
WG14 - N1020

Disposition of Comments received during PDTR 18037 ballot (SC22 N3608)

Japan
=====
Comment J-1:
This PDTR does not have the formal cover letter on which the information of the
ballot (e.g. the type of the TR) must be described. It should be accompanied
with the letter ballot.

Response J-1: Accpeted.

Netherlands
===========
Comment NL-1:
Section 7.18a.3 (page 27), 3rd para: replace "The values given below" by "The
integer values given below". Rationale: the current text requires the pre-
processor to be able to do fixed-point arithmetic; this was never the intention.

Response NL-1: accepted.

Comment NL-2:
Change the title of 7.18a.6 (page 34) from "The fixed-point intrinsic functions"
to "Fixed-point types <stdfix.h>"
In any case: remove the word "intrinsic"

Response NL-2: Accepted; title will be "Fixed-point arithmetic <stdfix.h>".

Comment NL-3:
In the synopsis of 7.18a.6.1 add
 #include <stdfix.h>

Response NL-3: Accepted.

UK
==
Comment UK-1:
Generally that we should not build on the maths of C99 until the current
problems in the standard are fixed.

Note that the majority who were against this PDTR work in the embedded field.

Response UK-1: Within the scope of the project under ballot, this comment cannot be addressed.

USA
===
Comment US-1:
p.27, 2.2/7.18a.2: "If there is no ..." points out a glaring need for test
macros so that applications can determine when there will be a problem using
such a typedef. HAS_INT_R_T for example, with no requirement to provide a
typedef when the corresponding macro is not defined.

Response US-1: Rejected.
In common p ractice this is not really a problem. If necessa ry, the required effect can be achieved
using the bitsize macro's (ULACCUM_IBIT, ULACCUM_FBIT etc.).

Comment US-2:
7.1.3 (overflow and rounding): Is there any relationship between the rounding
done with floating-point numbers and the rounding done with fixed-point numbers?
If they are independent, is there a way to determine and/or alter the fixed-
point rounding method (similar to FLT_ROUNDS or fesetround())? Is the rounding
method for fixed-point static or dynamic?

Response US-2: Rejected.
Because fixed-point and floating-point operations are usually handled by different hardware units,
round ing b ehaviours are treated independently. The round ing mode is explictly left implementation-
defined, with no p rescribed manner to determine and/or alter the rounding mode (see 2.1.3 last
paragraph and 2.2/5.2.4.2.3, penultimate para).

Comment US-3:
7.18a.6.8 (strto*): What is the order between rounding and negating? To match
the spirit of IEEE-754, negating should come before rounding. What is "correctly
rounded" for conversions from decimal to fixed-point numbers?
Currently, that term is only defined for floating-point numbers. Does it have
the same meaning?

Response US-3: Partially accepted.
The order is as described. The usage of the term "correctly round ed" in 7.18a.6.8 is incorrect;
sentence will be changed to " ... round ed as necessary in an implementation-defined manner" .

Comment US-4:
p.5, Introduction para.4: Sentence beginning "In order to allow" should be
adjoined, with a comma, to the following sentence.

Response US-4: Accepted.

Comment US-5:
p.6, 1.1 Scope para.2: "standard, necessary" should be "standard necessary".

Response US-5: Accepted.

Comment US-6:
p.7, 1.3 Conformance: "free standing" should be "freestanding".

Response US-6: Accepted.
Also: C.6, paragraph 8: " free-standing" shou ld be " freestanding" .

Comment US-7:
pp.9-10, 2.1.2 Spelling ..., the requirement or lack thereof for aliases vs. the
keywords is not clear; in particular, "redefined" raises questions and "or to
another spelling" suggests that the natural spelling might not be defined.
Suggest "... <stdfix.h>, these formal names are used to define the natural
spellings as aliases, and may be used to define other spellings, for instance
..." (While I disagree with the notion that a standard header should define
unspecified names not in an implementation-reserved namespace, apparently this
was already deliberately decided upon. It is not reflected in the normative
wording, however!)

Response US-7: Accepted (without the last parenthetical part).

Comment US-8:
p.10, 2.1.3 Overflow ..., last line: insert "the" before "correct".

Response US-8: Accepted.

Comment US-9:
p.13, 2.1.6.2.1 para.2: There is an error in line filling (the second sentence
should start right after the first).

Response US-9: Accepted
This happens in more places (sometimes not visible); see for instance 2.1.3, 1st para. Changed in
2.1.3 and 2.1.6.2.1.

Comment US-10:
p.14, 2.1.6.2.1 para.3: Another line filling error; also, "deprecate" is
misspelled.

Response US-10: Filling error: not accepted (a Note belonging to the 1st part of the paragraph); typo:
accepted.

Comment US-11:
p.14, 2.1.6.2.1 para.5: "perform a multiply of" should be "multiply" and the
following "and" would be better as "by".

Response US-11: Accepted.

Comment US-12:
p.14, 2.1.6.2.2: Change "type int" to "integer type" to match the actual
normative text.

Response US-12: Accepted.

Comment US-13a:
p.15, 2.1.6.4 Example: The braces { } are unnecessary.

Response US-13a: Accepted.

Comment US-13b:
p.18, 2.2 Detailed changes ...: "will get in the new document" should be "may
get in the new document". It is possible that additional parent-section
insertions change "mm", for example. (Also p.47, 3.3.)

Response US-13b: Accepted in principle: the text starting with "and hence will get ..." will be
removed; this also applies to section 3.3, p47.

Comment US-14:
p.18, 2.2/5.2.4.2.3 para.3: The radix "dot" is assumed to be between... what?
Between implies two things, not just the one most-significant-digit. Perhaps
"between or" should be deleted.

Response US-14: Accepted in principle.
Change "between or" to "somewhere between the most significant digit and the least significant
digit in the nominator, or"

Comment US-15:
p.19, 2.2/5.2.4.2.3 para.4: Another line filling error, or perhaps this should
be two paragraphs.

Response US-15: Accepted: will be two paragraphs.

Comment US-16a:
p.19, 2.2/5.2.4.2.3 para.5: "exact" should be "exactly".

Response US-16a: Accepted.
Sentence will read " ... the operation is performed on the operand values acc ording to the operation 's
usual mathematical definition, ..." .

Comment US-16b:
p.19, 2.2/5.2.4.2.3 para.6: "maximal" should be "most" (three occurrences).
"maximal negative" is simply wrong.

Response US-16b: Accepted.

Comment US-17:
p.20, 2.2/6.2.5 paras.3-4: Suggest moving "_Sat" just before "_Fract" in each
type, for consistency with other uses.

Response US-17: Accepted in principle: the text in p25-26, 2.2/6.7.2 will be changed to be consistent
with 2.2/6.2.5.

Comment US-18:
p.21, 2.2/6.2.5 para.4: The last use of "accum" should be italicized.

Response US-18: Accepted.

Comment US-19:
p.21, 2.2/6.2.6.3 paras.1-2: "values of any padding bits" should be "contents of
any padding bits". (The term "value" as used in the C standard must carefully
exclude padding.)

Response US-19: Rejected.
This is exactly the same as the last sentence of 6.2.6.2 para 1.

Comment US-20:
p.22, 2.2/6.2.6.3 para. 4 first item: "bits or" should be "bits as or" (optional
commas around alternative).

Response US-20: Accepted: "bits as , or ..."

Comment US-21:
p.22, 2.2/6.2.6.3 para. 5: Delete "where practical", which adds nothing and
raises an unanswered question.

Response US-21: Accepted.

Comment US-22:
p.24, 2.2/6.4.4.2a Syntax: second form for decimal-fixed- constant should have
"opt" suffix on exponent-part; otherwise 1k (for example) is not a valid fixed-
constant. This also aligns with the strto* functions.

Response US-22: Accepted.

Comment US-23:
p.28, 2.2/7.18a.3 list: Expressions such as (-0.5HR-0.5HR) overflow and thus
have undefined behavior. The true required minimum is something like
(-0.9921875HR).

Response US-23: Rejected: all the signed fract types have -1 as a 'normal' value.

Comment US-24:
p.28, 2.2/7.18a.3 *FRACT_MAX, *ACCUM_MAX: The second (hex) form contains a
spurious "C". Suggest deleting all these (redundant) forms, or correcting them
and deleting the first forms.

Response US-24: Rejected.
The 'C's are sign ificant as the hex character defining the value of the 2 least sign ificant bits; take
SFRACT_MAX as example: this is a 7-bit f ract; the max value thus shou ld have 7 bits set to 1; 0x1.F
only describes 5 bits (0x1.FP-1 equals in decimal notation 0.96875, which is less than the required
0.9921875).
The repetition of the constants in a decimal and a hex form also occurs in 5.2.4.2.2 para 13.
Editors note: in 2.2/7.18a.3 on p age 32: 2nd occurrence of LACCUM_FBIT shou ld be LACCUM_IBIT;
likewise 2nd o ccurrence of ULACCUM_FBIT should be ULACCUM_IBIT.

Comment US-25:
p.33, 2.2/7.18a.4 Description: "ulp" is not defined in the changes to the
standard. Suggest using small caps ("ULP", "ULPs") and defining it here (as in
the footnote to 2.1.3).

Response US-25: Accepted.

Comment US-26:
p.33, 2.2/7.18a.4 Description: Change "multiply and divide" to "multiplication
and division". Nouns, not verbs.

Response US-26: Accepted.

Comment US-27:
p.33, 2.2/7.18a.5 Description: "according to the set state" is unclear. Should
this be "saturating"?

Response US-27: Accepted; it should be "saturation" .

Comment US-28:
p.35, 2.2/7.18a.6.1 Returns: "saturated" seems wrong when there's no overflow.
Suggest "saturated if it would overflow"?

Response US-28: Accepted ("saturated on o verflow").

Comment US-29:
p.35, 2.2/7.18a6.3: Suggest these be called "rounding" functions rather than
"round" functions (also in 2.2/7.18a.6.7). Under "Returns", change "The
functions" to "The round[ing] functions". If "round" is retained, the latter
should be in Courier as used in the countls Returns.

Response US-29: Accepted (cf 2.1.7.2).

Comment US-30:
p.38, 2.2/7.18a.6.6: Change "The bits functions" to "The above functions".
(There are other functions whose names contain "bits".)

Response US-30: Assuming this refers to 2.2/7.18a.6.5 (both on p .37 and p .38): accepted.

Comment US-31:
p.38, 2.2/7.18a.6.5 Returns: Change "bitpattern" to "bit pattern".

Response US-31: Accepted.

Comment US-32:
p.41, 2.2/7.19.6.1 'h': Should be insertion before the last semicolon, as
specified for 'l'.

Response US-32: Accepted.

Comment US-33:
p.41, 2.2/7.19.6.1 'l': Change "semi-colon" to "semicolon".

Response US-33: Accepted.

Comment US-34:
p.41, 2.2/7.19.6.2 'h': Inserted text should start with "or".

Response US-34: Accepted.

Comment US-35:
p.42, 2.2/7.19.6.2 r,R,k,K: Should be a comma before last "or".

Response US-35: Accepted.

Comment US-36:
p.45, 3.1.3 para.4, last sentence: Change "any" to "a null".

Response US-36: Accepted; change "any pointer into an" to "a null po inter into any" .

Comment US-37:
p.46, 3.2.2 para.1: Change "pre-defined" to "predefined".

Response US-37: Accepted (also in 3.1.2, para 1).

Comment US-38:
p.46, 3.2.2 Examples: Make first occurrence of "char" Courier.

Response US-38: Rejected; however, as the notion 'char-sized' could be misleading and is not
necessary, it is removed.

Comment US-39:
p.48, 3.3/6.2.4a para.1: Append "Unless otherwise specified, objects are
allocated in the generic address space." (Even though this is covered in changes
to 6.2.5, it needs to be emphasized here.)

Response US-39: Accepted.

Comment US-40:
p.49, 3.3/6.2.5 para 26, para.1: Last sentence should have appended "and
address space qualifiers".

Response US-40: Rejected.
The definition of "additionally access-qualified" is correct as written. If type T is an additionally
access-qualified version of type S, then T will have whatever address space qualifier S has (if any),
plus some number (possibly zero) of added access qualifiers, "const", "volatile", and "restrict".
Where the term "additionally access-qualified" is used, it is important that T and S be in the same
address space. If the proposed change were adopted, T could be in an address space different
from S.
Added to the end of the sentence: "(if type T is an additionally access-qualified version of type S,
then T and S are in the same address space)".

Comment US-41:
p.52, 3.3/6.5.16.1: Change "referenced type of" to "type pointed to by" (four
occurrences altogether). "Referenced address space" can remain, but only
because there is no better way to say that.

Response US-41: Rejected; the term "referenced type" is introduced in the C standard in 6.2.5
para 20; "referenced address space" is introduced in the new text replacing 6.2.5 para 26.

Comment US-42:
p.52, 3.3/6.7.1 syntax: Also add:
 register-name: identifier

Response US-42: Accepted.

Comment US-43:
p.53, 3.3/6.7.1.1 para.1: Change "Modifying" to "Accessing". (Read access might
also have side effects.)

Response US-43: Accepted.

Comment US-44:
p.53, 3.3/6.7.2.1: Seems wrong; the members get qualified by the address-space
qualifier of the aggregate. Suggest deleting this. (Unnecessary due to other
requirements.)

Response US-44: Rejected.
However, change text to "The specifier-qualifier-list in the declaration of a member of a structure or
union shall not include an address space qualifier."

Comment US-45:
p.53, 3.3/6.7.3 syntax: Also add:
 address-space-name: identifier

Response US-45: Accepted.

Comment US-46:
p.54, 4.1.1 first bullet: Change "market place" to "marketplace".

Response US-46: Accepted.

Comment US-47:

p.55, 4.2: Too many italics. I suggest changing all italics in this section to
normal font, then change all bold to italic, which is consistent with usage in
the C standard.

Response US-47: Rejected; the intend with the italic in the terminology definitions is to 'keep the
words together' in a muli -word term, in order to make it easier for a first t ime reader to learn the
terminology, and to emphasis that these words are terms defined somewhere in 4.2; the text is kept
as is for pedagog ical reasons (after all this is a TR not a standard).

Comment US-48:
p.55, 4.2: The bullet "Multiple I/O registers may form an I/O group." is
redundant with the next bullet and should be removed.

Response US-48: Accepted.

Comment US-49:
p.56, 4.3.1, last line: Change "interleave" to "interleaving".

Response US-49: Accepted.

Comment US-50:
p.57, 4.3.1: Change "<->" to a double-headed arrow glyph.

Response US-50: Accepted.

Comment US-51:
p.57, 4.3.2 figure: Change "users" to "user's" and "vendors" to "vendor's".

Response US-51: Accepted.

Comment US-52:
p.59, 4.4.2: Should use so-called "smart quotes" around "function"; save the
"straight double quote" for C code. (Also around "dense" on p.61, 4.4.3, "kind"
on p.62, 4.4.5, "acquiring" on p.62, 4.4.6.1, "<iohw.h>" and "function on p.64,
4.5/7.8a, and possibly elsewhere.)
This might be present in the PDF document, but was not evident in the selected
font.

Response US-52: rejected in principle: the selected type font Helvetica does not seem to suppo rt
smart quotes.

Comment US-53:
Annex A? Rationale for 6.2.6.3 should explain why only sign-magnitude
representation is allowed. One would think that ones- or twos-complement adders
would be faster.

Response US-53: Noted.
To avoid misund erstanding, add a new paragraph at the end o f A.1.1.1:

Most modern hardware uses two's complement arithmetic for integers. The hardware
implementation of f ixed-point arithmetic uses the same mechanisms and representations as
the integer implementation on that same hardware. Hence, althou gh the C standard allows
other types of implementations for integers, this Technical Report requires exclusively two's
complement behaviour for fixed-point arithmetic.

Comment US-54:

Annex A? Rationale for 6.2.6.3 should explain why a signed accum type has to
have at least as many integral bits as the corresponding unsigned accum type.
One would think that it could reasonably be one fewer.

Response US-54: Accepted.
Change title of A.2 to "Number of data bits in _Fract versus _Accum" and add new paragraph at the
end o f that section:

A signed accum type has to have at least as many integral bits as the corresponding
unsigned accum type because the usual arithmetic conversions prescribe that, when signed
and un signed fixed-point types are mixed, the unsigned type is converted to the
correspond ing signed type, and this shou ld go without loss of magnitude; note also that the
notion 'integral bits' does not include the sign b it.

Comment US-55:
Annex C, general: "Interleave" is a verb, not a noun or adjective. Use
"interleaving" for the latter. (Several occurrences.)

Response US-55: Accepted.

Comment US-56:
p.96, D.2.5 title: Change "users" to "user's".

Response US-56: Accepted.

Comment US-57:
p.99, E.4: Change "2's complement" to "twos-complement".

Response US-57: Accepted.

Switzerland
===========
These comments are the result of an attempt to implement the different versions
of the chapter 4 "Basic I/O Hardware Addressing" of the TR since the Copenhagen
meeting in 2001. This chapter has changed considerably in the course of its
development, and major modifications were introduced between the first and the
second SC22 ballot.

Generally, these modifications are very positive and make the background and
interface usage of I/O HW addressing much clearer.

But unfortunately, some specific changes in interface definitions make the
usefulness as well as the efficient implementability of the interface very
problematic. Actually, while an efficient implementation of interface from the
TR of the first ballot was successfully finished, it turned out as being
essentially impossible to create an efficient implementation of the interface as
specified in the TR for the second ballot.

This does not say that we object the whole restructuring of chapter 4. But some
specific modifications changed the actual substance of the hardware addressing
interface without any given plausible technical
rationale.

Comment CH-1:
The proposed 7.8a.1p1 (p.64) states:
 "An I/O register is accessed (read or written) as an unsigned integer."

This can be misleading. There might be no unsigned integer type that can
accomodate the value of an I/O register. I.e. though the underlying register is
generally indeed treated as an unsigned interger value, the actual C data type
to hold it might be something different.

E.g. if the register is 128 bit wide, but the largest unsigned integer type
available holds only 64 bit, one needs a struct to hold the value. (Arrays are
generally also possible but problematic as they can not be passed by value.)

Or if the register is 24 bit wide, but there is no unsigned integer type of that
width, one might also want to hold the value in a struct to avoid unnecessary
conversions or paddings.

For this issue, we propose the following resolution:
Write the above sentence as:
 "An I/O register is accessed (read or written) as an unsigned integer
 value[1]."
 "Note 1: This does not necessarily imply that the type used is actually
 one of the set of unsigned integer types provided by the compiler."

Response CH-1: Accepted with modification.
The addition of the word value is not strictly necessary, as the C Standard usually (but not always)
makes a distinction between "integers" (as mathematical concepts) and "integer types".
There are existing instances in the C Standard where the term integer is used to refer to a value that
may not be representable in any of the integer types.
To address the spirit of the comment, the sentence will be expanded as follows: "An I/O register is
accessed (read or written) as an unsigned integer whose representation (in the register) is
implementation-defined and need not conform to any available integer type."

Comment CH-2:
The proposed 7.8a.4 (p.67) defines the register access interface as functions.
Though the proposed introduction to 7.8a (p.64) and also 4.4.2 (p.59) allow the
implementation as macros, 4.4.2 explicitely requires that a macro-based
implementation provides exactly the same effects as the function implementation.

This is a major difference to the previous version that generally defined the
interface as macros and allowed the implementation to use (possibly a special
kind of) functions. The problematic difference is the definition and handling of
parameter types. (Of course, this discussion applies to return types as well.)

Macros allow any type as arguments, even different argument types for the same
macro, and take the arguments as given.
But functions are defined to take exactly one argument type for each parameter,
and convert any other argument types to the parameter type. Even worse (in this
specific case), functions require integer type arguments at least converted to
(unsigned) int, i.e. there is no use in defining functions with parameter types
of unsigned char or unsigned short. So, an 8-bit value is always converted to
an integer at least once for each read and each write, which causes an overhead
that is always annoying and sometimes forbidding. Though in theory a good
optimizer could remove any unnecessary conversions, in practice this will rarely
be the case, as the implementation of these operations typically implies the
usage of specific assembler instructions that are generally untouched by
optimizers.

Furthermore, the proposed interface functions are provided as int and long
versions, so it's not possible to use these functions for I/O register values
larger than an unsigned long.

For this issue, we propose the following resolution:

In the proposed 7.8a.4, all the function definitions are replaced by respective
macro definitions, e.g. 7.8a.4.1:

replace:
Synopsis
 #include <iohw.h>
 unsigned int iord(ioreg_designator);
 unsigned long iordl(ioreg_designator);

Description
The functions iord and iordl read the individual I/O register referred to by
ioreg_designator and return the value read. The I/O register is read as an
unsigned integer of its size; the read value is then converted to the result
type, and this converted value is returned.

by:
Synopsis
 #include <iohw.h>
 iord(ioreg_designator)

Description
The function like makro iord reads the individual I/O register referred to by
ioreg_designator and returns the value read. The I/O register is read as an
unsigned integer of its size; this value is returned without any conversion.

or 7.8a.4.3:

replace:
Synopsis
 #include <iohw.h>
 void iowr(ioreg_designator, unsigned int a);
 void iowrl(ioreg_designator, unsigned long a);

Description
The functions iowr and iowrl write the individual I/O register referred to by
ioreg_designator. The unsigned integer a is converted to an unsigned integer of
the size of the I/O register, and this converted value is written to the I/O
register.

by:
Synopsis
 #include <iohw.h>
 iowr(ioreg_designator, a)

Description
The function like macro iowr writes the individual I/O register referred to by
ioreg_designator. If the unsigned integer value 'a' is of the same size as the
size of the register, it is written to the I/O register without any conversion.
If 'a' is of a different size than the size of the register, it is converted to
an unsigned integer value of the size of the I/O register, and this converted
value is written to the I/O register. iowr does not return anything.

Response CH-2: Rejected.
An implementation is free to provide specialized macro's or functions for specific register sizes; the
propo sal precludes the poss ibili ty of an implementation u sing functions. For more discussion on
this top ic see the discussion on the embedded-c reflector (for instance
http://www.dkuug .dk/jtc1/sc22/wg14/embedded-c/150).

Comment CH-3:
All functions in the proposed section 7.8a define a parameter
"iogroup_designator" or "ioreg_designator". The types for these parameters are
correctly left undefined.

On a specific platform, these designators might have completely different types
for different kinds of registers. But it is not possible (in C) to have the
same function name for different types of the same positional parameter.
Therefore, the designators must be unified to a common type which typically
costs additional overhead. As this should be avoided, the function approach
turns out to be wrong here as well.

For this issue, we propose the following resolution:

In the proposed 7.8a.3, replace the function definitions by respective macro
definitions, e.g. 7.8a.3.1:

replace:
Synopsis
 #include <iohw.h>
 void iogroup_acquire(iogroup_designator);
 void iogroup_release(iogroup_designator);

by:
Synopsis
 #include <iohw.h>
 iogroup_acquire(iogroup_designator)
 iogroup_release(iogroup_designator)

Response CH-3: Rejected.
The " function approach" shou ld not be judg ed "wrong " on the ground s that it involves extra
overhead. For some implementations, this may be deemed an acceptable option, so such a choice
shou ld no t be precluded gratuitously. Implementations using macros are already permitted and are
not negatively impacted by the existing specification.

Note: An efficient (zero-overhead) implementation of the interface according to
the proposed changes was successfully accomplished.

The disapproval will be changed to approval if the proposed changes are
accepted.

Individual editorial notes
==========================
Comment ED-1:
The word "section" should be replaced throughout the TR by the word "clause".
The C standard (ISO 9899:1999) speaks not of "sections" but of "clauses".

Response ED-1: Accepted.

Comment ED-2:
The Introduction (page 5) contains some odd wording and some outright errors.
(To be frank, parts of the Introduction give the impression of having been badly
translated into English from a different language.) Because it's the first
thing in the TR most people will read, it would be nice if it could be cleaned
up to make a better first impression. Some minimal corrections and suggestions:

 Change word:
 "get more complex" --> "become more complex"

 Add comma and change words:
 "... in assembly language), and processor models for embedded systems have
 a decreasing lifespan ..."

 Drop two "the"s:
 "... re-adapting of applications to new instruction sets)."

 Drop "the", add "for", change words:
 "..., embedded processors are often equipped with special hardware for
 fixed-point data."

 Replace "the" with "for":
 "... does not provide support for fixed-point arithmetic operations, ..."

 Change words:
 "assembler" --> "assembly language"

 Replace sentence "In this manner, ..." with:
 "Optimizing C compilers can generate highly efficient code for fixed-point
 data as easily as for integer and floating-point data."

 Replace sentence "Typical for the mentioned filtering ..." with:
 "Many DSPs have multiple distinct banks of memory and require that data be
 grouped in different banks to achieve maximum performance."

Response ED-2: Accepted, with minor changes.

Comment ED-3:
1.1, paragraph 2 (page 6) says, "The second subclause of each clause contains
the editorial changes to the standard, ...". This is true only for clause 2
(fixed-point), not for clauses 3 and 4.

Response ED-3: Accepted; text is adapted.

Comment ED-4:
1.1, paragraph 2 (page 6): The last sentence should be changed to: "Additional
explanation and rationale are provided in the Annexes."

Response ED-4: Accepted.

Comment ED-5:
2.2, page 23, in the new text for 6.3.1.8 to be added after the conversion
rule for conversion to "float": The end of the second rule would be clearer
as:
 "...; if either of the operands has a saturating fixed-point type, the result
type shall be the saturating fixed-point type corresponding to the fixed-point
type with the higher fixed-point rank."

Similarly, the end of the third rule would be clearer as:
 "...; if either of the operands has a saturating fixed-point type, the result
type shall be the saturating fixed-point type corresponding to the signed fixed-
point type with the higher fixed-point rank."

Response ED-5: Accepted.

Comment ED-6:
4.2, page 56: The terms "static designator" and "dynamic designator" are
defined but never used. The sentences that define these terms should be
deleted.

Response ED-6: Rejected; these terms can be useful in related documentation.

