
ISO/IEC JTC1 SC22 WG14 N1040

ISO/IEC JTC1 SC22 WG14 N1040

Date: 2003-11-07

Reference Number of document ISO/IEC DTR 19769

Committee identification: ISO/IEC JTC1 SC22 WG14

SC22 Secretariat: ANSI

 Information Technology —

Programming languages, their environments and system software inferfaces —

Extensions for the programming language C to support new character data types —

Warning

This document is an ISO/IEC draft Technical Report. It is not an ISO/IEC International Technical
Report. It is distributed for review and comment. It is subject to change without notice and shall
not be referred to as an International Technical Report or International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant
patent rights of which they are aware and to provide supporting documentation.

Document type: Technical Report Type 2
Document subtype: n/a
Document stage: (4) Approval
Document language: E

ISO/IEC JCT1 SC22 WG14 N1040

ii © ISO 2003 — All rights reserved

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO.

Requests for permission to reproduce this document for the purpose of selling it should be
addressed as shown below or to ISO’s member body in the country of the requester:

ISO copyright office
Case postale 56
CH-1211 Geneva 20
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Reproduction for sales purposes may be subject to royalty payments or a licensing
agreement.

Violators may be prosecuted.

ISO/IEC JTC1 SC22 WG14 N1040

© ISO 2003 — All rights reserved iii

Contents
1 Introduction... 5
2 General.. 6

2.1 Scope... 6
2.2 References... 6

3 The new typedefs .. 7
4 Encoding ... 8
5 String literals and character constants... 9

5.1 String literals and character constants notations... 9
5.2 The string concatenation ... 9

6 Library functions... 10
6.1 The mbrtoc16 function ... 10
6.2 The c16rtomb function ... 11
6.3 The mbrtoc32 function ... 12
6.4 The c32rtomb function ... 13

7 ANNEX A Unicode encoding forms: UTF-16, UTF-32 ... 14

ISO/IEC JTC1 SC22 WG14 N1040

ISO/IEC JTC1 SC22 WG14 N1040

© ISO 2003 — All rights reserved 5

1 Introduction

The C language has evolved over the last decades, various code pages and multibyte
libraries have been introduced, and extended character set support has been
introduced; however, the support for extended character data types in the C language
is still limited. Today, the introduction and the success of the Unicode/ISO10646
standard and of its implementation in modern computer languages create ever
increasing demands on the C language to give Unicode/ISO10646 better support.
This paper addresses the introduction of new extended character data types in the C
language in order to support future character encoding forms, including
Unicode/ISO10646.

The Unicode standard supports 3 encoding forms:

• UTF-8
• UTF-16
• UTF-32

Each encoding form has advantages and disadvantages, so the choice of the encoding
form should be left to the application. Currently, some C applications implement
UTF-8 using char type, UTF-16 using unsigned short or wchar_t, and UTF-32
using unsigned long or wchar_t. The current situation, however, faces the
following major problems:

• The size of wchar_t is implementation defined. While wchar_t offers a

form of platform portability for C applications, Unicode offers the possibility
to write platform independent applications using a platform independent data
format.

• There is no string literal for 16- or 32-bit based integer types, but the Unicode
encoding forms require string literals.

It is sensible to give all the Unicode encoding forms appropriate data type support.
UTF-8 is normally considered as the preferred multibyte encoding, for sequences of
one or more elements of type char. This paper suggests the implementation of 16
and 32 bit character data types: char16_t and char32_t. The new data types
guarantee program portability through clearly defined character widths. The
encoding of the new data types should be as generic as possible in order to support
not only Unicode but also other character encodings.

It is generally desirable that C applications process entire strings at once rather than
process individual characters in isolation. This paper does not specify the detail of
library functions for the new data types, except one set of character conversion
functions.

ISO/IEC JCT1 SC22 WG14 N1040

6 © ISO 2003 — All rights reserved

2 General

2.1 Scope

This Technical Report specifies two extended character data types as an extension to the
programming language C, specified by the international standard ISO/IEC 9899:1999.

2.2 References

The following standards contain provisions which, through reference in this text, constitute
provisions of this Technical Report. For dated references, subsequent amendments to, or
revisions of, any of these publications do not apply. However, parties to agreements based on
this Technical Report are encouraged to investigate the possibility of applying the most recent
editions of the normative documents indicated below. For undated references, the latest
edition of the normative document referred applies. Members of IEC and ISO maintain
registers of current valid International Standards.

ISO/IEC 9899:1999, Information technology – Programming languages, their environments
an system software interfaces – Programming Languages – C

ISO/IEC 10646-1:2000, Universal multi-octet character set – UCS – Part 1 : Architecture
and Basic Multilingual Plane

ISO/IEC 10646-2: 2000, Universal multi-octet character set – UCS – Part2 : CJK Unified,
Ideographs Supplementary plane, General Scripts and Symbols Plane, General Purpose
Plane

ISO/IEC JTC1 SC22 WG14 N1040

© ISO 2003 — All rights reserved 7

3 The new typedefs

This Technical Report introduces the following two new typedefs, char16_t and
char32_t :

typedef T1 char16_t;
typedef T2 char32_t;

where T1 has the same type as uint_least16_t and T2 has the same type as
uint_least32_t.

The new typedefs guarantee certain widths for the data types, whereas the width of
wchar_t is implementation defined. The data values are unsigned, while char and
wchar_t could take signed values.

This Technical Report also introduces the new header:

<uchar.h>

The new typedefs, char16_t and char32_t, are defined in <uchar.h>

ISO/IEC JCT1 SC22 WG14 N1040

8 © ISO 2003 — All rights reserved

4 Encoding

C99 subclause 6.10.8 specifies that the value of the macro _ _STDC_ISO_10646_ _
shall be "an integer constant of the form yyyymmL (for example, 199712L), intended
to indicate that values of type wchar_t are the coded representations of the
characters defined by ISO/IEC 10646, along with all amendments and technical
corrigenda as of the specified year and month." C99 subclause 6.4.5p5 specifies that
wide string literals are initialized with a sequence of wide characters as defined by the
mbstowcs function with an implementation-defined current locale. Analogous to
this macro, this Technical Report introduces two new macros.

If the header <uchar.h> defines the macro _ _STDC_UTF_16_ _, values of type
char16_t shall have UTF-16 encoding. This allows the use of UTF-16 in char16_t
even when wchar_t uses a non-Unicode encoding. In certain cases the compile-time
conversion to UTF-16 may be restricted to members of the basic character set and
universal character names (\Unnnnnnnn and \unnnn) because for these the conversion
to UTF-16 is defined unambiguously.

If the header <uchar.h> defines the macro _ _STDC_UTF_32_ _, values of type
char32_t shall have UTF-32 encoding.

If the header <uchar.h> does not define the macro _ _STDC_UTF_16_ _, the
encoding of char16_t is implementation defined. Similarly, if the header
<uchar.h> does not define the macro _ _STDC_UTF_32_ _, the encoding of
char32_t is implementation defined.

An implementation may define other macros to indicate a different encoding.

ISO/IEC JTC1 SC22 WG14 N1040

© ISO 2003 — All rights reserved 9

5 String literals and character constants

5.1 String literals and character constants notations

The notations for string literals and character constants for char16_t are
defined analogous to the wide character string literals and wide character
constants:

u"s-char-sequence"

denotes a char16_t type string literal and initializes an array of char16_t.
The corresponding character constant is denoted by

 u'c-char-sequence'

and has the type char16_t. Likewise, the string literal and character
constant for char32_t are,

U"s-char-sequence" and

U'c-char-sequence'.

5.2 The string concatenation

String literals with the new format can be concatenated. If both strings have
the same format, the resulting concatenated string has that format. If one
string has no prefix, it is treated as a string of the same format as the other
operand. (u"str" and U"str") Any other concatenations are implementation-
defined (they might or might not be supported). Here are some examples of
valid concatenations:

u"a" u"b" u"ab" U"a" U"b" U"ab" L"a" L"b" L"ab"
u"a" "b" u"ab" U"a" "b" U"ab" L"a" "b" L"ab"
 "a" u"b" u"ab" "a" U"b" U"ab" "a" L"b" L"ab"

ISO/IEC JCT1 SC22 WG14 N1040

10 © ISO 2003 — All rights reserved

6 Library functions

Speaking in general, it is desirable to free the C applications from character-based
operations and encourage string-based operations. Details of the library for the new
character data types are left to future enhancements of the C standard. This Technical
Report specifies merely the four minimum character conversions among 3 character
data types: char, char16_t and char32_t.

6.1 The mbrtoc16 function

Synopsis

#include <uchar.h>
size_t mbrtoc16(char16_t * restrict pc16,

const char * restrict s,
size_t n,
mbstate_t * restrict ps);

Description

If s is a null pointer, the mbrtoc16 function is equivalent to the call:

mbrtoc16(NULL, "", 1, ps)

In this case, the values of the parameters pc16 and n are ignored.

If s is not a null pointer, the mbrtoc16 function inspects at most n bytes beginning
with the byte pointed to by s to determine the number of bytes needed to complete
the next multibyte character (including any shift sequences). If the function
determines that the next multibyte character is complete and valid, it determines the
value of the corresponding wide character and then, if pc16 is not a null pointer,
stores that value in the object pointed to by pc16. If the corresponding wide character
is the null wide character, the resulting state described is the initial conversion state.

Returns

The mbrtoc16 function returns the first of the following that applies (given the
current conversion state):
0 if the next n or fewer bytes complete the multibyte character that

corresponds to the null wide character (which is the value stored).
between 1 and n inclusive

ISO/IEC JTC1 SC22 WG14 N1040

© ISO 2003 — All rights reserved 11

if the next n or fewer bytes complete a valid multibyte character
(which is the value stored); the value returned is the number of
bytes that complete the multibyte character.

(size_t)(-3) if the multibyte sequence converted more than one corresponding
char16_t character and not all these characters have yet been
stored; the next character in the sequence has now been stored and
no bytes from the input have been consumed by this call.

(size_t)(-2) if the next n bytes contribute to an incomplete (but potentially
valid) multibyte character, and all n bytes have been processed (no
value is stored).1

(size_t)(-1) if an encoding error occurs, in which case the next n or fewer bytes
do not contribute to a complete and valid multibyte character (no
value is stored); the value of the macro EILSEQ is stored in errno,
and the conversion state is unspecified.

6.2 The c16rtomb function

Synopsis

#include <uchar.h>
size_t c16rtomb(char * restrict s,

char16_t c16,
mbstate_t * restrict ps);

Description

If s is a null pointer, the c16rtomb function is equivalent to the call
c16rtomb(buf, L'\0', ps) where buf is an internal buffer. If s is not a null
pointer, the c16rtomb function determines the number of bytes needed to represent
the multibyte character that corresponds to the wide character given by c16
(including any shift sequences), and stores the multibyte character representation in
the array whose first element is pointed to by s. At most MB_CUR_MAX bytes are
stored. If c16 is a null wide character, a null byte is stored, preceded by any shift
sequence needed to restore the initial shift state; the resulting state described is the
initial conversion state.

Returns

The c16rtomb function returns the number of bytes stored in the array object; this
may be 0 (including any shift sequences). When c16 is not a valid wide character, an

1 When n has at least the value of the MB_CUR_MAX macro, this case can only occur if s points at a
sequence of redundant shift sequences (for implementations with state-dependent encodings).

ISO/IEC JCT1 SC22 WG14 N1040

12 © ISO 2003 — All rights reserved

encoding error occurs: the function stores the value of the macro EILSEQ in errno
and returns (size_t)(-1); the conversion state is unspecified.

6.3 The mbrtoc32 function

Synopsis

#include <uchar.h>
size_t mbrtoc32(char32_t * restrict pc32,

const char * restrict s,
size_t n,
mbstate_t * restrict ps);

Description

If s is a null pointer, the mbrtoc32 function is equivalent to the call:

mbrtoc32(NULL, "", 1, ps)

In this case, the values of the parameters pc32 and n are ignored.

If s is not a null pointer, the mbrtoc32 function inspects at most n bytes beginning
with the byte pointed to by s to determine the number of bytes needed to complete
the next multibyte character (including any shift sequences). If the function
determines that the next multibyte character is complete and valid, it determines the
value of the corresponding wide character and then, if pc32 is not a null pointer,
stores that value in the object pointed to by pc32. If the corresponding wide character
is the null wide character, the resulting state described is the initial conversion state.

Returns

The mbrtoc32 function returns the first of the following that applies (given the
current conversion state):
0 if the next n or fewer bytes complete the multibyte character that

corresponds to the null wide character (which is the value stored).
between 1 and n inclusive

if the next n or fewer bytes complete a valid multibyte character
(which is the value stored); the value returned is the number of
bytes that complete the multibyte character.

(size_t)(-3) if the multibyte sequence converted more than one corresponding
char32_t character and not all these characters have yet been
stored; the next character in the sequence has now been stored and
no bytes from the input have been consumed by this call.

ISO/IEC JTC1 SC22 WG14 N1040

© ISO 2003 — All rights reserved 13

(size_t)(-2) if the next n bytes contribute to an incomplete (but potentially
valid) multibyte character, and all n bytes have been processed (no
value is stored).2

(size_t)(-1) if an encoding error occurs, in which case the next n or fewer bytes
do not contribute to a complete and valid multibyte character (no
value is stored); the value of the macro EILSEQ is stored in
errno, and the conversion state is unspecified.

6.4 The c32rtomb function

Synopsis

#include <uchar.h>
size_t c32rtomb(char * restrict s,

char32_t c32,
mbstate_t * restrict ps);

Description

If s is a null pointer, the c32rtomb function is equivalent to the call
c32rtomb(buf, L'\0', ps) where buf is an internal buffer. If s is not a null
pointer, the c32rtomb function determines the number of bytes needed to represent
the multibyte character that corresponds to the wide character given by c32
(including any shift sequences), and stores the multibyte character representation in
the array whose first element is pointed to by s. At most MB_CUR_MAX bytes are
stored. If c32 is a null wide character, a null byte is stored, preceded by any shift
sequence needed to restore the initial shift state; the resulting state described is the
initial conversion state.

Returns

The c32rtomb function returns the number of bytes stored in the array object; this
may be 0 (including any shift sequences). When c32 is not a valid wide character, an
encoding error occurs: the function stores the value of the macro EILSEQ in errno
and returns (size_t)(-1); the conversion state is unspecified.

2 When n has at least the value of the MB_CUR_MAX macro, this case can only occur if s points at a
sequence of redundant shift sequences (for implementations with state-dependent encodings).

ISO/IEC JCT1 SC22 WG14 N1040

14 © ISO 2003 — All rights reserved

7 ANNEX A Unicode encoding forms: UTF-16, UTF-32

See Section 2.5 "Encoding Forms" in The Unicode Standard, Version 4.0.0,
defined by: The Unicode Standard, Version 4.0 (Boston, MA, Addison-Wesley,
2003. ISBN 0-321-18578-1)

Online Edition

http://www.unicode.org/versions/Unicode4.0.0/

See also Annex C of ISO10646-1.

Online Edition

http://www.dkuug.dk/JTC1/SC2/WG2/docs/n2005/n2005-2.doc

