W61 //u Y

TABLE OF REPLIES /1994-04-13/ TABLEAU DES REPONSES

ISO/IEC DIS 10967-1 VOTING BEGINS ON/DEBUT DU VOTE:1993-09-30
JTC 1/5C 22/WG 11 TIME LIMIT FOR REPLY/DELAI:1994-03-30
TITLE: Information technology -- Language independent arithmetic

Part 1: Integer and floating point arithmetic
TITRE: Technologies de 1l'information -- Arithmétique de langage indépendant

Partie 1: Arithmétique de point en nombre entier et flottant (DIS
distribué en version anglaise seulement)

ABSTENTION ABSTENTION
DISAPPROVAL/DESAPPROBATION DISAPPROVAL/DESAPPROBATION

I [
APPROVAL/APPROBATION | | APPROVAL/APPROBATION | |
| I
I i

MEMBER BODY/COMITE MEMERE £ 3

MEMBER BODY/COMITE MEMBRE [

Australia (SAA) PIX] | 1| Korea, Republic of (KBS) PIX| | |
Austria (ON) : PIXI | | Mongolia (MISM) OlXl 1} i
Belgium (IBN) Pl I 1| Morocco (SNIMA) Pl I I
Brazil (ABNT) PIXI | | Netherlands (NNI) PIX] 1t
Canada (SCC) PIXI | | Norway (NSF) PIXi | i
China (CSBTS) PIXI | | Poland (PKN) O1xX: v
Czech Republic (COSMT) OIXI | | Romania (IRS) - PNy b
Denmark (DS) PIXI | | Russian Federation (GOST R! PIX! | |
Egypt (EQOS) PIXI 1 1 Slovenia (SMIS) Pl | 1Xi==
Finland (SFS) PIXI | | Sweden (SIS) P! OIXD
France (AFNOR) Pl IXI | Switzerland (SNV) PIXI I |
Germany (DIN) PIX] | | Ukraine (DSTU) PI | | 1
Ireland (NSAI) Pl I | 1 United Kingdom (BSI) PIZI | |+
Italy (UNI) Pl | IXI** USA (ANSI) SIxr | 1=
Japan (JISC) PIXI | 1
TOTAL 21 2
= Comments/Commentaires 2
* = P-member having abstained and therefore not counted in the vote/

Membre (P) s'abstenant de voter; n'est donc pas compté dans le vote
| P-MEMBERS VOTING: IN FAVOUR OUT OF | REQUIREMENT |
I 18 20 = 90% | »= 66,7% |
| MEMBRES (P) VOTANT: EN FAVEUR SUR | CRITERE !
| MEMBER BODIES VOTING: NEGATIVE VOTES OUT OF | REQUIREMENT'
| 2 23 = 9% | <= 25%
| COMITES MEMBRES VOTANT: VOTES NEGATIFS SUR | CRITERE

THIS DRAFT HAS THEREFORE BEEN APPROVED in accordance with the
ISO/IEC Directives, Part 1, subclause 2.6.3.

CE PROJET EST DONC APPROUVE selon les Directives ISO/CEI,
Partie 1, paragraphe 2.6.3.



Associstion
Frangaise de
MNormalisation

Tour Europe

Cedex 7

92049 Pans La Défense
France

Acces : La Defense 2
Parking Les Corolles
Tel. ;3311142915555
Télex : AFNOR 611974 F
Teélecopie : 32 (1) 42 91 56 56
Minitel : 3616 AFNOR

Ass0cCiation recannue
d'utilite publique

Comite mambre francas
du CEN et ge I''SO

Swret 775 724 B18 00015

Code APE 751 E

AFNOR

AFNOR's comments relating to the disapproval vote on
DIS 10967-1 "Information Technology - Language independant arithmetic
- Integer and floating point arithmetic" (ISO/IEC JTC 1/SC 22)

AFNOR thinks that this DIS has a very good technical content and shall
progress to IS stage. Nevertheless AF NOR disapproves DIS 10967 mainly
because the French Title is fully incorrect.

1.  French Title (Major comment) : it shall be : "Technologies de
l'information - Arithmétique indépendante des languages - Arithmétique
des nombres entiers et en virgule flottante".

P2 Other comments

« P.58: A7 first/second line : "Fortran 3] states ......" - the new features
of ISO/IEC 1539 (FORTRAN 90) make this comment obsolete.

« P.83 :the NOTE located just betore E7 is obsolete since
ISO/IEC 1539 : 91 (FORTRAN 90) has been published.

o Annex G example programs
- Some mistakes have been found and shall be corrected :

-p.91 Gl : the second line of the first formula should be read :
print 3. 'this platform has insufficient precision.’
The second formula : if [(HUGE (...)] ... is not portable.

-p.92G3: Ada example of program
Assignement statements in Ada are denoted by the
symbol := (example. second line :
prev_approx := first_guess (input)

-p.92 G4 : the example of FORTRAN code shall begin by call (clr
indicators (....)

= Annex H Bibliog'raphy
Item [3] the ANSI reference for ISO/LEC 1539 : 1991 is X3.198-1992

Once again, AFNOR would like to stress that the acceptation of the
proposed modifications. in particular comment 1. will change its
disapproval vote to approval.

KICLIVVEA - COMTFT
1P

rel. 014



672 E/F 9005 100

VOTE ON ISO/IEC/DIS 10967-1
ISO/IEC/JTC 1

dase 1994-01-28

national body SMIS, Slovenia

0

To cast a vote on a draft International Standard, national bodies shall complete and sign this ballot paper, and return same with any
comments to the ISO Central Secretariat.

All national bodies are invited to vate. P-members of the joint technical committee concerned have an obligation to vote.

We approve the technical content of the draft as presented
I:, (editorial or other comments may be appended)

D We disapprove for the technical reasons stated at annex

l:’ Acceptance of specified technical modifications will change our vote to approval

We abstain (for reasons below)

Remarks :

For the time being, our national technical committee USM/TC INF, doesn’t
cover all the subcommittees of ISO/IEC JTC 1, yet.

Technical secretary USM/TC INF

signature

Janez Hoéevar, dipl.ing.

Texte francais au verso



‘g4 03730 22:28 =+16 8 751 53 83 ITS

? Informationstekniska
standardiseringen

Swedish comments on DIS 10967-1:1993

4+ I150/CS ITTF

@o003/008



‘g4 03/30 22:28 =+46 8 751 53 83 ITS +=+= 150/CS ITIF @004/008

'

Comments on LIA-1 (v. 4.1)

[ISO/IEC DIS 10967-1:1993]
1994-03-14 o 03 22

Kent Earlsson
; Department of Computing Science
Chalmers Untversity of Technology and The University of Goteborg
S-412 96 Goteborg
Sweden
<kent@cs.Chalmers.SE>

3 pages

1. Natural numbers (and monus)

1.1. Current situation in LIA-1 (v. 4.1)
LIA-1 currently allows both unbounded and unsigned integer types. Strangely enough it cur-
rently cannot consider integer types that are both unbounded and unsigned as conforming!
That is, natural numbers are not covered. Natural numbers are not very commonly imple-
mented. but it is still very strange of LIA-1 not to cover them, since it is the most basic

number type.

1.2. Proposed changes
1. Add a boolean parameter for the integer types, signed . For natural numbers signed shall
be false, and bounded shall also be false.

2. Add the monus; operation for the integer types. defined as
monus(x,y) =max({0,x-y}) if 0<x and 0<y
= undefined if x<0 or y<0

3. Add the monus . operation for the floating point types, with, in principle, the same defini-
tion.

Monus is a useful operation on strictly non-negative quantities. The monus operation
could be optional.

2. “Modulo” integers

2.1. Current situation in LIA-1 (v. 4.1)
LIA-1 now allows so called “modulo” integers. They are ill-conceived and devold of applica-
tions. They hide integer overflow exceptions in the most treacherous way (they are not sig-
nalled at all), and this goes against one of the goals of LIA: that exceptions should be “hard-
to-ignore*! This means that the “modulo” integers do pot support reliable computing, a major
LIA goal.

2.2. Proposed changes
1. Remove the "modulo” integers, they are against the very spirit of LIA!




‘94 03,30 22:29 T+48 8 751 53 62 5 ITS +++ IS0/CS ITTF @o005/008

3. addy

3.1. Current situation in LIA-1 (v. 4.1)

As the LIA-1 v 4.1 report says. ideally add; should be +. I see no real reason for allowing
anything else. Removing add ¢ would simplify LIA and make LIA more strict.

3.2. Proposed changes
1. Replace add p with +.

a. div}/rem)/div}/rem?/mod}/mod]

4.1. Current situation in LIA-1 (v. 4.1)
Two different versions of the pair of .operations div,/rem; are conforming. LIA-1 distin-
guishes between them, but far from sufficiently clearly. The distinction is made by using the
superscripts “17 and.“2". Firstly, this in not sufficiently mnemotechnical, and even the
authors get confused (in annex E). Secondly. these superscripts are sometimes omitted,
adding to the confusion. The name div; 1s still used despite the future name problems with
floating point flooring division.

The most important property that useful div (/rem; functions must fulfil, translational in-
variance. is broken by the truncation towards zero variety (those with superscript "27). There
{s no purpose in breaking the translational invariance property.

There are still two varieties of mod;, distinguished by LIA-1. The same comiments about
the superscripts as mentioned above hold. The first variety of mod is identical to the first
variety of rem. There is no purpose in giving the same operation two pames. The second va-
riety of mod, is an unduly restricted version of the first variety. There is no purpose in hav-
ing this second variety.

4.2, Proposed changes
b )
1. Remove, divy, remj, mod}. and mad%. These varieties are pointless (or already present
with another name), and should not be promoted by LIA-1.
2. Rename div} to quo:f;. and rename rem} to rem; (or to modf.]. This way there is “name
harmony” even when adding quo:i. (flooring floating point division), and the superscript "
{s mnemotechnical enough (even if just one letter) not to cause any confusion.

3. Add quorf and remf (gr use the name modf] as optional operations. These should be
defined to be the ‘ceflinging’ integer quotienting and remainder.

E.g. century = qruor? (year, 100).

4. When referring to the quotient and remainder operations by name, in the LIA documents,
the superscript should glways be included.

5. Correct(!) and change the bindings in annex E accordingly.

6. Introduce operations quorf,. rcmi—. and, as optional operations, quoty and remy with, in

principle. the same definitions as in the integer case. but taldng into consideration that
they are floating point operations. Add bindings in annex E accordingly.




‘84 03/30 22:29 =+16 8 751 353 B3 ITS +++ 1S0/CS ITIF @oos8/008

4.3. Replies to the official reply to my comments on version 4.0
*We have tried to clarify the twe versions of div/rem allowed.”
Yes. but not at all suffictently. See above.

s0ne provides translational invariance (as you recuested),
recognizes the Fortran behavieur that is wired into many existing
machinaes. We agree that the former version is more desirable, but we can-

and the other

not ignore existing practice.’

What is existing practice? Existing practice among programmers is to regard quotient/re-
mainder operations as being useful only when the arguments are positive. Why is that?
There are two reasons:

1. In most (but not alll) applications of quotient/remainder operations the argurnents actu-
ally are positive. And for positive arguments flooring and truncatng quotient/remainder
coincides.

2. This has lead to the mistaken choice of truncating quotient/remainder operations in For-
tran and later (original) Pascal and Modula. And in later Pascal and Modula to the like-

_ wise mistaken restriction to only positive second arguments to their remainder functions
(by the name of mod). In C one has done an even greater mistake in leaving it unspecified
which remainder operation is denoted by its remainder operator (36); it’s up to the imple-
mentation. . Dismally, LIA-1 has followed C's approach. which; quite unpecessarly, makes
the quotient/remainder operations useless on negative arguments.

This, however, is nio reason to continue promoting quotient/remainder operations that are
ill-defined or useless. -On the contrary, LIA-1 is an excellent opportunity to clean up the
mess! Many (all) applications of quotient/ remainder operations naturally extend to negative
first arguments, provided that itis a translationally invariant quotient/remainder operation
that is used. The truncating variety is no good for any application. As for negative second
arguments: direct applications seem few, but the sign laws give no reason to forbid negative
second arguments.

_ IfLIA-1 is to allow just any strange and (ll-defined operations that happens to exist in For-
tran, Modula, or C, then what is the purpose of LIA-1? Omitting ill-defined and ill-conceived
operations from LIA-1 obviously does not forbid a language to have them, only that, if con-
formance with LIA-1 is sought, that the proper varieties must be provided. Hence there is no
conflict with any existing programming language to only promote the properly defined and
well-concetved varieties.

I'm not asking you to ignore existing practice, I'm asking you to recognise it! The truncat-
ing varieties are not supportive to reliable computing, so they go against one of the main
goals of LIA, and should therefore not be in LIAl The problem is compounded by the sloppi-
ness of distinction still present at this point in LIA-1.

5. CVfF__}[

5.1. Current situation in LIA-1 (v. 4.1)
The cvt _, ; operation is SO loosely defined that it is useless.

5.2. Proposed changes

-1. Remove the cvrp _, ; operation.
2. Add operations ceiling z _, ;. floorg_, 1 and round p _, ; with appropriate definitions, and
require that the rounding style for round g _, ; be specified {halves-to-even or halves-to-

odd).




Aliesoed)

UK COMMENT ON ISO/IEC DIS 10967-1
Editorial comment

4.1, line 10: for ‘on sets’ read 'on non-empty sets’.

CMJ
15 March 1994



' SENT BY:ANSI " . 3-29-94 ; 14:26 : 9123980023~ 4122 733 34 30:* 4/ 9

UNITED STATES COMMENTS
ACCOMPANYING
RECOMMENDATION TO APPROVE

DIS 10967-1
“LANGUAGE INDEPENDENT ARITHMETIC - PART 1"



SENT BY:ANSI ; 3-29-94 ; 14:26 2123980023~

Al

page vi agraph 6
ﬂoll:.m’::. sn fact it does not Gemply with UB comment 1.l %o 3RS

e bu"l .

A.2

pﬂo‘ vi TAgT 7
mll;:l’:b- 1:’:2 gsentence, It does not comply wich US comment 1.3
co 3ad €D LIA-1.

A.3

page v, last paragraph
Delete it.

Ad

e vii, second line
RepiAce "characteriza” BY sdescribe scme of”.

‘.%
e vil firac pacagraph
D3 eond and thid aim nesd to ba better formuleced.

A.6
page vii, thirg, gourth, figgh, sixeh paragraphs of e benefits

fha Benefits sectisn shoulc be reexamined and modifisd t2 ensure tRat
i+ is accurate end does not create false impressions OF contain false
peomises.

AT
page 1, sscond pazagraph

The last senterce should read: "RatRhaz, this International Stacdazd
ensuzes that the proparties of the arithmetic of eonforming arithmetic
types ars mads availabie to the user.”

A8 :
page 2, §) :
Delets 4n. It contradicts with Tequiremants waen iec_553 is true.
-Al.
page 2, laat sentence
Delate it,
A.10

pages 4 and §, "continuation values® and "exceptionsl values'

They need to be zedefined pcoperly, need clazifications, bringing
in tuns with the coomon uIuge and wizh the usage of *exceptional
operacds” and caucepricnal Zesults® in IRC 559.

A.lL
page 5, "esror®, (3)

“ghould make it clear that except for <hose phrases, ézrox and
exéoption Azm Not AYRANYRS.

A.12
page 5, "esesprion®
Should get a batter definition oF be daleted.

2,33
page 5, "excepticnal value®
8es cosments A.10 mad A.1ll about continuation value and sxception.

.44
page &, sporification”, secoad line .
Replace °®results in 4 notification” by "causes & aetificatisn.

4122 733 34 30:% 5/ 9



SENT BY:ANSI ; 3-29+94 : 14:26 2123960023~

A.18
[ ] mm.
Paae Sl & meaningful definitien.

.16
, "zound to Assrest”
M: “l: along these lLines: "If the sdjacent values Are equidistant
from U, sither may De chosen acecording to precise ru.es vhich will be

peoperly documented, and available at zun tima“.

A.l7
page 6 agx na 2, 1, 4 in aection §

n,u;r :::dqt:’bo cl':matd in sccordance vith comments made above.
Tmis i3 a4 aca-~trivial editing rask, bayond the acope of 4 comment oF
sixple request for change.

B |
p .0 7, fizst paragraph

Changes it to “Whenever an arithmetic operaticn causas an exception,

L]
el .

A9
page 7, fourth paragzraph (Netea)

Thig should be elaboraced on and placed in a more prominens place,
pinge it is basically defiaing what implementation and gonformance
medn.

A.30
page 11, line after second Note

Delate "that spans all of R", The word span has A univessaily
accepted mathemstical meaning which 48 different than %he ang ‘mplied
haze,

A.21
paga 12, secticn §5.2.2
“his is at best misleading., Sestiom 5.2.9 will define tec _%89. In
c-q@ lag_%5% is set, these operstions are zequirad to have "largezs”
,natures, and further differentistiocn batwaen the excepticnal vdlues
is requiced. $pecifically, the gaczion i3 OK as it stands whan
1ac_389 19 nat set, Buc it seeds To be mich moTe specific whan i9c 359
As set.

A.22

sections 5.2.4, 5.2.9, 9.2.6, 5.2.7

" U8 commant 5.4 to 3nd CB LIA-1 referTed to thess and it was not

implemanted. The UB ackacwlesdges the difficulty the editor(s) is(aze)
i in eliminating the halper fuactioms, but they should be
‘elininated if the standard is to be useful,

~ Take the point of view of the user and of tha compiler writer.
From the point of view of the user, what he sées is an oparation, e¢.9.
an addition. This addition s close, but differing from tha real
‘addizicd. This user needs to Xnew in what ways and how much ic i»
diffaring, And what propesties it has (6.g. what axigms it satisfias),
Prom the paine of view of ths hardware manufactures and cempiler
wgiter it 13 also imprectical %o have to satisfy axiems imvelving
‘theae helper functions. If the add® are appedring nakturally throuah
the algorithes irvolved in the design of the hardwere/sqgftwaze system,
everything is simple; otherwise there i8 B2 reascnable way they can
sake sure they ara providing a confomming impismsntation. The
atandard should provide eithar precise a-gexithas or pracise
descriptions of the result. What matters for everybody i3 che
properties of the operatichs visibla to the user.

4122 733 34 30:% 67 9



SENT BY:ANSI : 7 3-29-94 ¢ 14:27 2123980023~ 4122 733 34 30:% 7/ 9

W
&mm 8.2.4, 5.2.5 5.2.6, 5.2.7

*here L8 no point in going through detailed editing cmngs since
gemment A.23 just suggested that thiy past haa to be completely

r . The purpose of thiy comment is t0 point eut that one nseds : )
:m‘:::uul with the usege of words. Por exmmple “shall” aad -
."should® is are regserved words in the language of the standard. :
‘ fherefore they should n;:n Be used ia the context of add® and rnd :nd,

=equired csions.

‘“1:oaﬂm is rounding., 2t L3 "delined" for tha second time
at the beginning of 5.2.5, but this definitiom is nct better than the
¢irse one. Tne standard should gither assume that the raaders of wnis
-standard hnew what reunding is, or give a serious dafinit:ion,

The 148t of editing problens goes on: the note in 5.3.4 talks of
2equirements in gonnection with add® which is not -equired. thes last
sentence of 5.2.3 is grammatically bad, ;

®.24
Je 17, section %.2,8, Note _
The refarence i3 probably 20 A.5.3.8, not _1.3.2.3.

A.28
pege 17, £ifth line from below
This iz factually incozzect. The behavicr is spacified when
‘iec_859 (s sac,

A26
page 17, last three lings

The definition of rmd gtyle needs to also accommodate the case when
$00_559 {8 set.

alz’

section 5.2.9

__-Bectien 5.2.9 is incozmplete with raspect to tiia selationship detween

LIA={ and IBC 353. Hoth the overall rulationship and the datails need %2 -
be defined. Raving IEC 559 nosmatively included by sesference L LIA whea

the flag IZC 339 18 true implies changing not ealy this sectien, but other
ractions as well, ; .

A.28
page 19, last linsg .

e meaningy of "shall” and °digtinct” are prohably not the usual
ones. In fact it is not Clear what this pentenss ia meant to say.

A.29
saction §

- The U8 Ras alrsady called attention bafare £o the nsed of cewriting
thig section, 4nd this comment iy made to call attemtion to it again.
Alsc note that U5 comeant 5.6 to Ind OO LIA=-1 was calling for
substantial clarifigations. While W31l rejected US cemment 5.6 to 2nd
CD LIA-1, it was agreed that certain clarifications will be made.

They were not made at all. It 48 nmot worth it going through the text
9f this section trying to improve the words. The whoie seczien needs
to be reworked. Witheut a clear undassteading of what notification

mulu 4nd how is to be done a major part of this standard buccmes
useless.

A.30
section 7

8acticn 7 is still too vague. It needs to be iaproved.



SENT BY:ANSI . 7 3-29-94 ¢ 14:28 2123380023~ 4122 733 34 30:% 8/ 9

. The current definition of {nteger nagate is

-m =i 12 =x in I
5% ) = integer_overflow if -x not in I

o last line (integer_overflew) should be changed to
= wrap_I(=x if -x not in I and modulo = true
= ::tgibé_plarfloi if£ =-x not in I and modulo = false
The current definition of integer absolute value is

8 I(x} = 2] if |x| 4n I
= = integer_ovesrflew 1f |x| not in I

e .ot line (intager_overflow) should be changed to
= wrap_I(|x]|) if (x| not in I and module = true
= integer_overflow &£ |x! not in I and modulo = false
: The current definition of integer to irteger conversion is

t {Ia=>Ib)(x) = x i x in Ib
- = integar_overflow if x not in Ib

i last line (integer_ovexflow) should be changed to

= wrap_Ib(x) if x not in Ib and modulo_Ib = true
= integer_overflow if x not in Ib and modulo_lIb > false .

where modulo_Ib is the modulo parameter for typs Ib.

I;: The current definition of floating point %o integer conversion is

re_F=>I)(x) = rad (F=>I} (x) if rnd_(F=->I}(x} in I
= integer_ovarficw if zad_{F~>I}(x) not in I

1@ last line (integer_overflow) should be changed to

= wrap_I(rnd {F->I)(x)) 4if znd {(F->1}(x) not in I and module I = true
= integer_overflow if znd_{T->I}(x) not in I and modulo_l = false

whers modulo_I is the modulo parametar for type I.

5: 8ince unsigned int and unsigned long in C ars now recognised as
onforming types, the follewing C "cast" operatigas skould listed as
oasible convert to integer coperations on page .73.

(unsigned int) x, (unsigned long) x=
n addition, the next pazragraph should be reworded 2s follows:

The C standard requires that float te intager conversions round

toward gtero. A proper C binding £or LIA-1l should either accept C’'s

rounding requirerents for these conversions (and use the cast

totation}. or provide separate LIA-1 converaicn functions that round
C neazrest. .



INT 5Y=ANSI ' 1 3-29-94 ;5 14:28 2123980023~ 4122 733 34 30:% 9/ 9

§: The code example in annex G.J is not legal ADA (it uses = rathez than
). Replace it by

Approx, Previcus Approx! Tioat;
N: constant Float := 6.0; =~ an arbitrary constant value

Previous rox i1= Tirat Guess (input);
Approx := Next Guess (inPut, Previous Approx);
while aba(hpg:ox-rrnvioul_;pp:axi > NFLIAL.Unit Last_Place (Approx) loop
Previous_ Ep:ax tw Approxt :
rox 13 Nex:t_Guess (input, Previous Approx)/

and loop!

7: wWG1l should consider adding the follewing clause to the Raticnale.
A.5.1.4 Relations among integer types

An implementation n;yugrovide mora than one iateger tipe, and many
current systems de. en one modular integer type I is a subset of
another modular integer type J, it is desirable that the ecardinality
(maxint-minint+l) of J be an even multiple cf the cardinality of I.
This property insures that conversions detween T and J preserve the
?gdglar structure of these types. For example, if x + y = 2 in J,

Q

eve_(J->I) (x) + evt_(J->T)(y) = eve_{J=->1}(x)
in I.

B: In.annex C, clarify that a binding standard for LIA-1 *ghould* include
indings for all optional IEC 359 features, even though act all
mplementations of IEC 559 will provide those fesatures. .

9: John Reid of Rutherford Labs has :uzqastud-vnrioun improvements to the
x3" “le Fortran binding. John Klensin of MIT bas done the same for PL/I.
Gl. should consider consulting with these experts to produce improved
ersions of the example Fortran and PL/I binding.

1: The US feels that binding standards for LIA-1 and JEC 553 are essential
he US urges $C22/WG1l and other standards bodies to take whatever staps are

eeded to ensure that such binding standards are developed and adopted as
oon as posaible.



