
Version 1.3 Page 1 of 13 3:09 PM 8/26/2005

ISO/IEC JTC1 SC22 WG14 N1132

Date: 2005-08-19

Reference number of document: ISO/IEC WDTR nnnnn

Committee identification: ISO/IEC JTC1 SC22 WG14

SC22 Secretariat: ANSI

Information Technology —

Programming languages, their environments and system software

interfaces —

Specification for Managed Strings —

Dr. Fred Long
Department of Computer Science

University of Wales, Aberystwyth

Robert C. Seacord
CERT/CC

Carnegie Mellon University

Version 1.3 Page 2 of 13 3:09 PM 8/26/2005

1 Managed String handling <string_m.h>

1.1 Introduction

1.1.1 String manipulation errors
Many vulnerabilities in C programs arise through the use of the standard C string
manipulating functions. String manipulation errors include buffer overflow through
string copying, truncation errors, termination errors and improper data sanitization.

Buffer overflow can easily occur when copying strings if the fixed-length destination of
the copy is not large enough to accommodate the source of the string. This is a particular
problem when the source is user input, which is potentially unbounded. The usual
programming practice is to allocate a character array that is generally large enough. The
problem is that this can easily be exploited by malicious users who can supply a carefully
crafted string that overflows the fixed length array in such a way that the security of the
system is compromised. This is still the most common exploit in fielded code today.

In attempting to overcome the buffer overflow problem, some programmers try to limit
the number of characters that are copied. This can result in strings being improperly
truncated. This, in turn, results in a loss of data which may lead to a different type of
software vulnerability.

A special case of truncation error is a termination error. Many of the standard C string
functions rely on strings being null terminated. However, the length of a string does not
include the null character. If just the non-null characters of a string are copied then the
resulting string may become improperly terminated. A subsequent access may run off the
end of the string and corrupt data that should not have been touched.

Finally, inadequate data sanitization can also lead to vulnerabilities. Many applications
require data to be constrained not to contain certain characters. Very often, malicious
users can be prevented from exploiting an application by ensuring that the illegal
characters are not copied into the strings destined for the application.

1.1.2 Proposed solution
A secure string library should provide facilities to guard against the problems described
above. Furthermore, it should satisfy the following requirements:

1. Operations should succeed or fail unequivocally. There should be no undefined
behavior.

2. The facilities should be familiar to C programmers so that they can easily be
adopted and existing code easily converted.

3. There should be no surprises in using the facilities. The new facilities should
have similar semantics to the standard C string manipulating functions. Again,
this will help with the conversion of legacy code.

Of course, some compromise is needed in order to meet these requirements. For
example, it is not possible to completely preserve the existing semantics and provide
protection against the problems described above.

Version 1.3 Page 3 of 13 3:09 PM 8/26/2005

Libraries that provide string manipulation functions can be categorized as static or
dynamic. Static libraries rely on fixed-length arrays. A static approach cannot easily
overcome the problems described. With a dynamic approach, strings are resized as
necessary. This approach can more easily solve the problems, but a consequence is that
memory can be exhausted if input is not limited. This can lead to denial-of-service
attacks. Nevertheless, a dynamic managed string library is proposed since this leads to
the most secure alternative.

1.1.3 The managed string library
This managed string library was developed in response to the need for a string library that
can improve the quality and security of newly developed C language programs while
eliminating obstacles to widespread adoption and possible standardization.

The managed string library is based on a dynamic approach in that memory is allocated
and reallocated as required. This approach eliminates the possibility of unbounded
copies, null-termination errors, and truncation by ensuring there is always adequate space
available for the resulting string (including the terminating null character). The one
exception is if memory is exhausted, which is treated as a constraint violation. In this
way, the managed string library accomplishes the goal of succeeding or failing loudly.

The managed string library also provides a built in mechanism for dealing with data
sanitization by (optionally) ensuring that all characters in a string belong to a predefined
set of “safe” characters.

2 Terms, definitions, and symbols
For the purposes of this Technical Report, the following definitions apply. Other terms
are defined where they appear in italic type. Terms explicitly defined in this Technical
Reports are not to be presumed to refer implicitly to similar terms defined elsewhere.
Terms not defined in this Technical Report are to be interpreted according to ISO/IEC
9899:1999 and ISO/IEC 2382−1. Mathematical symbols not defined in this Technical
Report are to be interpreted according to ISO 31−11.

2.1 constraint
restriction, either syntactic or semantic, by which the exposition of language elements is
to be interpreted; or, requirement on a program when calling a library function.

3 Library

3.1 Use of errno
An implementation may set errno for the functions defined in this technical report, but
is not required to.

3.2 Constraint Violations
Most functions in this technical report include as part of their specification a list of
constraints. These constraints are requirements on the program using the library.

Version 1.3 Page 4 of 13 3:09 PM 8/26/2005

Implementations shall check that the constraints specified for a function are met by the
program. If a constraint is violated, the implementation shall call the currently registered
constraint handler (see set_constraint_handler in <stdlib.h>). Multiple
constraint violations in the same call to a library function result in only one call to the
constraint handler. It is unspecified which one of the multiple constraint violations cause
the handler to be called.

The constraint handler might not return. If the constraint handler does return, the library
function whose constraint was violated should return some indication of failure as given
in the function’s specification.

Implementations are free to detect any case of undefined behavior and treat it as a
constraint violation by calling the constraint handler. This license comes directly from the
definition of undefined behavior.

3.3 Errors <errno.h>
The header <errno.h> defines a type.

The type is
errno_t
which is type int.

4 Library functions

4.1 Utility functions

4.1.1 The isnullstr_m function

Synopsis
#include <string_m.h>
errno_t isnullstr_m(const string_m s, int *nullstr);

Constraints
s shall not be a null pointer. s shall reference a valid managed string. nullstr shall
not be a null pointer.

Description
The isnullstr_m function tests whether the string represented by s is null and
delivers this result in the parameter referenced by nullstr, given the managed string s.

Returns
The isnullstr_m function returns zero if there was no constraint violation.
Otherwise, a non-zero value is returned.

Version 1.3 Page 5 of 13 3:09 PM 8/26/2005

4.1.2 The isemptystr_m function

Synopsis
#include <string_m.h>
errno_t isemptystr_m(const string_m s, int *emptystr);

Constraints
s shall not be a null pointer. s shall reference a valid managed string. nullstr shall
not be a null pointer.

Description
The isemptystr_m function tests whether the string represented by s is empty and
delivers this result in the parameter referenced by emptystr, given the managed string
s.

Returns
The isemptystr_m function returns zero if there was no constraint violation.
Otherwise, a non-zero value is returned.

4.1.3 The strcreate_m function

Synopsis
#include <string_m.h>
errno_t strcreate_m(string_m *s, const char *cstr);

Constraints
There shall be sufficient memory available to create the managed string s. cstr shall
contain only valid characters.

Description
The strcreate_m function creates a managed string, referenced by s, given a
conventional string cstr (which may be null or empty).

Returns
The strcreate_m function returns zero if there was no constraint violation.
Otherwise, a non-zero value is returned.

4.1.4 The strdelete_m function

Synopsis
#include <string_m.h>
errno_t strdelete_m(string_m *s);

Constraints
s shall not be a null pointer.

Version 1.3 Page 6 of 13 3:09 PM 8/26/2005

Description
The strdelete_m function deletes the managed string referenced by s (which may be
null or empty).

Returns
The strdelete_m function returns zero if there was no constraint violation.
Otherwise, a non-zero value is returned.

4.1.5 The strlen_m function

Synopsis
#include <string_m.h>
errno_t strlen_m(const string_m s, size_t *size);

Constraints
s shall not be a null pointer. s shall not represent a null string. size shall not be a null
pointer.

Description
The strlen_m function computes the length of the string represented by the managed
string s and stores the result into the variable referenced by size.

Returns
The strlen_m function returns zero if there was no constraint violation.
Otherwise, a non-zero value is returned.

4.1.6 The getstr_m function

Synopsis
#include <string_m.h>
errno_t getstr_m(const string_m s, char **string);

Constraints
s shall not be a null pointer. s shall reference a valid managed string. string shall
not be a null pointer. If there is a constraint violation, then the array (if any) pointed to
by string is not modified.

Description
The getstr_m function delivers a conventional string into the variable referenced by
string, given the managed string s.

Returns
The getstr_m function returns zero if there was no constraint violation.
Otherwise, a non-zero value is returned.

Version 1.3 Page 7 of 13 3:09 PM 8/26/2005

4.1.7 The strdup_m function

Synopsis
#include <string_m.h>
errno_t strdup_m(string_m *s1, const string_m s2);

Constraints
There shall be sufficient memory available to create the managed string s1. s2 shall not
be null and shall reference a valid managed string.

Description
The strdup_m function creates a duplicate of the managed string s2 (including the
terminating null character) in the managed string s1.

Returns
The strdup_m function returns zero if there was no constraint violation.
Otherwise, a non-zero value is returned.

4.2 Copying functions

4.2.1 The strcpy_m function

Synopsis
#include <string_m.h>
errno_t strcpy_m(string_m s1, const string_m s2);

Constraints
Neither s1 nor s2 shall be null. There shall be sufficient memory available to create the
managed string s1. s2 shall reference a valid managed string. s2 shall contain only
valid characters.

Description
The strcpy_m function copies the string represented by the managed string s2
(including the terminating null character) into the string represented by the managed
string s1.

Returns
The strcpy_m function returns zero if there was no constraint violation.
Otherwise, a non-zero value is returned.

Version 1.3 Page 8 of 13 3:09 PM 8/26/2005

4.2.2 The strncpy_m function

Synopsis
#include <string_m.h>
errno_t strncpy_m (string_m s1,

const string_m s2,
size_t n);

Constraints
Neither s1 nor s2 shall be null. There shall be sufficient memory available to create the
managed string s1. s2 shall reference a valid managed string. s2 shall contain only
valid characters.

Description
The strncpy_m function copies not more than n characters (characters that follow a
null character are not copied) from the string represented by the managed string s2 to
the string represented by the managed string s1. If the string represented by s2 is a
string that is shorter than n characters, null characters are appended to the copy in the
array pointed to by s1, until n characters in all have been written.

Returns
The strncpy_m function returns zero if there was no constraint violation.
Otherwise, a non-zero value is returned.

4.3 Concatenation functions

4.3.1 The strcat_m function

Synopsis
#include <string_m.h>
errno_t strcat_m(string_m s1, const string_m s2);

Constraints
Neither s1 nor s2 shall be null. Neither s1 nor s2 shall represent the null string. There
shall be sufficient memory available to create the managed string s1. s2 shall reference
a valid managed string. s2 shall contain only valid characters.

Description
The strcat_m function concatenates the string represented by the managed string s2
(including the terminating null character) onto the string represented by the managed
string s1.

Returns
The strcat_m function returns zero if there was no constraint violation.
Otherwise, a non-zero value is returned.

Version 1.3 Page 9 of 13 3:09 PM 8/26/2005

4.3.2 The strncat_m function

Synopsis
#include <string_m.h>
errno_t strncat_m (string_m s1,

const string_m s2,
size_t n);

Constraints
Neither s1 nor s2 shall be null. Neither s1 nor s2 shall represent the null string. There
shall be sufficient memory available to create the managed string s1. s2 shall reference
a valid managed string. s2 shall contain only valid characters.

Description
The strncat_m function appends not more than n characters (a null character and
characters that follow it are not appended) from the string represented by the managed
string s2 to the end of the string represented by the managed string s1. The initial
character of the string represented by s2 overwrites the null character at the end of the
string represented by s1. A terminating null character is always appended to the result.
If copying takes place between objects that overlap, the behavior is undefined.

Returns
The strncat_m function returns zero if there was no constraint violation.
Otherwise, a non-zero value is returned.

4.4 Comparison functions
The sign of a nonzero value delivered by the comparison functions strcmp_m, and
strncmp_m is determined by the sign of the difference between the values of the first
pair of characters (both interpreted as unsigned char) that differ in the objects being
compared.

4.4.1 The strcmp_m function

Synopsis
#include <string_m.h>
errno_t strcmp_m (const string_m s1,

const string_m s2
int *cmp);

Constraints
cmp shall not be null. Neither s1 nor s2 shall be null. Neither s1 nor s2 shall
represent the null string.

Version 1.3 Page 10 of 13 3:09 PM 8/26/2005

Description
The strcmp_m function compares the string represented by the managed string s1 to
the string represented by the managed string s2, and delivers the result in the variable
cmp.

Returns
The strcmp_m function returns zero if there was no constraint violation.
Otherwise, a non-zero value is returned.

4.4.2 The strcoll_m function

Synopsis
#include <string_m.h>
errno_t strcoll_m (const string_m s1,

const string_m s2
int *cmp);

Constraints
cmp shall not be null. Neither s1 nor s2 shall be null. Neither s1 nor s2 shall
represent the null string.

Description
The strcoll_m function compares the string represented by the managed string s1
to the string represented by the managed string s2, both interpreted as appropriate to the
LC_COLLATE category of the current locale, and delivers the result in the variable cmp.

Returns
The strcoll_m function returns zero if there was no constraint violation.
Otherwise, a non-zero value is returned.

4.4.3 The strncmp_m function

Synopsis
#include <string_m.h>
errno_t strncmp_m (const string_m s1,

const string_m s2,
size_t n
int *cmp);

Constraints
cmp shall not be null. Neither s1 nor s2 shall be null. Neither s1 nor s2 shall
represent the null string.

Description
The strncmp_m function compares not more than n characters (characters that follow
a null character are not compared) from the string represented by the managed string s1
to the string represented by the managed string s2.

Version 1.3 Page 11 of 13 3:09 PM 8/26/2005

Returns
The strncmp_m function returns zero if there was no constraint violation.
Otherwise, a non-zero value is returned.

4.5 Search functions

4.5.1 The strtok_m function

Synopsis
#include <string_m.h>
errno_t strtok_m(string_m token,

string_m str,
const string_m delim,
string_m ptr);

Constraints
None of token, str, delim, ptr shall be null. There shall be sufficient memory
available to create the managed string token.

Description
The strtok_m function scans the string represented by str. The substring of str
up to but not including the first occurrence of any of the characters contained in the string
represented by delim is returned as the string represented by token. The remainder of
the string represented by str (after but not including the first character found from
delim) is returned as the string represented by ptr.

Returns

The strtok_m function returns zero if there was no constraint violation.
Otherwise, a non-zero value is returned.

4.6 Sanitization functions

4.6.1 The setcharset function

Synopsis
#include <string_m.h>
errno_t setcharset(const string_m s);

Constraints
s shall not be null. There shall be sufficient memory available to create the managed
string s. s shall not represent the null string. s shall reference a valid managed string.

Description
The setcharset function sets the set of allowable characters to be those in the string
represented by s (which may be empty).

Version 1.3 Page 12 of 13 3:09 PM 8/26/2005

Returns
The setcharset function returns zero if there was no constraint violation.
Otherwise, a non-zero value is returned.

4.7 Printing to string functions

4.7.1 The sprintf_m function

Synopsis
#include <string_m.h>
errno_t sprintf_m(string_m buf, const string_m fmt,

...);

Constraints
Neither buf nor fmt shall be null. fmt shall reference a valid managed string. The
represented by fmt shall represent a valid format compatible with the arguments after
fmt. There shall be sufficient memory available to create the managed string buf.

Description
The sprint_m function formats its parameters after the second parameter into a string
according to the format contained in the string represented by the managed string fmt
and delivers the result in the string represented by the managed string buf.

Returns
The sprintf_m function returns zero if there was no constraint violation.
Otherwise, a non-zero value is returned.

4.7.2 The vsprintf_m function

Synopsis
#include <string_m.h>
errno_t vsprintf_m(string_m buf,

const string_m fmt,
va_list args);

Constraints
Neither buf nor fmt shall be null. fmt shall reference a valid managed string. The
string represented by fmt shall represent a valid format compatible with the arguments
args. There shall be sufficient memory available to create the managed string buf.

Description
The vsprintf_m function formats its parameters args into a string according to the
format contained in the string represented by the managed string fmt and delivers the
result in the string represented by the managed string buf.

Version 1.3 Page 13 of 13 3:09 PM 8/26/2005

Returns
The vsprintf_m function returns zero if there was no constraint violation.
Otherwise, a non-zero value is returned.

