Description
The wstrcmp_m function compares the managed string s1 to the wide character
string wstr and sets cmp to an integer value greater than, equal to, or less than zero,
accordingly as s1 is greater than, equal to, or less than wstr.

Returns
The wstrcmp_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.4.2 The strcoll_m function

Synopsis
#include <string_m.h>
errno_t strcoll_m (const string_m s1,

const string_m s2,
int *cmp);

Version 1.4 Page 22 of 37 7:53 AM 4/29/2006

Runtime-constraints
s1 and s2 shall reference valid managed strings. cmp shall not be null.

Description
The strcoll_m function compares the managed string s1 to the managed string s2,
both interpreted as appropriate to the LC_COLLATE category of the current locale, and
sets cmp to an integer value greater than, equal to, or less than zero, accordingly as s1
is greater than, equal to, or less than s2 when both are interpreted as appropriate to the
current locale.

Returns
The strcoll_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.4.3 Bounded string comparison

7.4.3.1 The strncmp_m function

Synopsis
#include <string_m.h>
errno_t strncmp_m (const string_m s1,

const string_m s2,rsize_t n,
int *cmp);

Runtime-constraints
s1 and s2 shall reference valid managed strings. cmp shall not be null.

Description
The strncmp_m function compares not more than n characters from the managed
string s1 to the managed string s2 and sets cmp to an integer value greater than, equal
to, or less than zero, accordingly as s1 is greater than, equal to, or less than s2. If n is
equal to 0, the strncmp_m function sets cmp to the integer value zero, regardless of
the contents of the string.

Returns
The strncmp_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.4.3.2 The cstrncmp_m function

Synopsis
#include <string_m.h>
errno_t cstrncmp_m (const string_m s1,

const char *cstr, rsize_t n,
int *cmp);

Runtime-constraints

Version 1.4 Page 23 of 37 7:53 AM 4/29/2006

s1 shall reference a valid managed string. cmp shall not be null.

Description
The cstrncmp_m function compares not more than n bytes (bytes that follow a null
character are not compared) from the managed string s1 to the null-terminated byte
string cstr and sets cmp to an integer value greater than, equal to, or less than zero,
accordingly as s1 is greater than, equal to, or less than cstr. If n is equal to 0, the
cstrncmp_m function sets cmp to the integer value zero, regardless of the contents of
the string.

Returns
The cstrncmp_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.4.3.3 The wstrncmp_m function

Synopsis
#include <string_m.h>
errno_t wstrncmp_m (const string_m s1,

const wchar_t *wstr, rsize_t n,
int *cmp);

Runtime-constraints
s1 shall reference a valid managed string. cmp shall not be null.

Description
The wstrncmp_m function compares not more than n characters (characters that
follow a null character are not compared) from managed string s1 to the wide character
string wstr and sets cmp to an integer value greater than, equal to, or less than zero,
accordingly as s1 is greater than, equal to, or less than wstr. If n is equal to 0, the
wstrncmp_m function sets cmp to the integer value zero, regardless of the contents of
the string.

Returns
The wstrncmp_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.5 Search functions

7.5.1 The strtok_m function

Synopsis
#include <string_m.h>
errno_t strtok_m(string_m token, string_m str,

const string_m delim, string_m ptr);

Version 1.4 Page 24 of 37 7:53 AM 4/29/2006

Runtime-constraints
token, str, delim, and ptr shall reference valid managed strings.

Description
The strtok_m function scans the managed string str. The substring of str up to
but not including the first occurrence of any of the characters contained in the managed
string delim is returned as the managed string token. The remainder of the managed
string str (after but not including the first character found from delim) is returned as
the managed string ptr. If str does not contain any characters in delim (or if delim
is either empty or null), token shall be set to str and ptr will be set to the null string.

Returns

The strtok_m function returns zero if there was no runtime-constraint violation.
Otherwise, a non-zero value is returned.

7.5.2 The cstrchr_m function

Synopsis
#include <string_m.h>
errno_t cstrchr_m(string_m out, const string_m str,

char c);

Runtime-constraints
out and str shall reference valid managed strings.

Description
The cstrchr_m function scans the managed string str for the first occurrence of c.
out is set to the string containing and following the first occurrence of c. If str does
not contain c, out is set to the null string.

Returns

The cstrchr_m function returns zero if there was no runtime-constraint violation.
Otherwise, a non-zero value is returned.

7.5.3 The wstrchr_m function

Synopsis
#include <string_m.h>
errno_t wstrchr_m(string_m out, const string_m str,

wchar_t wc);

Runtime-constraints
out and str shall reference valid managed strings.

Description

Version 1.4 Page 25 of 37 7:53 AM 4/29/2006

The wstrchr_m function scans the managed string str for the first occurrence of
wc. out is set to the string containing and following the first occurrence of wc. If str
does not contain wc, out is set to the null string.

Returns

The wstrchr_m function returns zero if there was no runtime-constraint violation.
Otherwise, a non-zero value is returned.

7.5.4 The strspn_m function

Synopsis
#include <string_m.h>
errno_t strspn_m(string_m str, string_m accept,

rsize_t *len);

Runtime-constraints
str and accept shall reference a valid managed string. len shall not be a null
pointer.

Description
The strspn_m function computes the length of the maximum initial segment of the
managed string str which consists entirely of characters from the managed string
accept. It sets *len to this length. If the managed string str is null or empty *len
is set to zero.

Returns
The strspn_m function returns zero if there was no runtime-constraint violation.
Otherwise, a non-zero value is returned.

7.5.5 The strcspn_m function

Synopsis
#include <string_m.h>
errno_t strcspn_m(string_m str, string_m reject,

rsize_t *len);

Runtime-constraints
str and accept shall reference valid managed strings. len shall not be a null pointer.

Description
The strcspn_m function computes the length of the maximum initial segment of the
managed string str which consists entirely of characters not from the managed string
reject. It sets *len to this length. If the managed string str is null or empty *len
is set to zero. If the managed string reject is null or empty *len is set to the length of
str.

Version 1.4 Page 26 of 37 7:53 AM 4/29/2006

Returns
The strcspn_m function returns zero if there was no runtime-constraint violation.
Otherwise, a non-zero value is returned.

7.6 Configuration functions

7.6.1 The setcharset_m function

Synopsis
#include <string_m.h>
errno_t setcharset_m(string_m s,

const string_m charset);

Runtime-constraints
s shall reference a valid managed string.

Description
The setcharset_m function sets the subset of allowable characters to be those in the
managed string charset (which may be null or empty). If charset is null or the
managed string represented by charset is null a restricted subset of valid characters is
not enforced. If the managed string charset is empty then only empty or null strings
can be created.

Returns
The setcharset_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.6.2 The setmaxlen_m function

Synopsis
#include <string_m.h>
errno_t setmaxlen_m(string_m s, rsize_t maxlen);

Runtime-constraints
s shall reference a valid managed string.

Description
The setmaxlen_m function sets the maximum length of the managed string s. If
maxlen is 0 the system-defined maximum length is used.

Returns
The setmaxlen_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.6.3 The setallocators_m function

Synopsis

Version 1.4 Page 27 of 37 7:53 AM 4/29/2006

#include <string_m.h>
errno_t setallocators_m _m(malloc_handler_t mh,

realloc_handler_t rh, free_handler_t fh);

Runtime-constraints
mh, rh, and fh shall not be null and shall point to valid functions.

Description
The setallocators_m function sets the memory allocation functions used by the
managed string library. If not explicitly set, mh defaults to malloc(), rh defaults to
realloc(), and fh defaults to free().

Returns
The setallocators_m function returns zero if no runtime-constraints were
violated.Otherwise, a non-zero value is returned.

7.7 printf-derived functions
These functions are the managed string equivalents to the printf-derived functions in
C. Managed string format strings differ from standard C format strings primarily in that
they are represented as managed strings.

The '%s' specification refers to a managed string, rather than a null-terminated byte
string or wide character string. The format specification '%ls' indicates that the
managed string should be output as a wide character string. The format specification
'%hs' indicates that the managed string should be output as a null-terminated byte
string. All printf-derived functions will output a null-terminated byte string if (1) any
specified output stream is byte oriented and (2) the format string and all argument strings
are null-terminated byte strings; otherwise the output will be a wide-character string.

Applying a byte output function to a wide-oriented stream or a wide character output
function to a byte-oriented stream will result in a runtime-constraint error.

The '%n' specification is not recognized.

7.7.1 The sprintf_m function

Synopsis
#include <string_m.h>
errno_t sprintf_m(string_m buf, const string_m fmt,

int *count, ...);

Runtime-constraints
buf and fmt shall reference valid managed strings. The managed string fmt shall be a
valid format compatible with the arguments after fmt.

Description

Version 1.4 Page 28 of 37 7:53 AM 4/29/2006

The sprintf_m function formats its parameters after the third parameter into a string
according to the format contained in the managed string fmt and stores the result in the
managed string buf.

If not null, *count is set to the number of characters written in buf, not including the
terminating null character.

Returns
The sprintf_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.7.2 The vsprintf_m function

Synopsis
#include <string_m.h>
errno_t vsprintf_m(string_m buf,

const string_m fmt,
int *count,
va_list args);

Runtime-constraints
buf and fmt shall reference a valid managed string. fmt shall not be null. The
managed string fmt shall be a valid format compatible with the arguments args.

Description
The vsprintf_m function formats its parameters args into a string according to the
format contained in the managed string fmt and stores the result in the managed string
buf.

If not null, *count is set to the number of characters written in buf, not including the
terminating null character.

Returns
The vsprintf_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.7.3 The snprintf_m function

Synopsis
#include <string_m.h>
errno_t snprintf_m(string_m buf, int max,

const string_m fmt, int *count, ...);

Runtime-constraints
buf and fmt shall reference a valid managed string. fmt shall not be null. The
managed string fmt shall be a valid format compatible with the arguments after fmt.

Version 1.4 Page 29 of 37 7:53 AM 4/29/2006

Description
The snprintf_m function formats its parameters after the fourth parameter into a
string according to the format contained in the managed string fmt and stores the result
in the managed string buf. If the resulting string contains more than max characters, it
is truncated.

If not null, *count is set to the number of characters that would have been written had
max been sufficiently large, not counting the terminating null character. Thus, the output
has been completely written if and only if the returned value is nonnegative and less than
max.

Returns
The snprintf_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.7.4 The vsnprintf_m function

Synopsis
#include <string_m.h>
errno_t vsnprintf_m(string_m buf, int max,

const string_m fmt, int *count,
va_list args);

Runtime-constraints
buf and fmt shall reference a valid managed string. fmt shall not be null. The
managed string fmt shall be a valid format compatible with the arguments args.

Description
The vsprintf_m function formats its parameters args into a string according to the
format contained in the managed string fmt and stores the result in the managed string
buf. If the resulting string contains more than max characters, it is truncated.

If not null, *count is set to the number of characters that would have been writtenhad
max been sufficiently large, not counting the terminating null character. Thus, the output
has been completely written if and only if the returned value is nonnegative and less than
max.

Returns
The vsprintf_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.7.5 The printf_m function

Synopsis
#include <string_m.h>
errno_t printf_m(const string_m fmt, int *count, ...);

Version 1.4 Page 30 of 37 7:53 AM 4/29/2006

Runtime-constraints
fmt shall reference a valid managed string. fmt shall not be null. The managed string
fmt shall be a valid format compatible with the arguments after fmt.

Description
The printf_m function formats its parameters after the second parameter into a string
according to the format contained in the managed string fmt and outputs the result to
standard output.

If not null, *count is set to the number of characters transmitted.

Returns

The printf_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.7.6 The vprintf_m function

Synopsis
#include <string_m.h>
errno_t vprintf_m(const string_m fmt, int *count,

va_list args);

Runtime-constraints
fmt shall reference a valid managed string. fmt shall not be null. The managed string
fmt shall be a valid format compatible with the arguments args.

Description
The vprintf_m function formats its parameters args into a string according to the
format contained in the managed string fmt and outputs the result to standard output.

If not null, *count is set to the number of characters transmitted.

Returns
The vprintf_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.7.7 The fprintf_m function

Synopsis
#include <string_m.h>
errno_t fprintf_m(FILE *file, const string_m fmt, int

*count, ...);

Runtime-constraints

Version 1.4 Page 31 of 37 7:53 AM 4/29/2006

fmt shall reference a valid managed string. fmt shall not be null. The managed string
fmt shall be a valid format compatible with the arguments after fmt. file shall not be
a null pointer.

If not null, *count is set to the number of characters transmitted.

Description

The fprintf_m function formats its parameters after the third parameter into a string
according to the format contained in the managed string fmt and outputs the result to
file.

Returns

The fprintf_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.7.8 The vfprintf_m function

Synopsis
#include <string_m.h>
errno_t vfprintf_m(FILE *file, const string_m fmt,

int *count, va_list args);

Runtime-constraints
fmt shall reference a valid managed string. fmt shall not be null. The managed string
fmt shall be a valid format compatible with the arguments args. file shall not be a
null pointer.

Description
The vfprintf_m function formats its parameters args into a string according to the
format contained in the managed string fmt and outputs the result to file.

If not null, *count is set to the number of characters transmitted.

Returns
The vfprintf_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.8 scanf-derived functions
These functions are the managed string equivalents to the scanf-derived functions in C.
Managed string format strings differ from standard C format strings primarily in that they
are represented as managed strings. The '%s' specification refers to a managed string,
rather than a null-terminated byte string or wide character string. The use of char* or
wchar_t* pointers in the varargs list will result in a runtime-constraint if detected.
The managed string read by '%s' is created as a null-terminated byte string if the input

Version 1.4 Page 32 of 37 7:53 AM 4/29/2006

string is a null-terminated byte string or the input stream has byte orientation; otherwise a
wide character string is created. The format specification '%ls' indicates that the
managed string should be created as a wide character string. The format specification
'%hs' indicates that the managed string should be created as a null-terminated byte
string.

Applying a byte input functions to a wide-oriented stream or a wide character input
functions to a byte-oriented stream will result in a runtime-constraint error.

7.8.1 The sscanf_m function

Synopsis
#include <string_m.h>
errno_t sscanf_m(string_m buf, const string_m fmt,

int *count, ...);

Runtime-constraints
buf and fmt shall reference a valid managed string. fmt shall not be null. The
managed string fmt shall be a valid format compatible with the arguments after fmt.

Description
The sscanf_m function processes the managed string buf according to the format
contained in the managed string fmt and stores the results using the arguments after
count.

If not null, *count is set to the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of an early matching failure.

Returns
The sscanf_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.8.2 The vsscanf_m function

Synopsis
#include <string_m.h>
errno_t vsscanf_m(string_m buf,

const string_m fmt,
int *count,
va_list args);

Runtime-constraints
buf and fmt shall reference a valid managed string. fmt shall not be null. The
managed string fmt shall be a valid format compatible with the arguments args.

Description

Version 1.4 Page 33 of 37 7:53 AM 4/29/2006

The vsscanf_m function processes the managed string buf according to the format
contained in the managed string fmt and stores the results using the arguments in args.

If not null, *count is set to the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of an early matching failure.

Returns
The vsscanf_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.8.3 The scanf_m function

Synopsis
#include <string_m.h>
errno_t scanf_m(const string_m fmt, int *count, ...);

Runtime-constraints
fmt shall reference a valid managed string. fmt shall not be null. The managed string
fmt shall be a valid format compatible with the arguments after count.

Description
The scanf_m function processes input from standard input according to the format
contained in the managed string fmt and stores the results using the arguments after
count.

If not null, *count is set to the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of an early matching failure.

Returns
The scanf_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.8.4 The vscanf_m function

Synopsis
#include <string_m.h>
errno_t vscanf_m(const string_m fmt, int *count,

va_list args);

Runtime-constraints
fmt shall reference a valid managed string. fmt shall not be null. The managed string
fmt shall be a valid format compatible with the arguments args.

Description
The vscanf_m function processes input from standard input according to the format
contained in the managed string fmt and stores the results using the arguments in args.

Version 1.4 Page 34 of 37 7:53 AM 4/29/2006

If not null, *count is set to the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of an early matching failure.

Returns
The vscanf_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.8.5 The fscanf_m function

Synopsis
#include <string_m.h>
errno_t fscanf_m(FILE *file, const string_m fmt,

int *count, ...);

Runtime-constraints
fmt shall reference a valid managed string. fmt shall not be null. The managed string
fmt shall be a valid format compatible with the arguments after count. file shall not
be a null pointer.

Description
The fscanf_m function processes input from file according to the format contained
in the managed string fmt and stores the results using the arguments after count.

If not null, *count is set to the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of an early matching failure.

Returns
The fscanf_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.9 String slices

7.9.1 The strslice_m function

Synopsis
#include <string_m.h>
errno_t strslice_m(string_m s1,

const string_m s2,
rsize_t offset, rsize_t len);

Runtime-constraints
s1 and s2 shall reference valid managed strings. There shall be sufficient memory to
store the result.

Description

Version 1.4 Page 35 of 37 7:53 AM 4/29/2006

The strslice_m function takes up to len characters from s2, starting at the
offset character in the string and stores the result in s1. If there are insufficient
characters to copy len characters, all available characters are copied. If offset is
greater than the number of characters in s2, s1 is set to the null string. If offset is
equal to the number of characters in s2 or len is 0, s1 is set to the empty string.

Returns
The strslice_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.9.2 The strleft_m function

Synopsis
#include <string_m.h>
errno_t strleft_m(string_m s1,

const string_m s2,
rsize_t len);

Runtime-constraints
s1 and s2 shall reference valid managed strings. There shall be sufficient memory to
store the result.

Description
The strleft_m function copies up to len characters from the start of the managed
string s2 to the managed string s1. If s2 does not have len characters, the entire string
is copied. If s2 is null, s1 is set to the null string.

Returns
The strleft_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.9.3 The strright_m function

Synopsis
#include <string_m.h>
errno_t strleft_m(string_m s1,

const string_m s2,
rsize_t len);

Runtime-constraints
s1 and s2 shall reference valid managed strings. There shall be sufficient memory to
store the result.

Description

Version 1.4 Page 36 of 37 7:53 AM 4/29/2006

The strright_m function copies up to the last len characters from the managed
string s2 to the managed string s1. If s2 does not have len characters, the entire string
is copied. If s2 is null, s1 is set to the null string.

Returns
The strright_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.9.4 The cchar_m function

Synopsis
#include <string_m.h>
errno_t cchar_m(const string_m s,

rsize_t offset,
char *c);

Runtime-constraints
s shall reference a valid managed string. c shall not be null. offset shall be less than
the length of the managed string s. The character to be returned in c shall be
representable as a char.

Description
The cchar_m function sets c to the offset character (the first character having an
offset of 0) in the managed string s.

Returns
The cchar_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

7.9.5 The wchar_m function

Synopsis
#include <string_m.h>
errno_t wchar_m(const string_m s,

rsize_t offset,
wchar_t *wc);

Runtime-constraints
s1 shall reference a valid managed string. wc shall not be null. offset shall be less
than the length of the managed string s1.

Description
The wchar_m function sets wc to the offset character (the first character having an
offset of 0) in the managed string s.

Returns

Version 1.4 Page 37 of 37 7:53 AM 4/29/2006

The wchar_m function returns zero if no runtime-constraints were violated.
Otherwise, a non-zero value is returned.

