
SC 22/WG 14 N1160 Austin Group Concerns on PDTR 24731 Stoughton
2006-02-27

Members of the Austin Group have been reviewing the proposed Technical
Report on "Bounds Checking Functions" over the last year, and wish to
express their concerns over its direction.

The proposed interfaces fail to address many of the aspects related to
buffer overflow and as a result are only suitable for a narrow range
of applications.

The basic idea embodied by the proposed interface is not a new one.
For example, the proposed strcpy_s function is similar to the strlcpy
function of OpenBSD 2.4 (1998). However, the basic idea has not achieved
practical consensus; on the contrary, for reasons discussed below it has
been controversial almost since it was introduced. A Technical Report
of type 2 does not seem warranted here: the subject is controversial
rather than being under technical development, and mere publication of
a TR is unlikely to further consensus.

The core of the problem is that memory handling in C is complicated and
error prone. Nobody doubts that improvements in the supporting APIs
are useful. However, the existing APIs already provide all the means
to write correct programs, although it is often cumbersome to do so.
The proposed interfaces don't change that and, to the contrary, can
make programs even more complex. A better solution would be to take
the memory handling off the hands of the programmer as much as possible.

Let's look at the string functions first. Obviously, code like

void f(char *t, const char *s1, const char *s2) {
 strcpy(t, s1);
 strcat(t, s2);
}

is bad. But it is not written this way because it is impossible to
write correct code. Obviously the length of the target buffer can be
passed, though this alters the ABI (see below):

void f(char *t, size_t tlen, const char *s1, const char *s2) {
 if (strlen(s1)+strlen(s2) >= tlen) abort();
 strcpy(t, s1);
 strcat(t, s2);
}

This is cumbersome to write and slow which is why programmers don't do it.
But, more importantly, this kind of change cannot retroactively made
because it changes both the API and ABI. New interfaces would have to be
introduced (give the new function a different name) but then one might
as well write a better function than this. If f() is in a third party
library, it cannot change without all the customers of the library
changing and recompiling/relinking their applications.

The version using the proposed interfaces has exactly the same problem.

void f(char *t, rsize_t tlen, const char *s1, const char *s2) {
 if (strcpy_s(t, tlen, s1) != 0 || strcat_s(t, tlen, s2) != 0)
 abort();
}

If anything, this code is even less obvious then the previous version
even though it is likely a bit faster.

Even using the exception handler to provide the abort requires the ABI
to change:

void f(char *t, rsize_t tlen, const char *s1, const char *s2) {
 (void) set_constraint_handler_s(abort_handler_s);

Page 1 of 4

 strcpy_s(t, tlen, s1);
 strcat_s(t, tlen, s2);
}

Another problem with respect to the string functions being used to fix up
existing code can be demonstrated with this code sequence:

char *p = malloc (3 * NAME_LEN);
strcpy (p, name1);
strcat (p, name2);
strcat (p, name3);

All too often fixed values like NAME_LEN are used which are the basis for
overflows. A programmer could certainly use

char *p = malloc(strlen(name1) + strlen(name2) + strlen(name3) + 1);
if (p != NULL)
 {
 strcpy (p, name1);
 strcat (p, name2);
 strcat (p, name3);
 }

but this is once again cumbersome and therefore won't be used. Now
assume the new string functions. The code to correctly handle
the code (more correct than either of the previous two code sequences,
this is the goal) could look something like this:

rsize_t len = 3 * NAME_LEN;
char *p = NULL;
again:
char *p2 = realloc(p, len);
if (p2 == NULL)
 abort ();
p = p2;
if (strcpy_s(p, len, name1) != 0
 || strcat_s(p, len, name2) != 0
 || strcat_s(p, len name3) != 0)
 {
 len += 2;
 goto again;
 }

Nobody can say that this is more appealing to the programmer and
it is unlikely that code like this will find its way
into many programs.

Once again, this can be written more simply as

char *p = malloc(3*NAME_LEN);
set_constraint_handler_s(abort_handler_s);
strcpy_s(p, NAME_LEN, name1);
strcat_s(p, strlen(p)+NAME_LEN, name2);
strcat_s(p, strlen(p)+NAME_LEN, name3);

but this still has several vulnerabilities and coding weaknesses,
resulting in different end results for p than previously correctly
functioning code:

1. Is it certain that name1, name2 and name3 really were a
maximum of NAMELEN on entry to this code? What if name1 was
NAME_LEN+10, while name2 was NAME_LEN-10?

2. The code needs to be aware of the exception handler; if the
handler is not the abort handler, the code *should* check the
return code and take appropriate steps if it is to function
correctly. A simple drop in replacement as above will fail with
the ignore-handler.

Page 2 of 4

The new string functions are meant as an aid to secure existing code
bases but the requirement to change ABI (new function parameters,
additional elements in structures, etc) plus the added complexity of the
code makes the adoption of these interfaces higher unlikely.

Instead, a better approach is to eliminate the requirement on the
programmer to deal with the allocation him/herself. The runtime should
do this. In this users of systems with the GNU C library can simply use

char *p;
if (asprintf(&p, "%s%s%s", name1, name2, name2) == -1)
 abort();

The runtime makes sure the target string is large enough and that
error conditions (out-of-memory etc) are recognized. It does leave the
programmer the responsibility of adding

free(p);

when he/she is finished with the result, but is this really harder than
some of the contortions necessary to use the proposed interfaces?

The concept of rsize_t and RSIZE_MAX also cause confusion. The lesson
learned from "640 KiB is enough address space" is that there is no fixed
limit which people wouldn't want to see lifted over time.

On 32-bit systems we used to have 2 GiB or up to 3 GiB of address space
available for user-level code. Nowadays the whole 4 GiB is available because
people asked for it. Any RSIZE_MAX chosen for 2 or 3 GiB address spaces
would prevent using 4 GiB address spaces. The same is true for any other
limit and it will definitely remain true for 64-bit architectures as well.

Any interface introduced solely for the purpose of using rsize_t instead
of size_t is completely unnecessary. Aside from the problem of picking
a size, using rsize_t for different sizes like tmpnam_s (for a string)
wcscpy_s (a wide char string) and qsort_s (a number of element and a
type size) makes no sense. How can a function reject handling strings
of, say, 2^20 bytes but allow wcscpy_s to handling 2^22 bytes (on
platforms with 4 byte wchar_t)?

All of this functionality can be implemented with the existing
implementation. It is always possible for the runtime to determine the
maximum possible string length, for example, by looking at the gaps in
the address space at startup time. This *dynamically* determined value
can then be used for sanity checks; no correct program can ever use
larger values. It is therefore no violation of the ISO C to handle
these situations as error cases.

Then there are the stdio and string functions which are now supposed to
gracefully handle NULL pointers. However, as "drop-in replacements" for
the original functions, these are likely to lead to security weaknesses in
the application where the unmodified program would crash. Programmers far
too often don't check for errors and so NULL pointers and the like are
used in places where they shouldn't. Now assume that the stream pointer
is supposed to be for a stream where security logs are written to.
If an attacker can overwrite the FILE* value with NULL no more output
happens and security problems remain unreported and undetected. The only
valid exception handler in these cases should be the abort_handler.

There are a myriad of situations like this where unreported invalid
input can cause problems. There is a problem with the special handling
of printf("%s", NULL) in the GNU C library, which chose to print the
string "(null)". In hindsight, this extension probably was not a good
idea because it hides problems.

The only reasonable way to handle invalid inputs is by brute force:
abort the program or at the very least make absolutely sure the user
notices the problem. A Denial of Service attack is much less severe and
easier to notice and battle than an attack which causes, for instance,

Page 3 of 4

logging to be disabled.

The "drop-in" replacement technique introduces subtle semantic changes
in the way an application will behave under a certain set of input data,
and these semantic changes may well have unintended side effects that
make the resulting program less "secure". As a result, any programmer
altering an application to make changes to the interfaces to use these
bounds-checking versions *must* do more than simply "drop-in" the new
version. Since he/she is going to that much work anyway, moving to a
paradigm using malloc'ed memory would be no harder, and is demonstrably
safer.

Another problem can arise in cases where the programmer makes incorrect
assumptions about buffer sizes. In this case, the programmer believes
that he/she has mitigated all buffer overflow problems by using the new
interfaces, but in reality there are still buffer overflows possible in
the code.

We are not aware of any study demonstrating that the proposed approach
leads to safer or more-secure software. On the contrary, when one of
us very-briefly attempted to investigate the matter in 2002, he found
that the technique (as embodied by the similar strlcpy/strlcat
functions of OpenBSD) made C code harder to read and to maintain,
while not catching any bugs in the code surveyed. The code surveyed
was OpenSSH_3.0.2p1, the then-current version. For some details
please see:

http://sources.redhat.com/ml/libc-alpha/2002-01/msg00096.html
http://sources.redhat.com/ml/libc-alpha/2002-01/msg00159.html

In summary, there is no aspect of the proposal which is worth
standardizing. Either no change is needed for the new interfaces or
there is no chance that the interfaces will find widespread adoption.

Page 4 of 4

