
For C Language WG, 2006 March, Berlin 1

For C Language WG, 2006 March, Berlin 1

A New Standards Project on 
“Avoiding Programming Language 

Vulnerabilities”

Jim Moore
Liaison Representative from IEEE Computer Society to ISO/IEC JTC 1/SC 7

Liaison Representative between ISO/IEC JTC 1/SC 7 and SC 22
Convener, ISO/IEC JTC 1/SC 22/OWG Vulnerability

James.W.Moore@ieee.org

For C Language WG, 2006 March, Berlin 2

Cyber Security is a Growing Problem

2

President’s Information Technology Advisory 
Committee (PITAC) Subcommittee on Cyber Security

Areas in Need of Increased Support
• Computer Authentication Methodologies
• Securing Fundamental Protocols
• Secure Software Engineering and 

Software Assurance
• Holistic System Security
• Monitoring and Detection
• Mitigation and Recovery Methodologies
• Cyber Forensics and Technology to 

Enable Prosecution of Criminals
• Modeling and Testbeds for New 

Technologies
• Metrics, Benchmarks, and Best Practices
• Societal and Governance Issues

-- From Joe 
Jarzombek, PMP, 

Director for 
Software 

Assurance, 
NCSD, DHS



For C Language WG, 2006 March, Berlin 2

For C Language WG, 2006 March, Berlin 3

Threat

3

PITAC’s Findings Relative to 
Needs for Secure Software 
Engineering & Software Assurance

• Commercial software engineering today lacks the 
scientific underpinnings and rigorous controls 
needed to produce high-quality, secure products 
at acceptable cost. 

• Commonly used software engineering practices 
permit dangerous errors, such as improper 
handling of buffer overflows, which enable 
hundreds of attack programs to compromise 
millions of computers every year. 

• In the future, the Nation may face even more 
challenging problems as adversaries – both 
foreign and domestic – become increasingly 
sophisticated in their ability to insert malicious 
code into critical software. 

-- From Joe 
Jarzombek, PMP, 

Director for Software 
Assurance, NCSD, 

DHS

The problem 
has 
implications 
for:

• Safety

• Privacy

• Security

• Economy 

• Even 
national 
security 

For C Language WG, 2006 March, Berlin 4

Government Response

7

DHS Software Assurance Initiative 
• Purpose:

– Shift security paradigm from Patch Management to 
Software Assurance 

– Encourage the software developers (public and private 
industry) to raise the bar on software quality and security

– Facilitate discussion, develop practical guidance, review 
tools, and promote R&D investment

• Charter -- The National Strategy to Secure Cyberspace -
Action/Recommendation 2-14:
“DHS will facilitate a national public-private effort to 

promulgate best practices and methodologies that promote 
integrity, security, and reliability in software code 
development, including processes and procedures that 
diminish the possibilities of erroneous code, malicious 
code, or trap doors that could be introduced during 
development.”

-- From Joe Jarzombek, 
PMP, Director for 

Software Assurance, 
NCSD, DHS

There are 
initiatives 
underway in 
both DoD and 
DHS.



For C Language WG, 2006 March, Berlin 3

For C Language WG, 2006 March, Berlin 5

Relationship of Software Assurance to Other Disciplines

3
© 2005 The MITRE Corporation. All rights reserved

Relating SW Assurance to SW Engineering

System and SW
Engineering

Information
Assurance Safety

Predictable 
Execution

For a safety analysis to 
be valid …

For a security analysis to 
be valid …

The execution of the 
system must be 
predictable. This requires 
…

– Correct 
implementation of 
requirements, 
expectations and 
regulations.

– Exclusion of 
unwanted function 
even in the face of 
attempted 
exploitation.

Traditional 
concern

New 
concern

For C Language WG, 2006 March, Berlin 6

Relationship of Software Assurance to Other Disciplines

4
© 2005 The MITRE Corporation. All rights reserved

Raising the Ceiling and Raising the Floor

Information Assurance and 
System Safety typically treat the 
concerns of the most critical of 
systems.
– They prescribe extra practices 

(and possibly, extra cost) in 
developing, maintaining and 
operating such systems.

However, some of the concerns 
of Software Assurance involve 
simple things that any 
developer should do.
– They don’t cost anything extra.
– In some cases, they amount to 

“stop making avoidable 
mistakes.”

Raising 
the 

Ceiling

Raising 
the 

Floor

Minimum 
level of 

responsible 
practice

Best 
available 
methods

Some 
“avoidable 

mistakes” are 
encouraged by 

poor usage 
(arguably, 

poor design) of 
programming 

languages.



For C Language WG, 2006 March, Berlin 4

For C Language WG, 2006 March, Berlin 7

Problem

• Any programming language has constructs that 
are imperfectly defined, implementation-
dependent or difficult to use correctly.

• As a result, software programs sometimes 
execute differently than intended by the writer.

• In some cases, these vulnerabilities can be 
exploited by unfriendly parties.
– Can compromise safety, security and privacy.
– Can be used to make additional attacks.

For C Language WG, 2006 March, Berlin 8

Complicating Factors

• The choice of programming language for a 
project is not solely a technical decision and is 
not made solely by software engineers.

• Some vulnerabilities cannot be mitigated by 
better use of the language but require 
mitigation by other methods, e.g. review, static 
analysis.



For C Language WG, 2006 March, Berlin 5

For C Language WG, 2006 March, Berlin 9

JTC1TC176 TC65

ISO IEC

SC7 SC27

Quality Mgmt Safety

IT SecuritySoftware and 
Systems 

Engineering

SC22

Programming 
Languages

For C Language WG, 2006 March, Berlin 10

Guidance to Avoiding Vulnerabilities in Programming 
Languages through Language Selection and Use (1 of 3)

• New project in ISO/IEC JTC 1/SC 22 will produce a 
Technical Report (which is not a “standard”). It will 
provide guidance, not requirements.

• Purpose: ... prepare comparative guidance 
spanning a large number of programming 
languages, so that application developers will be 
better informed regarding the vulnerabilities 
inherent to candidate languages and the costs of 
avoiding such vulnerabilities. An additional 
benefit is that developers will be better prepared 
to select tooling to assist in the evaluation and 
avoidance of vulnerabilities ...



For C Language WG, 2006 March, Berlin 6

For C Language WG, 2006 March, Berlin 11

Example from NUREG/CR-6463, Rev. 1, Review Guidelines for Software 
Languages for Use in Nuclear Power Plant Safety Systems: Final Report, 

1997, US Nuclear Regulatory Commission

If dynamic memory allocation is unavoidable, the 
source code should include provisions to ensure that: 
– All dynamically allocated memory during a specific 

execution cycle is released at the end of that cycle, and 
– The possibility of interruption of execution between the 

point where memory is dynamically allocated and when it 
is released is minimized (if not totally eliminated); there 
should also be provisions in the application code that will 
detect any situation where dynamically allocated memory 
has not been released and release such memory. 

To see the following languages select: Ada; C and 
C++ ; Pascal; PL/M; Ada 95.

For C Language WG, 2006 March, Berlin 12

Example from NUREG/CR-6463, Rev. 1, Review Guidelines for Software 
Languages for Use in Nuclear Power Plant Safety Systems: Final Report, 

1997, US Nuclear Regulatory Commission

The following discussion applies to C++ only. 
In C++, the functions to dynamically allocate and free 
memory are new and delete. The following guideline 
applies. 
• Ensure that all classes include a destructor. To avoid 

memory leaks, all classes must include a destructor that 
releases any memory allocated by the class. Constructors 
must themselves be defined in a way to avoid possible 
memory leaks in case of failures. Ensure that for all derived 
classes there are virtual destructors. 



For C Language WG, 2006 March, Berlin 7

For C Language WG, 2006 March, Berlin 13

Guidance to Avoiding Vulnerabilities in Programming 
Languages through Language Selection and Use (2 of 3)

• ... the project will prefer linguistic means of 
avoiding vulnerabilities but, when necessary 
may describe extra-linguistic means (e.g. static 
analysis or targeted testing) ... the project will 
prefer the avoidance of identified risks but, when 
necessary, may describe means to mitigate the 
risk of vulnerabilities that cannot be 
economically avoided ... in cases where 
identified problems can be neither avoided nor 
mitigated, the report may assist users in 
understanding the nature of risk that must be 
accepted ...

For C Language WG, 2006 March, Berlin 14

Example from ISO/IEC TR 15942:2000, Information technology 
— Programming languages — Guide for the use of the Ada 

programming language in high integrity systems
Initialization of Variables
All variables should be given a meaningful value before use. Failure to do so 
may raise a predefined exception or cause a bounded error at run-time. Initial 
values may be given by:
1. Associating an explicit initialization expression with the variable at the point 
of its declaration.
2. Making an assignment to the variable that will be executed prior to 
references to it.
For state variables in packages, assignments may also be made in the package 
elaboration part. A consistent approach to the initialization of package state 
variables should be adopted.
In all cases, Data Flow analysis should be used to confirm that every object 
has been assigned a value before it is used. The effectiveness of the analysis is 
undermined if variables are initialized unnecessarily (sometimes called ‘junk 
initialization’). ...



For C Language WG, 2006 March, Berlin 8

For C Language WG, 2006 March, Berlin 15

Guidance to Avoiding Vulnerabilities in Programming 
Languages through Language Selection and Use (3 of 3)

• ... in some situations, one construct might be 
preferred over another on the grounds that it is 
easier to test or easier to analyze. This 
relationship between construction and 
subsequent verification activities makes it clear 
that the report will be useful both for those 
emphasizing "correctness by construction" and 
those who desire to improve the predictability of 
execution through testing and analysis ...

For C Language WG, 2006 March, Berlin 16

Status

• The project is now being organized.
• The project is assigned to SC22’s OWG on 

Vulnerability:
– Convener, Jim Moore
– Co-Convener, John Benito

• More information

http://aitc.aitcnet.org/isai/


