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Foreword

Many specifications of software services and applications libraries are. or are in the process of becoming. internation-
al standards. The interfaces to these libraries are often described by defining the form of reference, e.g. the "procedure
call”, to each of the separate functions or services in the library, as it must appear in a user program written in some
standard programming language (Fortran, COBOL, Pascal, etc.). Such an interface specification is referred to as the
"<language> binding of <service>", e.g. the "Fortran binding of PHIGS (ISO 9593)".

This approach leads directly to a situation in which the standardization of a new service library immediately requires
the standardization of the interface bindings to every standard programming language whose users might reasonably
be expected to use the service, and the standardization of a new programming language immediately requires the stan-
dardization of the interface binding to every standard service package which users of that language might reasonably
be expected to use. To avoid this n-to-m binding problem, ISO/IEC JTC1 (Information Technology) assigned to
SC22/WGl11 the task of developing an International Standard for Language-Independent Procedure Calling and a par-
allel International Standard for Language-Independent Datatypes, which could be used to describe the parameters to
such procedures.

This draft International Standard provides the specification for the Language-Independent Datatypes. It defines a set
of datatypes, independent of any particular programming language specification or implementation, that is rich enough
so that all common datatypes in standard programming languages and service packages can be mapped onto some
datatype in the set.

The purpose of this draft International Standard is to facilitate commonality and interchange of datatype notions, at the
conceptual level, among different languages and language-related entities. Each datatype specified in this Internation-
al Standard has a certain basic set of properties sufficient to set it apart from the others and to facilitate identification
of the corresponding (or nearest corresponding) datatype to be found in other standards, Hence, this draft International
Standard provides a single common reference model for all standards which use the concept datarype. It is expected
that each programming language standard will define a mapping from the datatypes supported by that programming
language into the datatypes specified herein, semantically identifying its datatypes with datatypes of the reference
model, and thereby with corresponding datatypes in other programming languages.

It is further expected that each programming language standard will define a mapping from those Language-Indepen-
dent (LI) Datatypes which that language can reasonably support into datatypes which may be specified in the program-
ming language. At the same time, this draft Intemational Standard will be used, among other applications, to define a
"language-independent binding” of the parameters to the procedure calls constituting the principal elements of the
standard interface to each of the standard services. The production of such service bindings and language mappings
leads. in cooperation with the parallel Language-Independent Procedure Calling mechanism, to a situation in which
no further "<language> binding of <service>" documents need to be produced: Each service interface, by defining its
parameters using LI datatypes, effectively defines the binding of such parameters to any standard programming lan-
guage: and each language, by its mapping from the LI datatypes into the language datatypes, effectively defines the
binding to that language of parameters to any of the standard services.

This document was prepared by ISO/IEC JTCI. Information Technology, and approved as an International Standard
on the Ist day of January 199x. This is a new standard.

This document contains the following Annexes:
Annex A. Character-Set Standards — informative.,
Annex B. Recommended Placement of Annotations — informative,
Annex C. Implementation Notions of Datatypes — informative.
Annex D. Syntax for the Common Interface Definition Notation — informative.
Annex E. Example Mapping — informative
Annex F. Resolved Issues — informative.

This document contains many paragraphs designated “Notes”, which explain relationships of the normative text to
common mathematical or programming concepts, or distinguish differences in the understanding of datatypes or con-
cepts. These Notes are not a part of the normative text.

e WD #7 —92.12.15






© ISO/IEC

Language-Independent Datatypes

Table of Contents

CD 11404.2
JTC1/SC22/WG11 N345

T T 1
INOrTIAtive ReFeremCes ... s 1
L T 1
Conventions Used in this Standard.........oooooooeoooooooooooro 4
4.1 FOMMAl SYNIAX c.vvvriirreriereesecneeeresersssesses s setssesssssssesessssemeessossseseeeeeesesseesses 4
4.2 Text CONVENLONS.....cceererrrrerrrerrsrsresesrssesesssnsssssans ..
5151 5
Sl DAL COMMPIENINGE Lasnssisoronessnisimssississsans s i s e sy 5
5.2 INdIrect COMPLANCE........coeemmreueeererirrereeressesssse s ssens e eeeeeseesessssesnes s ses s 6
5.3 Compliance of a Mapping Standard ...........coo.ooooeeeeeeeoeoeeee oo 6
Fundamental NOtIONS..............oooeevcveeeeeeeeseeeeeeeeeeoeeeeee oo 7
6.1 DALAYPE ..cuuceucuernresrussaesssesesssssssssssssessssesssessssssessnsssnsssessssosemsssesse s ses s 7
6.2  Value space..... -
6.3 DAALYPE PTOPEITES...vvueerunreereseserserasssssessssssssssessesessessessssssessses e eesessesse e eene 7
6.3.1 B AN vimiinansisi 000 5 mempenms et pEm s RS R 7
6.3.2 OMUBTUIE . omsnmsimennossmmsssisssminsasiss sissios i i 8
6.3.3 B I 000 i e ssmins e es e S A0S 8
6.3.4 CARDINDIIY ouscancsssssonsiasiissassssoosissaiasissisitonsirsns st shommemmemamesassmecs 8
6.3.5 Exact and ApProxXimate ...........ou.ueeeeecvmseemeeeseeeesnsseess oo oo, 9
6.3.6 T 9
6.4  Primitive and NON-Primitive datatyPes.......oovuuueevveoeeoooeoeoooooooooooooo 9
6.5 DAUALYPE ZENEIAON .....crvvueemerereenneersesseessnneceeemssesssssesesssseeesseeseeemesseene 10
6.6  Characterizing OPETALIONS ...useesssssisssessssessessossinsissassssostomsasesonmessenemsessennn 10
6.7 Datatype FAMILES ......oeueveerruerreeensesssassseneeessesessess oo oo oo 11
6.8  Aggregate Datatypes..... R )|
6.8.1 HOMOZENEILY ......ooeeeceerereeereeeseens e sess e 11
6.8.2 e T 12
6.8.3 UNIQUENESS c.ovcveeeeeeeeceasns s taeseseseseeseessseese s oo 12
6.84 (Aggregate-imposed) Ordering...........eeeveeeeeeeeesvesressooooo 12
6.8.5 ACCESS MEINO...uucverreerereseeeseenseseeseeesess s oo 12
6.8.6 Recursive structure .... w13
Elements of the Datatype Specification Language.................13
7.1 CRATACIET-SEL covvvvcveecenessssesssesssnessssssssesasssssesesssesssesessseesseesses e esen e 13
7.2 Whitespace........overeunnnnn.. .14
T3 Lexical DBIBEE s s i i 14
7.3.1 TACNUIIETS .ottt srese s ss st s e s s 14
7.3.2 DI SR oo s i ssseapeamsnasmrenssars st arr e ceasmets 14
733 Character or String Literal .14
LT 15
FE- B 1 T O 15
7.5.1 Independent values S —— 15
7.5.2 D EPENTBNE VAU s st s 16

-1l -

WD #7 -92.12.14



© ISO/IEC CD 11404.2

Language-Independent Datatypes JTC1/SC22/WG11 N345
B A DO it T s e aaS s s AR PRSP A SRS oA 8RS 17
8.1 Primitive DatatyPes. . i i st i ssassasinsiviiis 18
8.1.1 BOOIBAN ..ottt es e se s s sress e nnenes 19
8.1.2 SHE cocnammasmmmmannms T 19
8.1.3 ENUMETALEA ...ttt ettt e s s s assesmsn e e snesmeneres 20
8.1.4 1T ol T D 20
8.1.5 Ordinal . vesrernrrsassrnsnssesnnsnn 21
8.1.6 Date-and-Time i st w22
8.1.7 BB cuuivensimamssiimssimosssssissiossoivasvin s 450 o S S S S SRS 23
8.1.8 Integer N e R A el .23
8.1.9 RABOMAL i visisusimmismisnsssisisssisiois iadossasiisissaissonssssoisisssisvsisssssnass 24
8.1.10 SCAIEA....eeeee st rrsr e s sasr s s srasners s s s s ennanaees 25
8.1.11 Real i s s s s s S s 26
8.1.12 {1471 {[ ], O —— G s SRR 27
8.1.13 NI o s R i e 29
B2 SUDVDES . cciiuisuissecusnsmssnuns mmnssiinsinss vassaesissaissssiintussoi s soess sisesssonvases suidarsass 29
8.2.1 RaANge o 30
8.2.2 BCIECUNE i cicumssiasssasassicarsissss sivosiansvas vsssviassissmssss s b aaaAR RS 30
8.2.3 EXCIUAING «.vereirerenisinieisiiniinssnnssss s ssssss s sassssasssssans 31
8.2.4 EXBAE cuimmnmisisaiisesivmmimismmimiminims 31
8.2.5 SHZE . eeeuereeseseuenesesessnsnesesassesessssssesassesasesesenssssesassssaseseseasassansansns 32
8.2.6 Explicit sUbtypes . mansnnsanmsmnsasnaiunsmmsasms 32
8.3 GeNETAEd AALAIYIIERL covsmrsnminssisnsuis e sy P S P ER SRS 32
8.3.1 ChoiCe o mem s 33
8.3.2 PORMEEE csaniamoniiviis iissssss s s sssiss dss s ussias 4 o sy b 35
8.3.3 PrOCEAUTE ...ttt resseressas e e sn s s s s as e s s smnssanes 36
B4 Aggrepite DalalyDES o wissssisiisssdssss sessviasusssissssss sedesssvinsicesndin 39
84.1 RECOMU . veiirererecreninsrnenteetesseseenresssesssesnsassressessssessensmsssssensenan 40
8.4.2 Set R ST 41
84.3 Bag .42
844 SEOUBIICE iiiiiiiiianmisian siasssiscsbssanmmmnnesrasaassrrasasassssesasettasssssassasnesss 43
8.4.5 BT s om0 B R S A S R N ST 44
8.4.6 DD i e nsssmsnsssassmsssnasntassasasasangts smssn e mEmER RS RS 46
8.5  Defined Datatypes CSiEs e 48
9. Declarations G B S A A RSSO 48
9.1 TyYPE DECIATAUONS ....coueeeeeerreereeerenerseseressssssssesssssessasssssssssssnsssssonsenessssans 43
9.1.1 Renaming declarations..... e cccececeeeeeeeececeeeeee s e ssnens 49
9.1.2 New datatype declarations ......ceeeceeeeeeeeerreerverssresssronnns 49
Q13 New generator deChirations ........oveeeeseevcrececnssssnsensssessnssesns 49
9.2 Value DEClaralions....ccoceevereesresssemsremssassssmsassseseassessessssssssessesssessenssnessmssenne 50
9.3  Termination Declarations .....cousssesisssonsssistaiussiossiisansnssiadassssssnsiasssasssinoss 50
10. Derived Datatypes and Generators.............o...cccouvcensreveoseerssessennnne 50
10.1  Defined datalyPeS ..ceveuereererenirerereeesssescsssesssssessssssstssessssmssesesssssssssmsseses 50
10.1.1 Switehennnsmn s .51
10.1.2 CARBRAL 05 0svs0sisimsissssonsmsussovisssvasiisssosissssisss swsmminsess s TN 51

— iii - WD #7 -92.12.14



© ISO/IEC CD 11404.2

Language-Independent Datatypes JTC1/SC22/WG11 N345
1013 Bt SUANE cooveeeevesseesssesssssseesssssssssssssssssssansssssssssssssessssssssssssnsnnss 52
10.14 CRATACIET SITINE v e sioton o sty s s vedassdivivaass 52
10.1.5 MOAUIO. ..t e srae s e ss e s s s baenbenns 53
10.1.7 INEEIVAL ...ttt ste et e ee e e eneesas b be sbaemaesnesbnensaen 53
10.1.8 Getel s S s ST R R 54
10.1:10  ‘Objectldentifier: o i s rssiass 54
10.1.11  DistinguiShed-Name .......ccceeeiieimiesienrieireeceeteeneeseee e e eesnens 55
10:2  Defined O enerators s i T B e ks ssmmmasmmnsnenass 56
10.2.1 SR fuicvucususussmusasasnesssasmssas s H TSR R RS S SRR 57
10.2.2 D s s i U ek s cin o mmmsmsmcsmsnsmssasnmsnyamsasmsssnt s sass 57
10.2.3 Cyelic-EnImerated s mmmmnaaaimanianna et 57
11. Support of Datatypes...........cccooererrerunne SR S G 58
11,1 SuppOrt Of EQUALILY....c.eereeeecrecrereccstereessesemsaneresmsresesssrasssesssnssasssesnsssensansen 58
11.2  Support of ordering and bounds... Gl sna I8
11.3  Support of cardinality .......... S S 58
11.4  Support for the exact or APProximate ProPerLy .........oseereersnessaresesesssssssesnens 58
11.5 Support for the numeric property T D D
12, MAPPINGS.......omreeeeeieeceenectse s ssssssess s sesesstesesasssessasssesssssssssessaess s anees 59
12,1 Outward MAPPiNES ......ccoeureereeuresseeseesseesessessessssssssesssssssssssssseessesssesssensansases 60
12:2; Inward MapPiRES i s e e 60
12.3 Reverse Inward Mapping..................... SROAOTPRRRT SRR | |
Annex A. Character-Set Standards................o.o.oooomreooeemmeereoeeseeneeeesens 63
Annex B. Recommended Placement of Annotations.............................. 64
Bl TYPE-AUIIDULES .....covueeerenrrnsessesssssssenssnsessssseseeseesemesemesessssssressesssensessssssssses 64
B.2 Component-attributes.................. oO 7 P — 64
B.3  ProCedUrE-attIDULES .......c.rureuererreeesesseesssesnseses s ssessseseseensessensssessssessesseens 64
Ba  ArgUment-altriblles o niississssiimisimmiiisis iy s 65
Annex C. Implementation Notions of Datatypes.............coooooooorvoeeeeeennn.... 66
C.l Size........ vasa e et e e R SR S S S R S 66
C2  Mode...cunmisi R e amamamma e sannss 66
C.3  FIOANE-POINL c..cuvrrereenrecteneaerecsemsesssensssssessseassesseessssesssnssssssmesssasesssessssassnes 66
LG S (s L[ e — 67
CoF  TAZ ttttrteeretrreseesecstes e et s e sss e see s sas st s st en st st e sa s et s sas e sms e se e 67
C.6  Discriminant........o.oveeeeerinsesenens i erina s asmanasams v st peonmse SRS RS 67
Ol SBOUEIICE ovrsuimesrsonsscssusisusssnsssusosiosismiasssssis oo s s s st s S iasaints 67
C.8  PACKEU ...t cm st emrss s e asessss s sss e ssns b st sss s ssn s st mteseeeeeemssemnen 67
G AREAMEAT i s i s s 68
C.10 Form...... i oA SR SRS e iR R 68
Annex D. Syntax for the Common Interface Definition Notation........ 69
Annex E. Example Mapping ... sesenas 74
E.l1 LI Primitive DatatyPes.....cocverererenrsrerenesissesisssssasisssssssssessssssssesssessseseees 74

e WD #7 - 92.12.14



© ISO/IEC CD 11404.2

Language-Independent Datatypes JTC1/SC22/WG11 N345

Ell.l  Boolgisummamnanmsmmsssms i s 74

E L2 SHAE ..ot essse s ssa s saessss e snssassessas s ssseass s ssseaes 74

Eil.3; Efimeediesnuanmmmssnmsmmmnenmnnaimmsmaniid

E.Ld  CRATACIEL....oviecree et s essesessmssemseesenessesss s s easessemssemseens 74

EilS  Ordinalimasos s i e s siasinssmsansassenasoss. 74

E.1.6 Time N R SRS R B 74

ElllT Bt i it smmsassssonsasnsssssasstassasssnspasass 74

E. LB INBEET. i insvssivsssssinasssassissssesssvaiininss s esseiiiassivessais 5

EiLD  RaBONAL i iiiiiniiiiiioimuisiionsmesssntsssnssasnansassnssasassson snssssssasasas 75
E.L1Q (SCAIRA «svnissimmmmmeninsesivmisisisstonictssibisiissstavssaiiisisnnamsias e, 76
Exldl Realiiiiiiimnnasensresssssssen e sxsasssstons shansas sesssavesssanmentagasses 77
E.1.12 Complex ................ e BT T P 77
E.1.13 Void reverterererterer et tes e s s e s ensnsasasansaa shans e 17

E2 LIGenerated TYPES vt .78
E2.l  CROICE..uuesireiraesresietesesesssessessssesnsssesenesssesensassssesssnssssessasnsnsnsessasas 78

E22 POINer nnimnmisssshmmmamnssimsiemnin 78

E.23  Procedure SRR 79

E24 Record eerreessesaserestestesneesaeasaesantenenbasas 79

E25  SBleauiimalinndnnimnnn i vty 79

E26 Bag....e. 80

E27  SeqUentlaiannmnnnsiveiiasiig 80

E28  AITOY . ensse e s ssnsesessssnssa e sensnsesessasas s sesans 80

E28 “Table cuvninaamananammmniiaaimmiasm .80

E3 LI SUDLYPES o rrerececeieeieiesiesesinsnssesessnssssenssssssassesessssasssssossnsnsessasansnsssssmsns 81
E.3.1 Range SRR .1 |

Ei32 | SeIECHNE cusuivcusssistssmisissovesssisssssassissionisiusuiessisstass fad sses Gomtinssonis 81

E3.3  Excluding 81

EQd EBRENdEd S s s s 81

E3S  SHZE it eseas s ssenssssssnssnsssssenssssassesseassensesssensessees 81

E36 Explicitusannsrsmmmumssarsmannisns e 81

E4 LI Defined Datatypes............... S S SR S 81
E4.l  Bit-SUING .o eeesnanne reesetnare s aesaesrnannesesens 81

E.42  Character-String ......o.oceeeeeeereeeeeeeeevessnsssessens 82

B3 DGR it cininsiissisimsbismnsmnsassnsentsnss os ot sss stsss tymatemensoasratasomens 82

EAA] PRIV, ossam i msissmsmssimsss s s s v s 82

E4.5  ObJeCt-identifier ......cc.ocuivveueuruneiencieseensseeesseesseseessesnesseeseaesesnsens 83

E4.6  Distinguished-Name.........cccoevevceemimcreerennnee 83

E.5  Type-Declarations and Defined DALALYPES .....vueeveveseeceenreseeensessesnssssenesnsens 83
E.5.1  Renaming declarations ” #5189

E.5.2 Datatype declarations ........ceeeeeeeveeeeeerevsensnns 83

E.5.3  Generator declarations.........cocececeveevevesnnereresenenns .83
Annex F. Resolved ISSUes...............o.couoereeornemseesseesssseesssess s S

- WD #7 -92.12.14



© ISO/IEC CD 11404.2
Language-Independent Datatypes JTC1/SC22/WG11 N345

1. Scope

This draft International Standard specifies the nomenclature and shared semantics for a collection of datatypes com-
monly occurring in programming languages and software interfaces, referred to as the (Common) Language-Indepen-
dent (LI) Datatypes. It specifies both primitive datatypes, in the sense of being defined ab initio without reference to
other datatypes, and non-primitive datatypes, in the sense of being wholly or partly defined in terms of other datatypes.
The specification of datatypes in this draft International Standard is "language-independent” in the sense that the
datatypes specified are classes of datatypes of which the actual datatypes used in programming languages and other
entities requiring the concept datatype are particular instances.

This draft International Standard expressly distinguishes three notions of "datatype", namely:
+ the conceptual, or abstract, notion of a datatype, which characterizes the datatype by its nominal values and
properties;
+ the structural notion of a datatype, which characterizes the datatype as a conceptual organization of specific
component datatypes with specific functionalities; and

« the implementation notion of a datatype, which characterizes the datatype by defining the rules for represen-
tation of the datatype in a given environment.

This draft Intemational Standard defines the abstract notions of many commonly used primitive and non-primitive
datatypes which possess the structural notion of atomicity. This draft International Standard does not define all atomic
datatypes: it defines only those which are common in programming languages and software interfaces. This draft In-
ternational Standard defines structural notions for the specification of other non-primitive datatypes and provides a
means by which datatypes not defined herein can be defined structurally in terms of the LI datatypes defined herein,

This draft International Standard defines a partial vocabulary for implementation notions of datatypes and provides
for, but does not require, the use of this vocabulary in the definition of datatypes. The primary purpose of this vocab-
ulary is to identify common implementation notions associated with datatypes and to distinguish them from conceptual
notions. Specifications for the use of implementation notions are deemed to be outside the scope of this draft Inter-
national Standard. which is concerned solely with the identification and distinction of datatypes.

This draft International Standard specifies the required elements of mappings between the LI datatypes and the
datatypes of some other language. This draft International Standard does not specify the precise form of a mapping,
but rather the required information content of a mapping.

Z Normative References

The following standards contain provisions which, through reference in this text, constitute provisions of this draft In-
ternational Standard. At the time of publication, the editions indicated were valid. All standards are subject to revi-
sion, and parties to agreements based on this draft International Standard are encouraged to investigate the possibility
of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of
current valid International Standards.

ISO 8601:1988 Representation of dates and times
ISO 8824:1989  Abstract Syntax Notation One

3. Definitions

For the purposes of this draft International Standard, the following definitions apply:

NOTE - These definitions may not coincide with accepted mathematical or programming language definitions of the same
terms.

3.1 actual datatype: a datatype appearing as a component datatype in a use of a datatype generator, as opposed to
the parametric-types appearing in the definition of the datatype generator.
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3.2 actual value: a value appearing as a parameter in a reference to a datatype family or datatype generator. as op-
posed to the parametric-values appearing in the corresponding definitions.

3.3 aggregate datatype: a generated datatype each of whose values is made up of values of the component
datatypes, in the sense that operations on all component values are meaningful.

3.4 annotation: a descriptive information unit attached to a datatype, or a component of a datatype, or a procedure
(value), to characterize some aspect of the representations, variables, or operations associated with values of the
datatype which goes beyond the scope of this draft International Standard.

3.5 approximate: a property of a datatype indicating that there is not a 1-to-1 relationship between values of the
conceptual datatype and the values of a valid computational model of the datatype.

3.6 bounded: a property of a datatype, meaning both bounded above and bounded below.

3.7 bounded above: a property of a datatype indicating that there is a value U in the value space such that, for all
values s in the value space, s < U.

3.8 bounded below: a property of a datatype indicating that there is a value L in the value space such that, for all
values s in the value space, L <s.

3.9 characterizing operations:

(of adatatype): acollection of operations on, or yielding, values of the datatype, which distinguish this datatype
from other datatypes with identical value spaces;

(of a datatype generator): a collection of operations on, or yielding, values of any datatype resulting from an
application of the datatype generator, which distinguish this datatype generator from other datatype generators which
produce identical value spaces from identical component datatypes.

3.10 component datatype: a datatype which is a parameter to a datatype generator, i.e. a datatype on which the
datatype generator operates.

3.11 datatype: a set of distinct values, a collection of relationships among those values and a collection of charac-
terizing operations on those values.

3.12 datatype declaration:

(1) the means provided by this draft International Standard for the definition of a LI datatype which is not itself
defined by this draft International Standard:

(2) an instance of use of this means.

3.13 datatype family: a collection of datatypes which have equivalent characterizing operations and relationships.
but value spaces which differ in the number and identification of the individual values,

3.14 datatype generator: an operation on datatypes, as objects distinct from their values, which generates new
datatypes.

3.15 defined datatype: a LI datatype defined by 2 type-declaration.
3.16 defined generator: a datatype generator defined by a type-declaration.

3.17 exact: a property of a datatype indicating that every value of the conceptual datatype is distinct from all others
in any valid computational model of the datatype.

3.18 generated datatype: a datatype defined by the application of a datatype generator to one or more previously-
defined datatypes.

3.19 generated internal datatype: a datatype defined by the application of a datatype generator defined in a partic-
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ular programming language to one or more previously-defined internal datatypes.
3.20 generator: a datatype generator (q.v.).

3.21 generator declaration:
(1) the means provided by this draft International Standard for the definition of a datatype generator which is

not itself defined by this draft International Standard:
(2) an instance of use of this means.

3.22 internal datatype: a datatype whose syntax and semantics are defined by some other standard, language, prod-
uct, service or other information processing entity.

3.23 inward mapping: a conceptual association between the internal datatypes of a language and the LI datatypes
which assigns to each LI datatype either a single semantically equivalent internal datatype or no equivalent internal
datatype.

3.24 LI datatype: a datatype which is either:
(a) defined by this draft International Standard, or
(b) defined by the means of datatype definition provided by this draft International Standard.

3.25 lower bound: in a datatype which is bounded below. the value L such that, for all values s in the value space.
Taw

3.26 mapping:

(of datatypes): a formal specification of the relationship between the (internal) datatypes which are notions of,
and specifiable in, a particular programming language and the (LI) datatypes specified in this draft International Stan-
dard;

(of values): a corresponding specification of the relationships between values of the internal datatypes and val-
ues of the LI datatypes.

3.27 ordered: a property of a datatype which is determined by the existence and specification of an ordering rela-
tionship on its value space.

3.28 ordering: a mathematical relationship among values (see 6.3.2).

3.29 outward mapping: a conceptual association between the internal datatypes of a language and the LI datatypes
which identifies each internal datatype with a single semantically equivalent LI datatype.

3.30 parametric-type: an identifier, appearing in the definition of a datatype generator. for which a LI datatype will
be substituted in any reference to a datatype resulting from the generator.

3.31 parametric-value: an identifier, appearing in the definition of a datatype family or datatype generator, for
which a value will be substituted in any reference to a datatype in the family or resulting from the generator.

3.32 primitive datatype: an identifiable datatype that cannot be decomposed into other identifiable datatypes with-
out loss of all semantics associated with the datatype,

3.33 primitive internal datatype: a datatype in a particular programming language whose values are not viewed as
being constructed in any way from values of other datatypes in the language.

3.34 representation:

(of a LI datatype): the mapping from the value space of the LI datatype to the value space of some internal
datatype of a computer system, file system or communications environment:

(of a value): the image of that value in the representation of the datatype.

3.35 subtype: a datatype derived from another datatype by restricting the value space to a subset whilst maintaining
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all characterizing operations.

3.36 upper bound: in a datatype which is bounded above, the value U such that, for all values s in the value space,
s<U.

3.37 value space: the set of values for a given datatype.

3.38 variable: a computational object to which a value of a particular datatype is associated at any given time; and
to which different values of the same datatype may be associated at different times.

4. Conventions Used in this Standard

4.1 Formal syntax

This draft International Standard defines a formal datatype specification language. The following notation. derived
from Backus-Naur form, is used in defining that language. In this clause, the word mark is used to refer to the char-
acters used to define the syntax, while the word character is used to refer to the characters used in the actual datatype
specification language.

A terminal symbol is a sequence of characters drawn from the character set defined in Table 4-1, delimited by two
occurrences of the quotation-mark (") or two occurrences of the apostrophe-mark (), of which the first occurrence pre-
cedes the first character in the terminal symbol, and the second occurrence follows the last character in the terminal
symbol. A terminal symbol represents the occurrence of that sequence of characters.

A non-terminal symbol is a sequence of marks, each of which is either a letter or the hyphen mark (-), terminated by
the first mark which is neither a letter nor a hyphen. A non-terminal symbol represents any sequence of terminal sym-
bols which satisfies the production for that non-terminal symbol. For each non-terminal symbol there is exactly one
production in clauses 7, 8, 9, and 10.

A sequence of symbols represents exactly one occurrence of a (group of) terminal symbol(s) represented by each sym-
bol in the sequence in the order in which the symbols appear in the sequence and no other symbols.

A repeated sequence is a sequence of terminal and/or non-terminal symbols enclosed between an open-brace mark
({) and aclose-brace mark (}). A repeated sequence represents any number of consecutive occurrences of the sequence
of symbols so enclosed, including no occurrence.

Table 4-1. Character Set
Type Characters
letter abcdefghijklmnopgrstuvwxyz
digit 0123456789
special h () { ) <> . ; :
(parentheses) (braces) (angle-brackets) (full stop) (comma) (colon)
; = / * -
(semicolon)  (equals) (solidus) (asterisk) (minus)
hyphen o
apostrophe
quote "
escape !
space
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An optional sequence is a sequence of terminal and/or non-terminal symbols enclosed between an open-bracket mark
(D) and a close-bracket mark (]). An optional sequence represents either exactly one occurrence of the sequence of
symbols so enclosed or no symbols at all.

 An alternative sequence is a sequence of terminal and/or non-terminal symbols preceded by the vertical stroke (h
mark and followed by either a vertical stroke or a full-stop mark (.). An alternative sequence represents the occurrence
of either the sequence of symbols so delimited or the sequence of symbols preceding the (first) vertical stroke.

A production defines the valid sequences of symbols which a non-terminal symbol represents. A production has the
form:

non-terminal-symbol = valid-sequence .
where valid-sequence is any sequence of terminal symbols, non-terminal symbols, optional sequences, repeated se-
quences and alternative sequences. The equal-sign (=) mark separates the non-terminal symbol being defined from
the valid-sequence which represents its definition. The full-stop mark terminates the valid-sequence.

4.2 Text conventions

Within the text:
* Areference to a terminal symbol syntactic object consists of the terminal symbol in quotation marks, e.g.
"t)’.pe".
* Areference to a non-terminal symbol syntactic object consists of the non-terminal-symbol in italic script, e.g.
type-declaration.

+ Non-italicized words which are identical or nearly identical in spelling to a non-terminal-symbol refer to the
conceptual object represented by the syntactic object. In particular, xxx-rype refers to the syntactic represen-
tation of an "xxx datatype" in all occurrences.

5. Compliance

An information processing product, system, element or other entity may comply with this draft Intemational Standard
either directly, by utilizing datatypes specified in this draft International Standard in a conforming manner (ref. Su1):
or indirectly, by means of mappings between internal datatypes used by the entity and the datatypes specified in this
draft International Standard (ref. 5.2).

NOTE - The general term information processing entity is used in this clause to include anything which processes informa-
tion and contains the concept of datatype. Information processing entities for which compliance with this draft International Stan-

L8| Direct compliance

An information processing entity which complies directly with this draft International Standard shall:

{)  define and refer to datatypes within the entity using the syntax prescribed by clauses 7 through 10 of this draft
International Standard; and

ii) - define the value spaces of the datatypes used by the entity to be identical to the value-spaces specified by this
draft International Standard: and

iii) to the extent that the entity provides operations other than movement or translation of values. define opera-
tions on the datatypes which can be derived from. or are otherwise consistent with. the characterizing opera-
tions specified by this draft International Standard: and

iv) specify which of the datatypes and datatype generators specified in Clauses 8 and 10 are provided by the en-
tity and which are not, and which, if any, of the declaration mechanisms in Clause 9 it provides.

NOTES
1. This draft International Standard defines a syntax for the denotation of values of each datatype it defines, but, in general,
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requirement (i) does not require conformance to that syntax. Conformance to the value-syntax for a datatype is required only in
those cases in which the value appears in a type-specifier, that is, only where the value is part of the identification of a datatype.

2. The requirements above prohibit the use of a rype-specifier defined in this draft International Standard to designate any other
datatype. They make no limitation on the definition of additional datatypes in a conforming entity, although it is recommended that
either the form in Clause 8 or the form in Clause 10 be used.

3. Requirement (iii) does not require all characterizing operations to be supported and permits additional operations to be pro-
vided. The intention is to permit addition of semantic interpretation to the LI datatypes and generators, as long as it does not conflict
with the interpretations given in this draft International Standard. A conflict arises only when a given characterizing operation could
not be implemented or would not be meaningful, given the entity-provided operations on the datatype.

4, Examples of entities which could comply directly are language definitions or interface specifications whose datatypes, and
the notation for them, are those defined herein. In addition, the verbatim support by a software tool or application package of the
datatype syntax and definition facilities herein should not be precluded.

5.2  Indirect compliance

An information processing entity which complies indirectly with this draft International Standard shall:

i) provide mappings between its internal datatypes and the LI datatypes conforming to the specifications of
Clause 12 of this draft Intemational Standard; and

i) shall specify for which of the datatypes in Clause 8 and Clause 10 an inward mapping is provided. for which
an outward mapping is provided, and for which no mapping is provided.

NOTE - Examples of entities which could comply indirectly are language definitions and implementations, information ex-
change specifications and tools, software engineering tools and interface specifications, and many other entities which have a con-
cept of datatype and an existing notation for it.

5.3  Compliance of a Mapping Standard

In order to comply with this draft International Standard, a standard for a mapping shall include in its compliance re-
quirements the requirement to comply with this draft International Standard.

NOTES

1. It is envisaged that this draft International Standard will be accompanied by other standards specifying mappings between
the internal datatypes specified in language and language-related standards and the LI datatypes. Such mapping standards are re-
quired to comply with this draft International Standard.

2. Such mapping standards may define “generic" mappings. in the sense that for a given internal datatype the standard specifies
a parametrized LI datatype in which the parameter values are not derived from parameters of the internal datatype nor specified by
the standard itself, but rather are required to be specified by a "user” or "implementor” of the mapping standard. That is. instead of
specifying a particular LI datatype, the mapping specifies a family of LI datatypes and requires a further user or implementor to
specify which member of the family applies to a particular use of the mapping standard. This is always necessary when the internal
datatypes themselves are, in the intention of the language standard, either explicitly or implicitly parametrized. For example. a pro-
gramming language standard may define a datatype INTEGER with the provision that a conforming processor will implement some
range of Integer; hence the mapping standard may map the internal datatype INTEGER to the L1 datatype

integer: range (min..max),

and require a conforming processor to provide values for "min” and "max".
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6. Fundamental Notions

6.1 Datatype

A datatype is a collection of distinct values, a collection of properties of those values and a collection of characterizing
operations on those values.

The term LI datatype (for Language-Independent datatype) is used to mean a datatype defined by this draft Interna-

tional Standard. LI datatypes (plural) refers to some or all of the datatypes defined by this draft International Stan-
dard.

The term internal datatype is used to mean a datatype whose syntax and semantics are defined by some other stan-
dard, language, product. service or other information processing entity.

NOTE - The datatypes included in this standard are "common”, not in the sense that they are directly supported by, i.e. "built-
in" to, many languages, but in the sense that they are common and useful generic concepts among users of datatypes, which include,
but go well beyond, programming languages.

6.2 Value space

A value space is the collection of values for a given datatype. The value space of a given datatype can be defined in
one of the following ways:
* enumerated outright, or
* defined axiomatically from fundamental notions, or
* defined as the subset of those values from some already defined value space which have a given set of prop-
erties, or

+ defined as a combination of arbitrary values from some already defined value spaces by a specified construc-
tion procedure.

Every distinct value belongs to exactly one datatype, although it may belong to many subtypes of that datatype (see
8.2).

6.3  Datatype Properties

The model of datatypes used in this draft International Standard is said to be an "abstract computational model”. It is
“computational” in the sense that it deals with the manipulation of information by computer systems and makes dis-
tinctions in the typing of information units which are appropriate to that kind of manipulation. It is "abstract” in the
sense that it deals with the perceived properties of the information units themselves, rather than with the properties of
their representations in computer systems,

NOTES

1. It is important to differentiate between the values, relationships and operations for a datatype and the representations of those
values, relationships and operations in computer systems. This draft International Standard specifies the characteristics of the con-
ceptual datatypes, but it only provides a means for specification of characteristics of representations of the datatypes.

2. Some computational properties derive from the need for the information units 10 be representable in computers. Such prop-
erties are deemed to be appropriate to the abstract computational model, as opposed to purely representational properties, which
derive from the nature of specific representations of the information units.

3. It is not proper to describe the datatype model used herein as "mathematical”, because a truly mathematical model has no
notions of "access to information units” or "invocation of processing elements”, and these notions are important to the definition of
characterizing operations for datatypes and datatype generators.

6.3.1 Equality

In every value space there is a notion of equality, for which the following rules hold:
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- for any two instances (a. b) of values from the value space, either a is equal to b, denoted a = b, or a is not
equal 1o b, denoted a #b;

« there is no pair of instances (a, b) of values from the value space such that botha=b anda#b:
« for every value a from the value space, a=a;

« for any two instances (a, b) of values from the value space, a = b if and only ifb=a;

- for any three instances (a, b, ¢) of values from the value space,if a=bandb=c, thena=c.

On every datatype, the operation Equal is defined in terms of the equality property of the value space, by:
« for any values a, b drawn from the value space, Equal(a,b) is true if a= b, and false otherwise.

6.3.2 Ordering

A value space is said to be ordered if there exists for the value space an ordering relation, denoted <, with the follow-
ing rules:

- for every pair of values (a, b) from the value space, either a<b or b <a, or both;
- for any two values (a, b) from the value space, ifa<bandb<a, thena=b;
- for any three values (a, b, ¢) from the value space,ifa<bandb=c, thenasc.

For convenience. the notation a < b is used herein to denote the simultaneous relationships: a<band a #b.

A datatype is said to be ordered if an ordering relation is defined on its value space. A corresponding characterizing
operation, called InOrder, is then defined by:

« for any two values (a, b) from the value space. InOrder(a, b) is true if a < b, and false otherwise.

NOTE - There may be several possible orderings of a given value space. And there may be several different datatypes which
have a common value space, each using a different ordering. The chosen ordering relationship is a characteristic of an ordered
datatype and may affect the definition of other operations on the datatype.

6.3.3 Bound

A datatype is said to be bounded above if it is ordered and there is a value U in the value space such that, for all values
s in the value space, s < U. The value U is then said to be an upper bound of the value space. Similarly, a datatype
is said to be bounded below if it is ordered and there is a value L in the space such that, for all values s in the value
space, L <s. The value L is then said to be a lower bound of the value space. A datatype is said to be bounded if its
value space has both an upper bound and a lower bound.

NOTE - The upper bound of a value space, if it exists, must be unique under the equality relationship. For if U1 and U2 are
hoth upper bounds of the value space, then U1 € U2 and U2 < U1, and therefore U1 = U2, following the second rule for the ordering
relationship. And similarly the lower bound, if it exists, must also be unique.

On every datatype which is bounded below, the niladic operation Lowerbound is defined to yield that value which is
the lower bound of the value space, and, on every datatype which is bounded above the niladic operation Upperbound
is defined to yield that value which is the upper bound of the value space.

6.3.4 Cardinality

A value space has the mathematical concept of cardinality: it may be finite, denumerably infinite (countable), or non-
denumerably infinite (uncountable). A datatype is said to have the cardinality of its value space. In the computational
model, there are three significant cases:

+ datatypes whose value spaces are finite,
« datatypes whose value spaces are exact (see 6.3.5) and denumerably infinite,

« datatypes whose value spaces are approximate (see 6.3.5), and therefore have a finite or denumerably infinite
computational model, although the conceptual value space may be non-denumerably infinite.
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Every conceptually finite datatype is necessarily exact. No computational datatype is non-denumerably infinite.
NOTE - Fora denumerably infinite value space, there always exist representation algorithms such that no two distinct values

have the same representation and the representation of any given value is of finite length. Conversely, in a non-denumerably infinite
value space there always exist values which do not have finite representations.

6.3.5 Exact and Approximate

The computational model of a datatype may limit the degree to which values of the datatype can be distinguished. If
every value in the value space of the conceptual datatype is distinguishable in the computational model from every
other value in the value space, then the datatype is said to be exact.

Certain mathematical datatypes having values which do not have finite representations are said to be approximate. in
the following sense:

Let M be the mathematical datatype and C be the corresponding computational datatype, and let P be the mapping
from the value space of M to the value space of C. Then for every value v’ in C. there is a corresponding value v in M
and a real value A such that P(x) = v* for all x in M such thatIv-xl<h. Thatis, v' is the approximation in C to all
values in M which are "within distance 4 of value v". And thus C is not an exact model of M.

In this draft Intemational Standard. all approximate datatypes have computational models which specify, via parame-
ters, a degree of approximation, that is, they require a certain minimum set of values of the mathematical datatype to
be distinguishable in the computational datatype.

NOTE - The computational model described above allows a mathematically dense datatype to be mapped to a datatype with
fixed-length representations and nonetheless evince intuitively acceptable mathematical behavior. When the real value 4 described
above is constant over the value space, the computational model is characterized as having "bounded absolute error” and the result
is a scaled datatype (8.1.10). When 4 has the form ¢ « | v I, where ¢ is constant over the value space, the computational model is
characterized as having "bounded relative error”, which is the model used for the Real (8.1.11) and Complex (8.1.12) datatypes.

6.3.6 Numeric

A datatype is said to be numeric if its values are conceptually quantities (in some mathematical number system). A
datatype whose values do not have this property is said to be non-numeric,

NOTE - The significance of the numeric property is that the representations of the values depend on some radix, but can he
algorithmically transformed from one radix to another.

6.4  Primitive and Non-Primitive datatypes

In this draft Intemational Standard, datatypes are categorized, for syntactic convenience into:
* primitive datatypes, which are defined ab initio without reference to other datatypes, and
* generated datatypes. which are specified, and partly defined, in terms of other datatypes.

In addition, this draft International Standard identifies structural and abstract notions of datatypes. The structural no-
tion of a datatype characterizes the datatype as either;

* conceptually atomic, having values which are intrinsically indivisible, or

* conceptually aggregate, having values which can be seen as an organization of specific component datatypes
with specific functionalities.

All primitive datatypes are conceptually atomic, and therefore have. and are defined in terms of, well-defined abstract
notions. Some generated datatypes are conceptually atomic but are dependent on specifications which involve other
datatypes. These too are defined in terms of their abstract notions. Many other datatypes may represent objects which
are conceptually atomic, but are themselves conceptually aggregates, being organized collections of accessible com-
ponent values. For aggregate datatypes, this draft Intemational Standard defines a set of basic structural notions (see
6.8) which can be recursively applied to produce the value space of a given generated datatype. The only abstract se-

mantics assigned to such a datatype by this draft International Standard are those which characterize the aggregate val-
ue structure itself,
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NOTE - The abstract notion of a datatype is the semantics of the values of the datatype itself, as opposed 1o its utilization to
represent values of a particular information unit or a particular abstract object. The abstract and structural notions provided by draft
International Standard are sufficient to define its role in the universe of discourse between two languages, but not to define its role
in the universe of discourse between two programs. For example, Array datatypes are supported as such by both Fortran and Pascal.
so that Array of Real has sufficient semantics for procedure calls between the two languages. By comparison, both linear operators
and lists of Cartesian points may be represented by Array of Real, and Array of Real is insufficient to distinguish those meanings
in the programs.

6.5 Datatype generator

A datatype generator is a conceptual operation on one or more datatypes which yields a datatype. A datatype gen-
erator operates on datatypes to generate a datatype, rather than on values to generate a value. Specifically, a datatype
generator is the combination of:

. acollection of criteria for the number and characteristics of the datatypes to be operated upon,

« a construction procedure which, given a collection of datatypes meeting those criteria, creates a new value
space from the value spaces of those datatypes, and

« a collection of characterizing operations which attach to the resulting value space to complete the definition
of a new datatype.

The application of a datatype generator to a specific collection of datatypes meeting the criteria for the datatype gen-
erator forms a generated datatype. The generated dataype is sometimes called the resulting datatype, and the col-
lection of datatypes to which the datatype generator was applied are called its component datatypes.

6.6  Characterizing operations

The set of characterizing operations for a datatype comprises those operations on or yielding values of the datatype
which distinguish this datatype from other datatypes having value spaces which are identical except possibly for sub-
stitution of symbols.

The set of characterizing operations for a datatype generator comprises those operations on or yielding values of
any datatype resulting from an application of the datatype generator which distinguish this datatype generator from
other datatype generators which produce identical value spaces from identical component datatypes.

NOTES

1. Characterizing operations are needed to distinguish datatypes whose value spaces differ only in what the values are called.
For example, the value spaces (one, two, three, four), (1, 2, 3, 4), and (red, yellow, green, blue) all have four distinct values and all
the names (symbols) are different. But one can claim that the first two support the characterizing operation Add. while the last does
not:
Add(one, two) = three; and Add(1,2) = 3; but Add(red, yellow) = green.
[t is this characterizing operation (Add) which enables one to recognize that the first two datatypes are the same datatype, while the
last 1s a different datatype.

2. The characterizing operations for an aggregate datatype are compositions of characterizing operations for its datatype gen-
erator with characterizing operations for its component datatypes. Such operations are, of course, only sufficient to identify the
datatype as a structure.

3. The characterizing operations on a datatype may be:

a) niladic operations which yield values of the given datatype,
b) monadic operations which map a value of the given datatype into a value of the given datatype or into a
value of datatype Boolean,

¢) dyadic operations which map a pair of values of the given datatype into a value of the given datatype or
into a value of datatype Boolean,

d) n-adic operations which map ordered n-tuples of values, each of which is of a specified datatype, which
may be the given datatype or a component datatype, into values of the given datatype or a component
datatype.

4. In general, there is no unique collection of characterizing operations for a given datatype. This draft Intenational Standard
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specifies one collection of characterizing operations for each datatype (or datatype generator) which is sufficient to distinguish the
(resulting) datatype from all other datatypes with value spaces of the same cardinality. While some effort has been made to mini-
mize the collection of characterizing operations for each datatype, no assertion is made that any of the specified collections is min-
imal.

5. InOrder is always a characterizing operation on ordered datatypes (ref. 6.3.2).

6.7  Datatype families

If there is a one-to-one symbol substitution which maps the entire value space of one datatype (the domain) into a
subset of the value space of another datatype (the range) in such a way that the value relationships and characterizing
operations of the domain datatype are preserved in the corresponding value relationships and characterizing operations
of the range datatype, and if there are no additional characterizing operations on the range datatype, then the two
datatypes are said to belong to the same family of datatypes. An individual member of a family of datatypes is dis-
tinguished by the symbol set making up its value space. In this draft International Standard, the symbol set for an in-
dividual member of a datatype family is specified by one or more values, called the parameters of the datatype family.

6.8  Aggregate Datatypes

An aggregate datatype is a generated datatype, each of whose values is, in principle, made up of values of the com-
ponent datatypes. An aggregate datatype generator generates a datatype by

« applying an algorithmic procedure to the value spaces of its component datatypes to yield the value space of
the aggregate datatype, and

+ providing a set of characterizing operations specific to the generator.

Unlike other generated datatypes, it is characteristic of aggregate datatypes that the component values of an aggregate
value are accessible through characterizing operations.

Aggregate datatypes of various kinds are distinguished one from another by properties which characterize relation-
ships among the component datatypes and relationships between each component and the aggregate value. This sub-
clause defines those properties.

The properties specific to an aggregate are independent of the properties of the component datatypes. (The fundamen-
tal properties of arrays, for example, do not depend on the nature of the elements.) In principle, any combination of
the properties specified in this subclause defines a particular form of aggregate datatype, although most are only mean-
ingful for homogeneous aggregates (see 6.8.1) and there are implications of some direct access methods (see 6.8.5).

6.8.1 Homogeneity

An aggregate datatype is homogeneous, if and only if all components belong to a single datatype. If different com-
ponents may belong to different datatypes, the aggregate datatype is said to be heterogeneous. The component
datatype of a homogeneous aggregate is also called the element datatype.

NOTES

1. Homogeneous aggregates view all their elements as serving the same role or purpose. Heterogeneous aggregates divide their
elements into different roles.
2. The aggregate datatype is homogeneous if its components all belong to the same datatype, even if the element datatype is
itselfl an heterogeneous aggregate datatype. Consider the datatype label_list defined by:
type label = choice (state(name, handle)) of
(name: characterstring, handle: integer);
type label_list = sequence of (label);
Formally, a label_list value is a homogeneous series of label values. One could argue that it is really a series of heterogeneous val-
ues, because every label value is of a choice datatype (see 8.3.1). Choice is clearly heterogeneous because it is capable of introduc-
ing variation in element type. But Sequence (see 8.4.4) is homogeneous because it itself infroduces no variation in element type.
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6.8.2 Size

The size of an aggregate-value is the number of component values it contains. The size of the aggregate datatype is
fixed, if and only if all values in its value space contain the same number of component values. The size is variable,
if different values of the aggregate datatype may have different numbers of component values. Variability is the more
general case; fixed-size is a constraint.

6.8.3 Uniqueness

An aggregate-value has the uniqueness property if and only if no value of the element datatype occurs more than once
in the aggregate-value. The aggregate datatype has the uniqueness property, if and only if all values in its value space
do.

6.8.4 (Aggregate-imposed) Ordering

An aggregate datatype has the ordering property, if and only if there is a canonical first element of each non-empty
value in its value-space. This ordering is (externally) imposed by the aggregate value, as distinct from the value-space
of the element datatype itself being (internally) ordered (see 6.3.2). It is also distinct from the value-space of the ag-
gregate datatype being ordered.

EXAMPLE

The type-generator “'sequence” has the ordering property. The datatype "characterstring” is defined as “sequence of charac-
ter(repertoire))”. The ordering property of “sequence” means that in every value of type characterstring, there is a first character
value. For example, the first element value of the characterstring value “computation” is "¢’. This is different from the question of
whether the element datatype character(repertoire) is ordered: is "a” < 'c¢'? Itis also different from the question of whether the value
space of datatype characterstring is ordered by some collating-sequence: is “computation™ < “Computer™?

6.8.5 Access Method

The access method for an aggregate datatype is the property which determines how component values can be extracted
from a given aggregate-value.

An aggregate datatype has a direct access method, if and only if there is an aggregate-imposed mapping between val-
ues of one or more “index™ (or “key”) datatypes and the component values of each aggregate value. Such a mapping
is required to be single-valued, i.e. there is at most one element of each aggregate value which corresponds to each
(composite) value of the index datatype(s). The dimension of an aggregate datatype is the number of index or key
datatypes the aggregate has.

An aggregate datatype is said to be indexed., if and only if it has a direct access method, every index datatype is or-
dered, and an element of the aggregate value is actually present and defined for every (composite) value in the value
space of the index datatype(s). Every indexed aggregate datatype has a fixed size, because of the 1-to-1 mapping from
the index value space. In addition, an aggregate datatype with a single ordered index type implicitly has the ordering
imposed by sequential indexing.

An aggregate datatype is said to be keyed, if and only if it has a direct access method, but either the index datatypes
or the mapping do not meet the requirements for indexed. That is, the “index” (or “key™) datatypes need not be or-
dered, and a value of the aggregate datatype need not have elements corresponding to all of the key values.

An aggregate datatype is said to have only indirect access methods if there is no aggregate-imposed index mapping.

Indirect access may be by position (if the aggregate datatype has ordering), by value of the element (if the aggregate

datatype has uniqueness), or by some implementation-dependent selection mechanism, modelled as random selection.
NOTES

1. The access methods become characterizing operations on the aggregate types. It is preferable to define the types by their
intrinsic properties and to see these access properties be derivable characterizing operations.

2. Sequence (see 8.4.4) is said to have indirect access because the only way a given element value (or an element value satis-
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fying some given condition) can be found is to traverse the list in order until the desired element is the “Head". In general, therefore,
one cannot access the desired element without first accessing all (undesired) elements appearing earlier in the sequence. On the
other hand, Array (see 8.4.5) has direct access because the access operation for a given element is “*find the element whose index
is i — the ith element can be accessed without accessing any other element in the given Array. Of course, if the Array element
which satisfies a condition not related to the index value is wanted, access would be indirect.

6.8.6 Recursive structure

A datatype is said to be recursive if a value of the datatype can contain (or refer to) another value of the datatype. In
this draft International Standard, recursivity is supported by the type-declaration facility (see 9.1), and recursive
datatypes can be described using type-declaration in combination with choice datatypes (8.3.1) or pointer datatypes
(8.3.2). Thus recursive structure is nor considered to be a property of aggregate datatypes per se.

EXAMPLE - LISP has several “atomic" datatypes, collected under the generic datatype "atom", and a “list" datatype which is
a sequence of elements each of which can be an atom or a list. This datatype can be described using the Tree datatype generator
defined in 10.2.2.

7 Elements of the Datatype Specification Language

This draft International Standard defines a datatype specification language, in order to formalize the identification and
declaration of datatypes conforming to this draft International Standard. The language is a subset of the Interface Def-
inition Notation defined in ISO ??? Language-Independent Procedure Calling, which is completely specified in Annex
D. This clause defines the basic syntactic objects used in that language.

7.1 Character-set

letter = "t tb" e ["d" | e | " | Mg" | "h" "] K| tmt
R A N A R R R R P R

digit = "0" MM 2" | 3" | "4 | 5" | "e" | "7" | "8" | "9" .

special= " ([T T PP

hyphen = Tt

apostrophe = "™ .

quote = -

escape = i

space = e

non-quote-character = letter | digit | hyphen | special | apostrophe | space .
bound-character = non-quote-character | quote .
added-character = <not defined by this draft Intemational Standard> .

Rules for the interpretation of the character-set productions:

1) These productions are derived from Table 4-1 and are nominal. Lexical productions are always subject to mi-
nor changes from implementation to implementation, in order to handle the vagaries of available character-sets.

i) The character space is required to be bound to the “space” member of ISO 10646: 1992, but it only has meaning
within character-literals and string-literals.

iii) A bound-character is required to be associated with the member having the corresponding symbol in any char-
acter-set derived from ISO 10646:1992, except that no significance is attached to the "case" of letters.

iv) The bound-characters, and the escape character, are required in any implementation to be associated with par-
ticular members of the implementation character set.

v) An added-character is any other member of the implementation character-set which is bound to the member
having the corresponding symbol in an ISO 10646 character-set.
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1.2 Whitespace

A sequence of one or more space characters, except within a character-literal or string-literal (see 7.3), shall be con-
sidered whitespace. Any use of this draft International Standard may define any other characters or sequences of char-
acters not in the above character set to be whitespace as well, such as horizontal and vertical tabulators, end of line and
end of page indicators, etc.

A comment is any sequence of characters beginning with the sequence "/*" and terminating with the first occurrence
thereafter of the sequence "*/". Every character of a comment shall be considered whitespace.

With respect to interpretation of a syntactic object under this draft International Standard, any annotation (see 7.4) is
considered whitespace.

Any two lexical objects which occur consecutively may be separated by whitespace, without affect on the interpreta-
tion of the syntactic construction. Whitespace shall not appear within lexical objects.

7.3  Lexical Objects

The lexical objects are the terminal symbols and the objects identifier, digit-string, character-literal, string-literal.

7.3.1 Identifiers

An identifier is a terminal symbol used to name a datatype or datatype generator, a component of a generated datatype.
or a value of some datatype.

identifier = letter { pseudo-letter } .

pseudo-letter = letter | digit | hyphen .

Multiple identifiers with the same spelling are permitted, as long as the object to which the identifier refers can be de-
termined by the following rules:

i) An identifier X declared by a type-declaration or value-declaration shall not be declared in any other declara-
tion.

i) The identifier X in a component of a type-specifier (Y) refers to that component of Y which Y declares X to
identify, if any, or whatever X refers to in the rype-specifier which im mediately contains Y, if any, or else the datatype
or value which X is declared to identify by a declaration.

The term keyword refers to any terminal symbol which is not lexically distinguishable from an identifier (is not com-
posed of special characters). No keyword shall be interpreted as an identifier. Any two consecutive keywords or iden-
tifiers, or a keyword preceded or followed by an identifier, shall be separated by whitespace.

7.3.2 Digit-String

A digit-string is a terminal-symbol consisting entirely of digits. Itis used to designate a value of some datatype. with
the interpretation specified by that datatype definition.

digit-string = digit { digit } .
7.3.3 Character or String Literal

A character-literal is a terminal-symbol delimited by apostrophe characters. It is used to desi gnate a value of a char-
acter datatype, as specified in 8.1.4.

character-literal = "™ any-character ™" .

any-character = bound-character | added-character | escape-character .

escape-character = escape character-name escape .

character-name = identifier { identifier } .

A string-literal is a terminal-symbol delimited by quote characters. It is used to designate values of time datatypes
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(8.1.6), bit-string datatypes (10.1.3), and character-string datatypes (10.1.4), with the interpretation specified for each
of those datatypes.

string-literal = quote { string-character } quote .

string-character = non-quote-character | added-character | escape-character .

Every character appearing in a character-literal or string-literal shall be a part of the literal, even when that character
would otherwise be whitespace.

7.4 Annotations

An annotation, or extension, is a syntactic object defined by a standard or information processing entity which uses
this draft International Standard. All annotations shall have the form:

annotation = "<" annotation-label ":" annotation-text ">"

annotation-label = object-identifier-component-list .

annotation-text = <not defined by this draft International Standard> .

The annotation-label shall identify the standard or information processing entity which defines the meanin g of the an-
notation-text. The entity identified by the annotation-label shall also define the allowable syntactic placement of a
given type of annotation and the syntactic object(s), if any, to which the annotation applies. The object-identifier-com-
ponent-list shall have the structure and meaning prescribed by clause 10.1.10.
NOTE - Of the several forms of object-identifier-component specified in 10.1.10, the nameform is the most convenient for
labelling annotations. Following ISO 8824, every value of the object-identifier datatype must have as its first component one of
"is0", "ccitt”, or "joint-iso-ccitt”, but an implementation or use is permitted to specify an identifier which represents a sequence of
component values beginning with one of the above, as:
value rpc : object-identifier = { iso standard 11578 };

and that identifier may then be used as the first (or only) component of an annotation-label, as in:
<rpec:discriminant = n>,

(This example is fictitious. ISO 11578:199x does not define any annotations.)

Non-standard annotations, defined by vendors or user organizations, for example, can acquire such labels through one of the
[ 150 member-body <nation> ... ) or { iso identified-organization <organization> ... } paths, using the appropriate national or inter-
national registration authority.

7.5 Values

The identification of members of a datatype family, subtypes of a datatype, and the resulting datatypes of datatype gen-
erators may require the syntactic designation of specific values of a datatype. For this reason, this draft International
Standard provides a notation for values of every datatype defined herein, or which can be defined using the features
provided by clause 10, except for datatypes for which designation of specific values is not appropriate.

A value-expression designates a value of a datatype. Syntax:
value-expression = independent-value | dependent-value .

An independent-value is a syntactic construction which resolves to a fixed value of some LI datatype. A dependent-
value is a syntactic construction which refers to the value possessed by another component of the same datatype.

7.5.1 Independent values

An independent-value designates a specific fixed value of a datatype. Syntax:
independent-value = explicit-value | qualified-value | value-identifier | parametric-value .
qualified-value = type-specifier "." explicit-value .
explicit-value = value-literal | composite-value | derived-value .
value-literal = boolean-literal | state-literal | enumerated-literal | character-literal
| ordinal-literal | time-literal | bit-literal | integer-literal | rational-literal
| scaled-literal | real-literal | complex-literal | void-literal
| extended-literal | pointer-literal .
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composite-value = choice-value | record-value | set-value | sequence-value
| bag-value | array-value | table-value .

derived-value = string-literal | object-identifier-value .

parametric-value = formal-parameter-name .

value-identifier = identifier .

An explicit-value uses an explicit syntax for values of the datatype, as defined in clauses 8 and 10. The interpretation
of value-literals is specified in subclauses of 8.1; the interpretation of composite-values is specified in subclauses of
8.4: and the interpretation of derived-values is specified in subclauses of 10.1. A qualified-value denotes that value of
the datatype designated by the type-specifier which is designated by the explicit-value. A qualified-value should be
used when the explicit-value would otherwise be ambiguous.

A value-identifier designates the value associated with that identifier by a value-declaration, as provided in 9.2. A
parametric-value refers to the value of a formal-parameter in a type-declaration, as provided in 9.1.

NOTES

I. Two syntactically different explicit-values may designate the same value, such as rational-literals 3/4 and 6/8, or set of (in-
teger) values (1,3.4) and (4.3,1). Conversely, the same explicit-value may designate values of two different datatypes when it ap-
pears in a qualified value.

2. In general, the syntax requires that the intended datatype of a value-expression can be determined (from context) when the
value-expression is encountered. Thus qualified-values should rarely be required, because there are few instances in which an “ex-
plicit-value would otherwise be ambiguous.”

7.5.2 Dependent values

When a parameterized datatype appears within a procedure argument (see 8.3.3) or a record datatype (see 8.4.1), itis
possible to specify that the parameter value is always identical to the value of another argument to the procedure or
another component within the record. Such a value is referred to as a dependent-value.

Syntax:
dependent-value = primary-dependency { "." component-reference } .
primary-dependency = field-identifier | argument-name .
component-reterence = field-identifier | ™" .

A rype-specifier x is said to involve a dependent-value if x contains the dependent-value and no component of x con-
tains the dependent-value. Thus. exactly one rype-specifier involves a given dependent-value. A type-specifier which
involves a dependent-value is said to be a data-dependent type. Every data-dependent type shall be the datatype of
a component of some generated datatype.

The primary-dependency shall be the identifier of a (different) component of a procedure or record datatype which
(also) contains the data-dependent type. The component so identified will be referred to in the following as the pri-
mary component: the generated datatype of which it is a component will be referred to as the subject datatype. That
is, the subject datatype shall have an immediate component to which the primary-dependency refers, and a different
immediate component which, ar some level, contains the data-dependent type.

When the subject datatype is a procedure datatype, the primary-dependency shall be an argument-nume and shall iden-
tify an argument of the subject datatype. If the direction of the argument (component) which contains the data-depen-
denttype is "in" or "inout", then the direction of the argument designated by the primary-dependency shall also be "in"
or "inout". If the argument which contains the data-dependent type is the return-argument or has direction "out”, then
the primary-dependency may designate any argument in the argument-list. If the argument which contains the data-
dependent type is a termination argument, then the primary-dependency shall designate another argument in the same
termination-argument-list.

When the subject datatype is a record datatype, the primary-dependency shall be a field-identifier and shall identify a
field of the subject datatype.
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When the dependent-value contains no component-references, it refers to the value of the primary component. Other-
wise, the primary component shall be considered the "0th component-reference”, and the following rules shall apply:

i) If the nth component-reference is the last component-reference of the dependent-value, the dependent-value
shall refer to the value to which the nth component-reference refers.

ii) If the nth component-reference is not the last component-reference, then the datatype of the nth component-
reference shall be a record datatype or a pointer datatype.

iii) If the nth component-reference is not the last component-reference, and the datatype of the nth component-
reference is a record datatype, then the (n+/)th component-reference shall be a field-identifier which identifies a field
of that record datatype; and the (n+/)th componeni-reference shall refer to the value of that field of the value referred
to by the nth component-reference.

iv) If the nth component-reference is not the last component-reference, and the datatype of the nth component-
reference is a pointer datatype, then the (n+/)th component-reference shall be "*"; and the (n+/)th componeni-refer-
ence shall refer to the value resulting from Dereference applied to the value referred to by the nth component-reference.

NOTES

1. The datatype which involves a dependent-value must be a component of some generated datatype, but that generated
datatype may itself be a component of another generated datatype, and so on. The subject datatype may be several levels up this
hierarchy.

2. The primary component, and thus the subject datatype, cannot be ambiguous, even when the primary-dependency identifier
appears more than once in such a hierarchy, according to the rules specified in 7.3.1.

3. In the same wise, an identifier which may be either a value- identifier or a dependent-value can be resolved by application
of the same scope rules. If the identifier X is found to have a "declaration” anywhere within the outermost 1ype-specifier which
contains y, then that declaration is used. If no such declaration is found, then a declaration of X in a "global” context, e.g. as avalue-
identifier, applies.

8. Datatypes

This clause defines the collection of LI datatypes. A LI datatype is either:
* adatatype defined in this clause, or
* adaatype defined by a datatype declaration, as defined in 9.1.

Since this collection is unbounded, there are four formal methods used in the definition of the datatypes:

1) explicit specification of primitive datatypes, which have universal well-defined abstract notions, each
independent of any other datatype.

2) implicit specification of generated datatypes. which are syntactically and in some ways semantically de-
pendent on other datatypes used in their specification. Generated datatypes are specified implicitly by
means of explicit specification of datatype generators, which themselves embody independent abstract
notions.

3) specification of the means of datatype declaration, which permits the association of additional identi-
fiers and refinements to primitive and generated datatypes and to datatype generators.

4)  specification of the means of defining subtypes of the datatypes defined by any of the foregoing meth-
ods.

A reference to a LI datatype is a type-specifier, with the following syntax:
type-specifier = primitive-type | subtype | generated-type | defined-type | parametric-type .

A type-specifier shall not be a parametric-type, except in some cases in type-declarations, as provided by clause 9.1.3.

This clause also provides syntax for the identification of values of any LI datatype. Notations for values of datatypes
are required in the syntactic designations for subtypes and for some primitive datatypes.

NOTES

1. For convenience, or correctness, some datatypes and characterizing operations are defined in terms of other L] datatypes.
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The use of a LI datatype defined in this clause always refers to the datatype so defined.

2. The names used in this draft [nternational Standard to identify the datatypes are derived in many cases from common pro-
gramming language usage. but nevertheless do not necessarily correspond to the names of equivalent datatypes in actual languages.
The same applies to the names and symbols for the operations associated with the datatypes, and to the syntax for values of the

datatypes.

8.1 Primitive Datatypes

A datatype whose value space is defined either axiomatically or by enumeration is said to be a primitive datatype.
All primitive LI datatypes shall be defined by this draft International Standard.
primitive-type = boolean-type | state-type | enumerated-type | character-type
| ordinal-type | time-type | bit-type | integer-type | rational-type
| scaled-type | real-type | complex-type | void-type .

Each primitive datatype. or datatype family, is defined by a separate subclause. The title of each such subclause gives
the informal name for the datatype, and the datatype is defined by a single occurrence of the following template:

Description: prose description of the conceptual datatype.
Syntax: the syntactic productions for the type-specifier for the datatype.
Parameters: identification of any parameters which are necessary for the complete identification of a

distinct member of a datatype family.
Values: enumerated or axiomatic definition of the value space.
Value-syntax:  the syntactic productions for denotation of a value of the datatype, and the identification of
the value denoted.
Properties: properties of the datatype which indicate its admissibility as a component datatype of
certain datatype generators:
—  numeric or non-numeric,
— ordered or unordered,
— approximate or exact,
— if ordered, bounded or unbounded.

Operations: definitions of characterizing operations.

The definition of an operation herein has one of the forms:

operation-name (arguments) : result-datatype = formal-definition; or

operation-name (arguments) : result-datatype is prose-definition.
In either case, "arguments” may be empty, or be a list, separated by commas, of one or more formal arguments of the
operation in the form:

argument-pame : argument-datatype, or

argument-name; , argument-name, : argument-datatype.
The operation-name is an identifier unique only within the datatype being defined. The argument-names are formal
identifiers appearing in the formal- or prose-definition. Each is understood to represent an arbitrary value of the
datatype designated by argument-datarype, and all occurrences of the formal identifier represent the same value in any
application of the operation. The result-dutatype indicates the datatype of the value resulting from an application of
the operation. A formal-definition defines the operation in terms of other operations and constants. A prose-definition

defines the operation in somewhat formalized natural language. When there are constraints on the argument values.
they are expressed by a phrase beginning "where" immediately before the = or is. -

In some operation definitions, characterizing operations of a previously defined datatype are referenced with the form:
datatype.operation(arguments), where datatype is the rype-specifier for the referenced datatype and operation is the
name of a characterizing operation defined for that datatype.
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8.1.1 Boolean
Description: Boolean is the mathematical datatype associated with two-valued logic.
Syntax:
boolean-type = "boolean” .
Parameters: none.
Values: "true", "false", such that true # false.

Value-syntax:
boolean-literal = "true" | “false" .

Properties: unordered, exact, non-numeric.
Operations: Equal, Not, And, Or.
Equal(x, y: boolean): boolean is defined by tabulation:

X y Equal(x.y)
true true true
true false false
false true false
false false true
Not(x: boolean): boolean is defined by tabulation:
X Not(x)
true false
false true
Or(x.y: boolean): boolean is defined by tabulation:
x y Or(x.y)
true true true
true false true
false true true
false false false

And(x, y: boolean); boolean = Not(Or(Not(x), Not(y))).

NOTE - Either And or Or is sufficient to characterize the boolean datatype. and given one, the other can be defined in terms
of it. They are both defined here because both of them are used in the definitions of operations on other datatypes.

8.1.2 State

Description: State is a family of datatypes, each of which comprises a finite number of distinguished but unordered
values with no characterizing operations.except Equal,
Syntax:
state-type = "state" "(" state-value-list ) L
state-value-list = state-literal { "" state-literal ¥ 5
state-literal = identifier .
Parameters: Each siate-literal identifier shall be distinct from all other state-literal identifiers of the same state-rvpe.

If itis necessary to disambiguate a reference to a value of a state datatype. the qualified-vatue form may be
used (see 7.5.1).

Values: The value space of a state datatype is the set comprising exactly the named values in the state-value-list. cach
of which is designated by a unique stare-literal.

Value-syntax:
state-literal = identifier .

A state-literal denotes that value of the state datatype which has the same identifier. If it is necessary to dis-
ambiguate a reference to a value of a state datatype, the qualified-value form may be used (see 7.5.1).
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Properties: unordered, exact, non-numeric.
Operations: Equal.

Equal(x, y: state(state-value-list)): boolean is true if x and y designate the same value in the srate-value-list.
and false otherwise.

8.1.3 Enumerated
Description: Enumerated is a family of datatypes, each of which comprises a finite number of distinguished values
having an intrinsic ordering.
Syntax:
enumerated-type = "enumerated” "(" enumerated-value-list ")" .
enumerated-value-list = enumerated-literal { "," enumerated-literal } .
enumerated-literal = identifier .

Parameters: Each enumerated-literal identifier shall be distinct from all other enumerated-literal identifiers of the
same enumerated-type.

Values: The value space of an enumerated datatype is the set comprising exactly the named values in the enumerated-
value-list, each of which is designated by a unique enumerated-literal. The ordering of these values is given
by the sequence of their occurrence in the enumerated-value-list, designated the naming sequence.

Value-syntax:
enumerated-literal = identifier .

An enumerated-literal denotes that value of the enumerated datatype which has the same identifier. If itis
necessary to disambiguate a reference to a value of an enumerated datatype, the qualified-value form may be
used (see 7.5.1).

Properties: ordered, exact. non-numeric, bounded.
Operations: Equal, InOrder, Successor

Equal(x, y: enumerated(enum-value-list)): boolean is true if x and y designate the same value in the enum-
value-list, and false otherwise.

InOrder(x. y: enumerated(enum-value-list)): boolean, denoted x <y, is true if x = y or if x precedes y in the
naming sequence, else false.

Successor(x: enumerated(enum-value-list)): enumerated(enum-value-list) is
if for all y: enumerated(enum-value-list), x < y implies x = y, then undefined;
else the value y: enumerated(enum-value-list), such that x <y and
forallz#x,x<zimpliesy < z.

8.1.4 Character

Description: Character is a family of datatypes whose value spaces are character-sets.

Syntax:
character-type = "character" [ "(" repertoire-list ")" ] .
repertoire-list = repertoire-identifier { "," repenoire-identifier } .
repertoire-identifier = value-expression .

Parameters: The value-expression for a repertoire-ideniifier shall designate a value of the object-identifier datatype
(see 10.1.10), and that value shall refer to a character-set. A repertoire-identifier shall not be a parametric-
value, except in some cases in declarations (see 9.1). AH repertoire-identifiers in the repertoire-list shall
designate subsets of a single reference character-set. When repertoire-list is not specified, it shall have a de-
fault value. The means for specification of the default is outside the scope of this draft International Standard.

Values: The value space of a character datatype comprises exaictly the members of the character-sets identified by the
repertoire-list. In cases where the character-sets identified by the individual repertoire-identifiers have mem-
bers in common, the value space of the character datatype contains only the distinct members,
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Value-syntax:
character-literal = ™" any-character " .
any-character = bound-character | added-character | escape-character .
bound-character = non-quote-character | quote .
non-quote-character = letter | digit | hyphen | special | apostrophe | space .
added-character = <not defined by this draft Intemational Standards .
escape-character = escape character-name escape .
character-name = identifier { identifier ]
Every character-literal denotes a single member of the character-set identified by repertoire-list. A bound-
character denotes that member which is associated with the symbol for the bound-character per7.1. An add-
ed-character denotes that member which is associated with the symbol for the added-character by the imple-
mentation, as provided in 7.1. An escape-character denotes that member whose "character name" in the (ref-
erence) character-set identified by repertoire-list is the same as character-name.

Properties: unordered, exact, non-numeric.
Operations: Equal.

Equal(x, y: character(repertoire-list)): boolean is true if x and y designate the same member of the character-
set given by repertoire-list, and false otherwise.

NOTES

1. The Character datatypes are distinct from the State datatypes in that the values of the datatype are defined by other standards
rather than by this draft International Standard or by the application. This distinction is semantically unimportant, but it is of great
significance in any use of these standards.

2. The standardization of repertoire-identifier values will be necessary for any use of this draft International Standard and will
of necessity extend to character sets which are defined by other than international standards. Such standardization is beyond the
scope of this draft International Standard. A partial list of the international standards defining such character-sets is included, for
informative purposes only, in Annex A.

3. While ordering is important in many applications of character datatypes, there is no standard ordering for any of the Inter-
national Standard character sets, and many applications require the ordering of the datatype to conform to rules which are particular
to the application itself or its language environment. There will also be applications in which the ordering is unimportant. Since
no standard ordering of character-sets can be defined by this draft International Standard, character datatypes are said to be "unor-
dered”, meaning, in this case, that the ordering is an application-defined addition to the semantics of the datatype.

4. The terms character-set, member., symbol and character-name are those of ISO 10646, but there should be analogous no-
tions in any character set referenceable by a repertoire-identifier.

EXAMPLE

character({ iso standard 8859 | |)
denotes a character datatype whose values are the members of the character-set defined by ISO 8859-1 (the Latin alphabet). Itis
possible to give this datatype a convenient name, by means of a type-declaration (see 9.1), e.g.

type Latinl = character(( iso standard 8859 | 1
or by means of a value-decluration (see 9.2):

value latin : object-identifier = { iso standard 8859 | }..
Now, the colon mark (:) is a member of the ISO) 8859-] character set and therefore a value of datatype Latinl. or equivalently. of
datatype character(latin). Thus,

":"and 'lcolon!”,
among others, are valid character-literals denoting that value.

8.1.5 Ordinal

Description: Ordinal is the datatype of the ordinal numbers, as distinct from the quantifying numbers (datatype Inte-
ger). Ordinal is the infinite enumerated datatype.

Syntax:
ordinal-type = "ordinal" .
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Parameters: none.
Values: the mathematical ordinal numbers: "first”, "second"”, "third", etc., (a denumerably infinite list).
Value-syntax:
ordinal-literal = number .
number = digit-string .
An ordinal-literal denotes that ordinal value which corresponds to the cardinal number identified by the digit-
string, interpreted as a decimal number. An ordinal-literal shall not be zero.
Properties: ordered, exact, non-numeric, unbounded above, bounded below.
Operations: Equal, InOrder, Successor
Equal(x, y: ordinal): boolean is true if x and y designate the same ordinal number, and false otherwise.

InOrder(x,y: ordinal): boolean, denoted x <y, is true if x =y or if x precedes y in the ordinal numbers, else
false.

Successor(x: ordinal): ordinal is the value y: ordinal, such that x < y and for all z # x, x <z implies y < z.

8.1.6 Date-and-Time

Description: Date-and-Time is a family of datatypes whose values are points in time to various common resolutions:
year, month, day, hour, minute, second. and fractions thereof.
Syntax:
time-type = "time" "(" time-unit [ "," radix "," factor ]")" .
time-unit = "year" | "month" | "day" | "hour" | "minute" | "second"
| parametric-value .
radix = value-expression .
factor = value-expression .
Parameters: Time-unit shall be a value of the datatype
state(year, month, day, hour, minute, second),

designating the unit to which the point in time is resolved. If radix and factor are omitted, the resolution is
to one of the specified time-unit. If present, radix shall have an integer value greater than 1, and facror shall

have an integer value. When radix and factor are present, the resolution is to one radix{ 72" of the specified
time-unit. Time-unit, and radix and factor if present, shall not be parametric-values except in some occur-
rences in declarations (see 9.1).

Values: The value-space of a date-and-time datatype is the denumerably infinite set of all possible points in time with
the resolution (rime-unit, radix, factor).
Value-syntax:
time-literal = digit-string [ "." digit-string ] .
A time-literal denotes a date-and-time value. It shall be a string of digits and possibly a single decimal-point.
conforming to ISO 8801:1988 and interpreted as specified therein.
Properties: ordered. exact, non-numeric, unbounded.
Operations: Equal. InOrder, Difference, Round. Extend.
Equal(x, y: time(time-unit, radix, factor)): boolean is true if x and y designate the same point in time to the
resolution (time-unit, radix, factor), and false otherwise.
InOrder(x, y: ume(time-unit, radix, factor)): boolean is true if the point in time designated by x precedes that
designated by y; else false.

Difference(x, y: time(time-unit, radix, fuctor)): integer is:
if InOrder(x,y). then the number of time-units of the specified resolution elapsing between the time x
and the time y; else, let z be the number of time-units elapsing between the time y and the time x, then
Negate(z).
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Extend.res/tores2(x: time(unit!, radix! JSactorl)): ime(unit2, radix2, factor2), where the resolution (res2)
specified by (unit2, radix2, factor2) is more precise than the resolution (res/) specified by (unitl, radix!,
factorl), is that value of time(unit2, radix2, factor2) which designates the first instant of time occurring
within the span of time(unit2, radix2, factor2) identified by the instant x,

Round.res/tores2(x: time(unit!, radix!, factor)): time(unit2, radix2, factor2), where the resolution (res2)
specified by (unit2, radix2, factor2) is less precise than the resolution (res/) specified by (unitl, radixl,
factorl), is the largest value y of time(unit2, radix2, factor2) such that InOrder(Extend.res2toresi(y). x).

NOTE - The operations yielding specific time-unit elements from a time(unir, radix, factor) value, e.g. Year, Month, Dayof-
Year, DayofMonth, TimeofDay, Hour, Minute, Second, can be derived from Round, Extend, and Difference.

8.1.7 Bit

Description: Bit is the datatype representing the finite field of two symbols designated "0", the additive identity, and
"1", the multplicative identity.

Syntax:
bit-type = "bit" .
Parameters: none.
Values: 0, 1
Value-syntax:
bit-literal = "0" | "1" .
Properties: ordered, exact, numeric, bounded.
Operations: Equal, InOrder, Add, Multiply
Equal(x.y: bit): boolean and InOrder(x.y: bit): boolean are defined by tabulation:

X y Equal(x.y) InOrder(x.y)

1 1 true true

1 0 false false

0 1 false true

0 0 true true
Add(x,y: bit): bit and Multiply(x,y: bit):bit are defined by tabulation:

x y Add(x,y) Multiply(x.y)

1 1 0 1

1 0 1 0

0 1 1 0

0 0 0 0

8.1.8 Integer
Description: Integer is the mathematical datatype comprising the exact integral values.
Syntax:
integer-type = "integer" .
Parameters: none.
Values: Mathematically, the infinite ring produced from the additive identity (0) and the multiplicative identity (1) by
requiring Add(x.1) # y forany y <x. Thatis: ....-2,-1,0.1.2.... (a denumerably infinite list).
Value-syntax:
integer-literal = signed-number .
signed-number = [ "-" ] number .
number = digit-string .
An integer-literal denotes an integer value. If the negative-sign ("-") is not present, the value denoted is that
of the digit-string interpreted as a decimal number. If the negative-sign is present, the value denoted is the
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negative of that value.

Properties: ordered, exact, numeric, unbounded.

Operations: Equal, InOrder, NonNegative, Negate, Add, Multiply, Promote
Equal(x, y: integer): boolean is true if x and y designate the same integer value, and false otherwise.
Promote(x:bit): integer is defined by tabulation:

x Promote(x)
0 0
1 1

Add(x,y: integer): integer is the mathematical additive operation.
Multiply(x, y: integer): integer is the mathematical multiplicative operation.
Negate(x: integer): integer is the value y: integer such that Add(x, y) = 0.

NonNegative(x: integer): boolean is
true if x = 0 or x can be developed by one or more iterations of adding 1. i.e. if x = Add(1, Add(1, ...
Add(1. Add(1,0)) ...));
else false.

InOrder(x.y: integer): boolean = NonNegative(Add(x, Negate(y))).

The following operations are defined solely in order to facilitate other datatype definitions:

Quotient(x, y: integer): integer, where () < y, is the upperbound of the set of all integers z such that
Multiply(y.z) < x.

Remainder(x, y: integer): integer, where 0< xandO <y, =
Add(x, Negate(Multiply(y, Quotient(x,y)))):

8.1.9 Rational _
Description: Rational is the mathematical datatype comprising the "rational numbers".
Syntax:
rational-type = "rational” .
Parameters: none.
Values: Mathematically, the infinite field produced by closing the Integer ring under multiplicative-inverse.
Value-syntax:
rational-literal = signed-number [ "/" number ] .

Signed-number and number shall denote the corresponding integer values. Number shall not designate the
value 0. The rational value denoted by the form signed-number is:

Promote(signed-number),
and the rational value denoted by the form signed-number/number is:

Multiply(Promote(signed-number), Reciprocal(Promote(number))).

Properties: ordered, exact, numeric, unbounded.
Operations: Equal. NonNegative, InOrder, Negate. Add. Multiply, Reciprocal, Promote.
Equal(x, y: rational): boolean is true if x and y designate the same rational number, and false otherwise.
Promote(x: integer): rational is the embedding isomorphism.
Add(x,y: rational): rational is the mathematical additive operation.
Multiply(x, y: rational): rational is the mathematical multiplicative operation.
Negate(x: rational): rational is the value y: rational such that Add(x, y) = 0.

Reciprocal(x: rational): rational, where x # (), is the value y: rational such that
Multiply(x, y) = 1.
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NonNegative(k: rational): boolean is defined by:
For every rational value &, there is a non-negative integer n, such that Multiply(n.k) is an integral value,
and:
NonNegative(k) = integer.NonNegative(Multiply(n.k)).

InOrder(x,y: rational): boolean = NonNegative(Add(x, Negate(y)))

8.1.10 Scaled
Description: Scaled is a family of datatypes whose value spaces are subsets of the rational value space, each individual
datatype having a fixed denominator, but the scaled datatypes possess the concept of approximate value.
Syntax:
scaled-type = "scaled" "(" radix "," factor )" .
radix = value-expression .
factor = value-expression .
Parameters: Radix shall have an integer value greater than 1, and fuctor shall have an integer value. Radix and factor
shall not be parametric-values except in some occurrences in declarations (see 9.1).
Values: The value space of a scaled datatype is that set of values of the rational datatype which are expressible as a
value of datatype Integer divided by radix raised to the power factor.
Value-syntax:
scaled-literal = integer-literal [ ™" scale-factor ].
scale-factor = number "A" signed-number .

A scaled-literal denotes a value of a scaled datatype. The integer-literal is interpreted as a decimal integer
value, and the scale-factor, if present, is interpreted as number raised to the power si gned-number, where
number and signed-number are expressed as decimal integers. Number should be the same as the radix of the
datatype. If the scale-factor is not present, the value is that denoted by integer-literal. If the scale-factor is
present, the value denoted is the rational value Multiply(integer-literal, scale-factor).

Properties: ordered, exact. numeric, unbounded.
Operations: Equal, InOrder, Negate, Add. Round. Multiply, Divide
Equal(x, y: scaled(r.f)): boolean is true if x and y designate the same rational number, and false otherwise.
InOrder(x,y: scaled (r,f)): boolean = rational.InOrder(x,y)
Negate(x: scaled (r.f)): scaled (r.f) = rational.Negate(x)
Add(x.y: scaled (r.f)): scaled (r.f) = rational. Add(x,y)

Round(x: rational): scaled(r.f) is the value y: scaled(r.f) such that rational.InOrder(y, x) and for all z:
scaled(r,f), rational.InOrder(z.x) implies rational.InOrder(z,y).

Multiply(x,y: scaled(r,f): scaled(r.f) = Round(rational. Multiply(x.y))
Divide(x,y: scaled(r.f): scaled(r,f) = Round(rational.Multiply(x, Reciprocal(y)))

EXAMPLE

Currency values for many nations can be represented by the datatype: scaled(10, 2). The value 39.50 (or 39.50). i.e.thirty-
nine and fifty one-hundredths, is represented by: 3950 * 10 A -2, while the value 10.00 (or 10,00) may be represented by: 10.

NOTES

1. The case factor = 0, i.e. scaled(r, 0) for any r, has the same value-space as Integer, and is isomorphic to Integer under all
operations except Divide, which is not defined on Integer in this draft International Standard, but could be defined consistent with
the Divide operation for scaled(r, 0). It is recommended that the datatype scaled(r, 0) not be used explicitly.

2. Any reasonable rounding algorithm is equally acceptable. What is required is that any rational value v which is not a value
of the scaled datatype is mapped into one of the two scaled values ner” and (n+1)+r', such that in the Rational value space,

ner0 < v < (n41)ert0
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3. The proper definition of scaled arithmetic is complicated by the fact that scaled datatypes with the same radix can be com-
bined arbitrarily in an arithmetic expression and the arithmetic is effectively Rational unril a final result must be produced. At this
point, rounding to the proper scale for the result operand occurs. Consequently, the given definition of arithmetic, for operands with
a common scale factor. should not be considered a specification for arithmetic on the scaled datatype.

4. The values in any scaled value space are taken from the value space of the Rational datatype, and for that reason Scaled
may appear to be a "subtype” of both Rational and Real (ref. 8.2). But scaled datatypes do not "inherit" the Rational or Real Multiply
and Reciprocal operations. Therefore scaled datatypes are not proper subtypes of datatype Real or Rational. The concept of Round,
and special Multiply and Divide operations, characterize the scaled datatypes. Unlike Rational, Real and Complex, however, Scaled
is not a mathematical group under this definition of Multiply, although the results are intuitively acceptable.

5. The value space of a scaled datatype contains the multiplicative identity (1) if and only if factor 2 0.

6. Every scaled datatype is exact, because every value in its value space can be distinguished in the computational model. (The
value space can be mapped 1-to-1 onto the integers.) It is only the operations on scaled datatypes which are approximate.

7. Scaled-literals are interpreted as decimal values regardless of the radix of the scaled datatype to which they belong. It was
not found necessary for this draft International Standard to provide for representation of values in other radices, particularly since
representation of values in radices greater than 10 introduces additional syntactic complexity.

8.1.11 Real

Description: Real is a family of datatypes which are computational approximations to the mathematical datatype com-
prising the "real numbers". Specifically, each real datatype designates a collection of mathematical real val-
ues which are known to certain applications to some finite precision and must be distinguishable to at least
that precision in those applications.

Syntax:
real-type ="real" [ "(" radix "," factor ")" ] .
radix = value-expression .
factor = value-expression .

Parameters: Radix shall have an integer value greater than 1, and factor shall have an integer value. Radix and factor
shall not be parametric-values except in some occurrences in declarations (see 9.1). When radix and factor
are not specified, they shall have default values. The means for specification of these defaults is outside the
scope of this draft International Standard.

Values: The value space of the mathematical real type comprises all values which are the limits of convergent se-
quences of rational numbers. The value space of a computational real datatype shall be a subset of the math-
ematical real type. characterized by two parameters. radix and factor, which, taken together, describe the pre-
cision to which values of the datatype are distinguishable, in the following sense:

Let R denote the mathematical real value space and for vin R, let | v | denote the absolute value of
v. Let V denote the value space of datatype real(radix, factor), i.e. the collection of values which must be
distinguishable by the application. Then there shall exist an approximation function M, which maps R into V
with the following properties:

- 0is amember of V, and M(0) = 0;
~ forall vin R such that | v 1> radix/ 72",
| M(v) - v1 €1 v |« radix(factor);
- forany two values vy and v, in R such that | v, | < radix74*") and
| va | < radix{73€r) if | vy - vy |2 radix2 300 then M(v,) # M(v,).
The value space of the computational datatype real(radix, factor) is any subset of the mathematical real type

for which such an approximation function exists. Detailed requirements for the approximation function and
its relationship to the characterizing operations are outside the scope of this draft International Standard.

Value-syntax:
real-literal = integer-literal [ ™" scale-factor | .
scale-factor = number "" signed-number .
A real-literal denotes a value of a real datatype. The integer-literal is interpreted as a decimal integer value,
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and the scale-factor, if present, is interpreted as number raised to the power signed-number, where number
and signed-number are expressed as decimal integers. If the scale-factor is not present, the value is that de-
noted by integer-literal. If the scale-factor is present, the value denoted is the rational value Multiply(integer-
literal, scale-factor).

Properties: ordered, approximate, numeric, unbounded.
Operations: Equal, InOrder, Promote, Negate, Add, Multply, Reciprocal.
In the following operation definitions, let M designate the approximation function defined above:
Equal(x, y: real(radix, factor)): boolean is true if x and y designate the same value, and false otherwise.
Promote(x: rational): real(radix, factor) = M(x).
Add(x,y: real(radix, factor)): real(radix, factor) = M(x + y), where + designates the additive operation on the
mathematical reals.
Multiply(x, y: real(radix, factor)): real(radix, factor) = M(x « y), where designates the multiplicative
operation on the mathematical reals.
Negate(x: real(radix, factor)): real(radix, factor) = M( -x), where -x is the real additive inverse of x.
Reciprocal(x: real(radix, factor)): real(radix, factor), where x 20, = M(x’) where x” is the real multiplicative
inverse of x.

InOrder(x,y: real(radix, factor)): boolean is true if x < ¥, where < designates the ordering relationship on the
mathematical reals, and false otherwise.

EXAMPLES

Real(10, 7) denotes a real datatype with values which are accurate to 7 significant decimal figures. Real(2, 48) denotes a real
datatype whose values have at least 48 bits of precision.

1 * 10 A 9 denotes the value 1 000 000 000, i.e. 10 raised to the ninth power.

15 * 10 A 4 denotes the value 0,0015, i.e. fifteen ten-thousandths.

3 * 2 A -1 denotes the value 1.5, i.e. 3/2.

NOTES

1. The L1 datatype Real is not the abstract mathematical real datatype, nor is it an abstraction of floating-point implementations.
It is a computational model of the mathematical reals which is similar to the "scientific number” model used in many sciences. De-
tails of the relationship of a real datatype to floating-point implementations may be specified by the use of annotations (see 7.4).
For languages whose semantics in some way assumes a floating-point representation, the use of such annotations in the datatype
mappings may be necessary. On the other hand, for some applications, the representation of a real datatype may be something other
than floating-point, which the application would specify by different annotations.

2. Detailed requirements for the approximation function, its relationship to the characterizing operations, and the implementa-
tion of the characterizing operations in languages are provided by dIS 10967 Language-Independent Arithmetic. Part [: Integer and
Real Arithmetic. [EC 559:1988 Floating-Point Arithmetic for Microprocessors specifies the requirements for floating-point imple-
mentations thereof,

8.1.12 Complex

Description: Complex is a family of datatypes, each of which is a computational approximation to the mathematical
datatype comprising the "complex numbers". Specifically, each complex datatype designates a collection of
mathematical complex values which are known to certain applications to some finite precision and must be
distinguishable to at least that precision in those applications.

Syntax:
complex-type = "complex" [ "(* radix ", factor ")" 1.
radix = value-expression .
factor = value-expression .

Parameters: Radix shall have an integer value greater than 1, and factor shall have an integer value. Radix and fuctor
shall not be parametric-values except in some occurrences in declarations (see 9.1). When radix and factor
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are not specified, they shall have default values. The means for specification of these defaults is outside the
scope of this draft International Standard.

Values: The value space of the mathematical complex type is the field which is the solution space of all polynomial
equations having real coefficients. The value space of a computational complex datatype shall be a subset
of the mathematical complex type. characterized by two parameters, radix and factor, which, taken together,
describe the precision to which values of the datatype are distinguishable, in the following sense:

Let C denote the mathematical complex value space and for vin C, let | v | denote the absolute value
of v. Let V denote the value space of datatype complex(radix, factor), i.e. the collection of values which must
be distinguishable by the application. Then there shall exist an approximation function M, which maps C into
V with the following properties:

- 0Oisamemberof V, and M(0) = 0;
— forall vin C such that | v | > radix{/actr),
| M(v) - v1< 1 v 1+ radix(f3¢tr),
- forany two values v; and v in C such that | v, | < radix72¢°") and
L vy | < radix(f3%0) if | v - vy | > radix"2 *fa<te"), then M(v,) # M(v>).

The value space of the computational datatype complex(radix, factor) is any subset of the mathematical com-
plex type for which such an approximation function exists. Detailed requirements for the approximation
function and its relationship to the characterizing operations are outside the scope of this draft International
Standard.

Value-syntax:
complex-literal = "(" real-part "," imaginary-part ")" .
real-part = real-literal .
imaginary-part = real-literal .
A complex-literal denotes a value of a complex datatype. The real-part and the imaginary-part are interpret-

ed as real values, and the complex value denoted is: M(real-part + (imaginary-part « i)), where + is the ad-
ditive operation on the mathematical complex numbers and « is the multiplicative operation on the mathemat-

ical complex numbers, and i is the "principal square root" of -1 (one of the two solutions to x>+ 1=0).
Properties: approximate, numeric, unordered.
Operations: Equal, Promote, Negate, Add, Multiply, Reciprocal, SquareRoot.
In the following operation definitions, let M designate the approximation function defined above:
Equal(x. y: complex(radix, factor)): boolean is true if x and y designate the same value, and false otherwise.
Promote(x: real(radix, factor)): complex(radix, factor) = M(x), considering x as a mathematical real value.

Add(x.y: complex(radix, fuctor)): complex(radix, fuctor) = M(x + y), where + designates the additive
operation on the mathematical complex numbers.

Multiply(x. y: complex(radix, factor)): complex(rudix, fuctor) = M(x « y), where « designates the
multiplicative operation on the mathematical complex numbers.

Negate(x: complex(radix, factor)): complex(radix, factor) = M(-x), where -x is the complex additive inverse
of x.

Reciprocal(x: complex(radix, fuctor)): complex(radix, fuctor), where x # 0, = M(x") where x" is the complex
multiplicative inverse of x.

SquareRoot(x: complex(radix, factor)): complex(radix, factor) = M(y), where y is one of the two
mathematical complex values such that y » y = x. Every complex number can be uniquely represented
in the form a + b « i, where { is the "principal square root" of -1, in which a is designated the real part and
b is designated the imaginary part. The y value used is that in which the real part of y is positive, if any.
else that in which the real part of y is zero and the imaginary part is non-negative,

NOTE - Detailed requirements for the approximation function, its relationship to the characterizing operations, and the imple-
mentation of the characterizing operations in languages are to be provided by (future) Parts of ISO 10967 Language-Independent
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Arithmetic.

8.1.13 Void

Description: Void is the datatype representing an object whose presence is syntactically or semantically required, but
carries no information in a given instance.

Syntax:
void-type = "void" .

Parameters: none.

Values: Conceptually, the value space of the void datatype is empty, but a single nominal value is necessary to perform
the "presence required" function.

Value-syntax:
void-literal = "nil" .
"nil" is the syntactic representation of an occurrence of void as a value.

Properties: none.

Operations: Equal.
Equal(x, y: void) = true:

NOTES

1. The void datatype is used as the implicit type of the result argument of a procedure datatype (8.3.3) which returns no value.
or as an alternative of a choice datatype (8.3.1) when that alternative has no content.

2. The void datatype is represented in some languages as a record datatype (see 8.4.1) which has no fields. In this draft Inter-
national Standard, the void datatype is not a record datatype, because it has none of the properties or operations of a record datatype.

3. Like the motivation for the void datatype itself, Equal is required in order to support the comparison of aggregate values
containing void and it must yield "true”.

4. The "empty set" is not a value of datatype Void, but rather a value of the appropriate set datatype (see 8.4.2),

8.2  Subtypes

A subtype is a datatype derived from an existing datatype, designated the base datatype. by restricting the value space
to a subset of that of the base datatype whilst maintaining all characterizing operations. Subtypes are created by akind
of datatype generator which is unusual in that its only function is to define the relationship between the value spaces
of the base datatype and the subtype.
subtype = range-subtype | selecting-subtype | excluding-subtype
| extended-type | size-subtype | explicit-subtype .

Each subtype generator is defined by a separate subclause. The title of each such subclause gives the informal name
for the subtype generator, and the subtype generator is defined by a single occurrence of the following template:
Description: prose description of the subtype value space.

Syntax: the syntactic production for a subtype resulting from the subtype generator, including
identification of all parameters which are necessary for the complete identification of 2
distinct subtype.

Components: constraints on the base datatype and other parameters.

Values: formal definition of resulting value space.

Properties: all datatype properties are the same in the subtype as in the base datatype, except possibly
the presence and values of the bounds. This entry therefore defines only the effects of the
subtype generator on the bounds.

All characterizing operations are the same in the subtype as in the base datatype, but the domain of a characterizing
operation in the subtype may not be identical to the domain in the base datatype. Those values from the value space
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of the subtype which. under the operation on the base datatype. produce result values which lie outside the value space
of the subtype, are deleted from the domain of the operation in the subtype.

8.2.1 Range

Description: Range creates a subtype of any ordered datatype by placing new upper and/or lower bounds on the value
space.

Syntax:
range-subtype = base ":" "range" (" select-range ")".
select-range = lowerbound ".." upperbound .
lowerbound = value-expression | "*" .
upperbound = value-expression | ™" .
base = type-specifier .

Components: Base shall designate an ordered datatype. When lowerbound and upperbound are value-expressions,
they shall have values of the base datatype such that InOrder(lowerbound, upperbound). When lowerbound
is "*"_ it indicates that no lower bound is being specified, and when upperbound is "*". it indicates that no
upper bound is being specified. Lowerbound and upperbound shall not be parametric-values, except in some
occurrences in declarations (see 9.1).

Values: all values v from the base datatype such that lowerbound < v, if lowerbound is specified, and v < upperbound,
if upperbound is specified.

Properties: The subtype is bounded (above, below, both) if the base datatype is so bounded or if the select-range spec-
ifies the corresponding bounds.

8.2.2 Selecting

Description: Selecting creates a subtype of any exact datatype by enumerating the values in the subtype value-space.

Syntax:
selecting-subtype = base " "selecting" "(" select-list ")" .
select-list = select-item { "," select-item } .
select-item = value-expression | select-range .
select-range = lowerbound ".." upperbound .
lowerbound = value-expression | "*" .
upperbound = value-expression | ™" .
base = type-specifier .

Components: Base shall designate an exact datatype. When the select-items are value-expressions. they shall have
values of the base datatype, and each value shall be distinct from all others in the select-list. A select-item
shall not be a select-range unless the base datatype is ordered. When lowerbound and upperbound are value-
expressions, they shall have values of the base datatype such that InOrder(lowerbound, upperbound). When
lowerbound is "*". it indicates that no lower bound is being specified, and when upperbound is "*", it indi-

cates that no upper bound is being specified. No value-expression occurring in the select-list shall be a para-
metric-value, except in some occurrences in declarations (see 9.1).

Values: The values specified by the select-list designate those values from the value-space of the base datatype which
comprise the value-space of the selecting subtype. A select-item which is a value-expression specifies the
single value designated by that value-expression. A select-item which is a select-range specifies all values v
of the base datatype such that lowerbound < v, if lowerbound is specified. and v < upperbound. if upperbound
is specified.

Properties: The subtype is bounded (above, below, both) if the base datatype is so bounded or if no select-range ap-
pears in the select-list or if all select-ranges in the select-list specify the corresponding bounds.
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8.2.3 Excluding

Description: Excluding creates a subtype of any exact datatype by enumerating the values which are to be excluded
in constructing the subtype value-space.

Syntax:
excluding-subtype = base ":" "excluding” "(" select-list ")" .
select-list = select-item { "" select-item } .
select-item = value-expression | select-range .
select-range = lowerbound ".." upperbound .
lowerbound = value-expression | ™" .
upperbound = value-expression | ™" .
base = type-specifier .

Components: Base shall designate an exact datatype. A select-item shall not be a select-range unless the base datatype
is ordered. When lowerbound and upperbound are value-expressions, they shall have values of the base
datatype such that InOrder(lowerbound, upperbound). When lowerbound is "*". it indicates that no lower
bound is being specified, and when upperbound is "*", it indicates that no upper bound is being specified. No
value-expression occurring in the select-list shall be a parametric-value, except in some occurrences in dec-
larations (see 9.1).

Values: The value space of the Excluding subtype comprises all values of the base datatype except for those specified
by the seleci-list. A seleci-item which is a value-expression specifies the single value desi gnated by that val-
ue-expression. A select-item which is a select-range specifies all values v of the base datatype such that low-
erbound < v, if a lower bound is specified, and v < upperbound, if an upper bound is specified.

Properties: The subtype is bounded (above, below, both) if the base datatype is so bounded or if some select-range
appears in the select-list and does not specify the corresponding bound.

8.2.4 Extended

Description: Extended creates a datatype whose value-space contains the value-space of the base datatype as a proper
subset.
Syntax:
extended-type = base " "plus" "(" extended-value-list .
extended-value-list = extended-value { "," extended-value } .
extended-value = extended-literal | parametric-value .
extended-literal = identifier .
base = type-specifier .
Components: Base may designate an y datatype. An extended-value shall be an extended-literal, except in some oc-

currences in declarations (see 9.1). Each extended-literal shall be distinct from all value-literals and value-
identifiers, if any, of the base datatype and distinct from all others in the extended-value-list.

Values: The value space of the extended datatype comprises all values in the value-space of the base datatype plus
those additional values specified in the extended-value-list.

Properties: The subtype is bounded (above, below, both) if the base datatype is so bounded or if the additional values
are upper or lower bounds.

The definition of an extended datatype shall include specification of the characterizing operations on the base datatype
as applied to, or yielding, the added values in the extended-value-lisi, In particular. when the base datatype is ordered.
the behavior of the InOrder operation on the added values shall be specified.

NOTE - Extended produces a subtype relationship in which the base datatype is the subtype and the extended datatype has the
larger value space.
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8.2.5 Size

Description: Size creates a subtype of any Sequence, Set, Bag or Table datatype by specifying bounds on the number
of elements any value of the base datatype may contain.

Syntax:
size-subtype = base ":" "size" "(" minimum-size [ ".." maximum-size ] ")" .
maximum-size = value-expression | "*" .
minimum-size = value-expression .
base = type-specifier .

Components: Base shall designate a generated datatype resulting from the Sequence, Set, Bag or Table generator, or
from a "new" datatype generator whose value space is constructed by such a generator (see 9.1.3). Minimum-
size shall have an integer value greater than or equal to zero, and maximum-size, if it is a value-expression,
shall have an integer value such that minimum-size < maximum-size. If maximum-size is omitted, the maxi-
mum size is taken to be equal to the minimum-size, and if maximum-size is "*", the maximum size is taken to
be unlimited. Minimum-size and maximum-size shall be not be parametric-values, except in some occurrenc-
es in declarations (see 9.1).

Values: The value space of the subtype consists of all values of the base datatype which contain at least minimum-size
values and at most maximum-size values of the element datatype.

Subtypes: Any size subtype of the same base datatype, such that

base-minimum-size < subtype-minimum-size,
and subtype-maximum-size < base-maximum-size.

Properties: those of the base datatype; the aggregate subtype has fixed size if the maximum size is (explicitly or im-
plicitly) equal to the minimum size.

8.2.6 Explicit subtypes
Description: Explicit subtyping identifies a datatype as a subtype of the base datatype and defines the construction
procedure for the subset value space in terms of LI datatypes or datatype generators.
Syntax:
explicit-subtype = base ":" "subtype" "(" subtype-definition ")"
base = type-specifier .
subtype-definition = type-specifier .
Components: Base may designate any datatype. The subrype-definition shall designate a datatype whose value space
is (isomorphic t0) a subset of the value space of the base datatype.
Values: The subtype value space is identical to the value space of the datatype designated by the subrvpe-definition.
Properties: exactly those of the subtype-definition datatype.

NOTES

1. When the base datatype is generated by a datatype generator, the ways in which a subset value space can be constructed are
complex and dependent on the nature of the base datatype itself. Clause 8.3 specifies the subtyping possibilities associated with
cach datatype generator.

2. It is redundant, but syntactically acceptable, for the subtype-definition to he an occurrence of a subtype-generator, e.g. inte-
ger: subtype (integer: selecting(0..5)).

8.3 Generated datatypes

A generated datatype is a datatype resulting from an application of a datatype generator. A datatype generator is a
conceptual operation on one or more datatypes which yields a datatype. A datatype generator operates on datatypes
to generate a datatype, rather than on values to generate a value. The datatypes on which a datatype generator operates
are said to be its component datatypes. The generated datatype is semantically dependent on the component
datatypes, but has its own characterizing operations. An important characteristic of all datatype generators is that the
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component datatypes are parametric, that is, that the generator can be applied to many different component datatypes.
The Pointer and Procedure generators generate datatypes whose values are atomic, while Choice and the generators of
aggregate datatypes gemerate datatypes whose values admit of decomposition. A generated-type designates a gener-
ated datatype.

generated-type = pointer-type | procedure-type | choice-type | aggregate-type .

This draft International Standard defines common datatype generators by which an application of this draft Interna-
tional Standard may define generated datatypes. (An application may also define "new" generators, as provided in
clause 9.1.3.) Each datatype generator is defined by a separate subclause. The title of each such subclause gives the
informal name for the datatype generator, and the datatype generator is defined by a single occurrence of the following
template:

Description: prose description of the datatypes resulting from the generator.

Syntax: the syntactic production for a generated datatype resulting from the datatype generator,
including identification of all component datatypes which are necessary for the complete
identification of a distinct datatype.

Components: number of and constraints on the component datatypes and other parameters used by the

generator.
Values: formal definition of resulting value space.
Properties: properties of the resulting datatype which indicate its admissibility as a component

datatype of certain datatype generators:
—  NUMeric or non-numeric,
—  approximate or exact,
— ordered or unordered,
— if ordered, bounded or unbounded.
Subtypes: generators, subtype-generators and parameters which produce subset value spaces.
Operations: characterizing operations for the resulting datatype which associate to the datatype
generator. The definitions of operations have the form described in 8.1.

NOTE - Unlike subtype generators, datatype generators yield resulting datatypes whose value spaces are entirely distinct from
those of the component datatypes of the datatype generator.

8.3.1 Choice

Description: Choice generates a datatype called a choice datatype, each of whose values is a single value from any
of a set of alternative datatypes. The alternative datatypes of a choice datatype are logically distinguished by
their correspondence to values of another datatype, called the tag datatype.

Syntax:
choice-type = "choice” "(" tag-type ")" "of" "(" altemnative-list b e
tag-type = type-specifier .
alternative-list = alternative { "," alternative } [ default-alternative ] .
alternative = tag-value-list ":" alternative-type .
default-alternative = "default” ™" alternative-type .
alternative-type = type-specifier .
tag-value-list = select-list
select-list = select-item { ", select-item } .
select-item = value-expression | select-range .
select-range = lowerbound ".." upperbound .
lowerbound = value-expression | ™" .
upperbound = value-expression | ™" .

Components: Each alternative-type in the alternative-list may be any datatype. The tag-rype shall be an exact
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Values:

datatype. The tag-value-list of each alternarive shall specify values in the value space of the (tag) datatype
designated by rag-type. A select-item shall not be a select-range unless the tag datatype is ordered. When
lowerbound and upperbound are value-expressions, they shall have values of the tag datatype such that InOr-
der(lowerbound, upperbound). When lowerbound is "*", it indicates that no lowerbound is being specified,
and when upperbound is "*", it indicates that no upperbound is being specified. No value-expression in the
select-list shall be a parametric value, except in some occurrences in declarations (see 9.1).

A choice datatype defines an association from the value space of the tag datatype to the set of alternative
datatypes in the alternative-list, such that each value of the tag datatype associates with exactly one alterna-
tive datatype. The tag-value-list of an alternative specifies those values of the tag datatype which are asso-
ciated with the altemative datatype designated by the alternative-rype in the alternative. A select-item which
is a value-expression specifies the single value of the tag datatype designated by that value-expression. A
select-item which is a select-range specifies all values v of the tag datatype such that lowerbound < v, if low-
erbound is specified. and v < upperbound, if upperbound is specified. The default-alternative, if present.
specifies that all values of the tag datatype which do not appear in any other alternative are associated with
the alternative datatype designated by its alternative-type.

Every value of the tag datatype shall appear (explicitly or implicitly) in the alternative-list, and no value of
the tag datatype shall appear in the tag-value-list of more than one alternative.

all values having the conceptual form (tag-value, alternative-value), where tag-value is a value of the tag
datatype, which is uniquely mapped to an alternative datatype according to the alternative-list. and alterna-
tive-value is any value of that alternative datatype.

Value-syntax:

choice-value = "(" tag-value "" alternative-value ")" .

tag-value = independent-value .

alternative-value = independent-value .

A choice-value denotes a value of a choice datatype. The tag-value of a choice-value shall be a value of the
tag datatype of the choice datatype, and the alternative-value shall designate a value of the corresponding al-
ternative datatype. The value denoted shall be that value having the conceptual form (1ag-value, alternative-
value).

Properties: unordered. exact if and only if all altemative datatypes are exact, non-numeric,
Subtypes: any choice datatype in which the tag datatype is the same as, or a subtype of, the tag datatype of the base

datatype, and the alternative datatype corresponding to each value of the tag datatype in the subtype is the
same as, or a subtype of, the alternative datatype corresponding to that value in the base datatype.

Operations: Equal, Tag, Cast, IsType.

IsType.rype(x: choice (tag-type) of (alternative-list)): boolean. where rype is an altemnative datatype in
alternative-list, is true if the tag-value of the value x maps to rype, and false otherwise.

Tag.type(x: rype, s: tag-type): choice ( tag-type) of (alternative-list), where type is that alternative datatype in
alternative-list which corresponds to the value s, is that value of the choice datatype which has tag-value
s and alternative-value x.

Cast.rype(x: choice (1ag-rype) of (alternative-list)): type, where fype is an alternative datatype in alternative-
list, is:
if IsType.type(x), then that value of rype which is the (alternative) value of x,
else undefined.

Equal(x, y: choice (tag-type) of (alternative-list)): boolean is:
if there exists an alternative datatype rype in alternative-list such that
And(IsType.rype(x), IsType.type(y)). then Equal.rype(Cast.rype(x), Cast.type(y)),
where Equal.rype is the Equal operation on the datatype rype, else false.

NOTES

1. The Choice datatype generator is referred to in some programming languages as a "(discriminated) union" datatype, and in
others as a datatype with "variants”. The generator defined here represents the Pascal/Ada "variant-record” concept, but it allows
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the C-language “union”, and similar discriminated union concepts, to be supported by a slight subterfuge. E.g. the C datatype:
union {
float al;
int a2;
char *a3; }
may be represented by:
choice ( state(al, a2, a3) ) of (
al: real,
a2: integer,
a3: characterstring ).

2. The form: discriminant: tag-type, which occurs in some programming languages, is a means for specifying the source of
the tag-value for a given instance of a choice datatype. If such a mechanism is required, as for marshalling arguments to a procedure
call, it should be described by annotations (see 7.4).

3. The subtypes of a choice datatype are typically choice datatypes with a smaller list of alternatives, and in the simplest case,
the list is reduced to a single datatype.

8.3.2 Pointer

Description: Pointer generates a datatype, called a pointer datatype, each of whose values constitutes a means of ref-
erence to values of another datatype, designated the element datatype. The values of a pointer datatype are
atomic.

Syntax:
pointer-type = "pointer" "to" "(" element-type ")".
element-type = type-specifier .

Components: Any single datatype, designated the element-type.

Values: The value space is that of an unspecified state datatype, each of whose values, save one. is associated with a
value of the element datatype. The single value null may belong to the value space but it is never associated
with any value of the element datatype.

Value-syntax:
pointer-literal = "null" .

"Null" denotes the null value. There is no denotation for any other value of a pointer datatype,

Properties: unordered, exact, non-numeric.

Subtypes: any pointer datatype for which the element datatype is a subtype of the element datatype of the base pointer
datatype.

Operations: Equal, Dereference.

Equal(x, y: pointer(element)): boolean is true if the values x and y are identical values of the unspecified state
datatype, else false;

Dereference(x: pointer(element)): element, where x # null, is the value of the element datatype associated
with the value x.

NOTES

L. A pointer datatype defines an association from the "unspecified state datatype” into the element datatype. There may be
many values of the pointer datatype which are associated with the same value of the element datatype; and there may be members
of the element datatype which are not associated with any value of the pointer datatype. The notion that there may be values of the
"unspecified state datatype” to which no element value is associated, however, is an artifact of implementations — conceptually, ex-
cept for nuil, those values of the (universal) "unspecified state datatype” which are not associated with values of the element
datatype are not in the value space of the pointer datatype.

2. Two pointer values are equal only if they are identical: it does not suffice that they are associated with the same value of the
element datatype. The operation which compares the associated values is

Equal.element(Dereference(x), Dereference(y)),
where Equal.element is the Equal operation on the element datatype.
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3. The computational model of the pointer datatype often allows the association to vary over time. E.g., if x is a value of
datatype pointer to (integer), then x may be associated with the value O at one time and with the value | at another. This implies
that such pointer datatypes also support an operation, called assignment, which associates a (new) value of datatype e to a value of
datatype pointer(e), thus changing the value returned by the Dereference operation on the value of datatype pointer to e. This as-
signment operation was not found to be necessary to characterize the pointer datatype, and listing it as a characterizing operation
would imply that support of the pointer datatype requires it, which is not the intention.

4. The term Ivalue appears in some language standards, meaning “a value which refers to a storage object or area”. Since the
storage object is a means of association, an /value is therefore a value of some pointer datatype. Similarly, the implementation no-
tion machine-address, to the extent that it can be manipulated by a programming language, is often a value of some pointer datatype.

5. Conceptually, a pointer datatype expresses a relationship between two objects or values. There are two circumstances which
require a pointer datatype:

a) when the associated value or object may change, or

b) when more than one object may possess a relationship to the same object.
Pointers used for the latter purpose are said to be aliased, as distinguished from pointers used only for the former purpose, which
are said to be unaliased. Other usages of pointer datatypes are typically implementation mechanisms for aggregate datatypes or
procedure argument passing mechanisms, rather than conceptual pointers.

8.3.3 Procedure

Description: Procedure generates a datatype, called a procedure datatype, each of whose values is an operation on
values of other datatypes, designated the argument datatypes. That is, a procedure datatype comprises the
set of all operations on values of a particular collection of datatypes. All values of a procedure datatype are
conceptually atomic.

Syntax:
procedure-type = "procedure” "(" [ argument-list ] ")"

[ "returns" "(" retum-argument ")" ]
[ "raises” "(" termination-list ")" ] .
argument-list = argument-declaration { "," argument-declaration } .
argument-declaration = direction argument .
direction = "in" | "out" | "inout" .
argument = argument-name " argument-type .
argument-type = type-specifier .
argument-name = identifier .
return-argument = [ argument-name ":" ] argument-type .
termination-list = termination-reference { "," termination-reference } .
termination-reference = identifier .
Parameters: An argument-type may designate any datatype. The argument-names of arguments in the argument-list

shall be distinct from each other and from the argument-name of the return-argument, if any. The termina-
tion-references in the termination-list, if any, shall be distinct.

Values: Conceptually, a value of a procedure datatype is a function which maps an input space to a result space. An
argument in the argument-list is said to be an input argument if its argument-declaration contains the direc-
tion "in" or "inout". The input space is the cross-product of the value spaces of the datatypes designated by
the argument-rypes of all the input arguments. An argument is said to be a result argument if it is the rerurn-
argument or it appears in the argument-list and its argument-declaration contains the direction "out" or "in-
out". The normal result space is the cross-product of the value spaces of the datatypes designated by the
argument-types of all the result arguments, if any, and otherwise the value space of the void datatype. When
there is no termination-list, the result space of the procedure datatype is the normal result space, and every
value p of the procedure datatype is a function of the mathematical form:

pr L xbhx..xl,=>RpxR xRyx ... xR
where I is the value space of the argument datatype of the kth input argument, Ry is the value space of the
argument datatype of the kth result argument, and Rp is the value space of the retumn-argument.
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When a termination-list is present, each termination-reference is associated, by some termination-declara-
tion (see 9.3), with an alternative result space which is the cross-product of the value spaces of the datatypes

designated by the argument-rypes of the arguments in the termination-argument-list. Let AJ be the alternative
result space of the jth termination. Then:

Al = El‘l X EZJ X..X EmJJ.
where E,/ is the value space of the argument datatype of the kth argument in the termination-argument-list of
the jth termination. The normal result space then becomes the alternative result space associated with normal

termination (A%, modelled as having rermination-identifier "*normal”. Consider the termination-referenc-
es, and "*normal”, to represent values of an unspecified state datatype St. Then the result space of the pro-

cedure datatype is:
Srx (AP1ATIAZ .. 1AN),

where A is the normal result space and AX is the alternative result space of the th termination; and every
value of the procedure datatype is a function of the form:

pr I xlpx..xI, - Srx (AC1AY1AZ]...1AM),

Any of the input space, the normal result space and the alternative result space corresponding to a given rer-
mination-identifier may be empty. An empty space can be modelled mathematically by substituting for the

empty space the value space of the datatype Void (see 8.1.13).

The value space of a procedure datatype conceptually comprises all operations which conform to the above

model, i.e. those which operate on a collection of values whose datatypes correspond to the input argument

datatypes and yield a collection of values whose datatypes correspond to the argument datatypes of the normal
result space or the appropriate alternative result space. The term corresponding in this regard means that to
each argument datatype in the respective product space the "collection of values” shall associate exactly one
value of that datatype. When the input space is empty, the value space of the procedure datatype comprises
all niladic operations yielding values in the result space. When the result space is empty, the mathematical
value space contains only one value, but the value space of the computational procedure datatype many con-
tain many distinct values which differ in their effects on the "real world", i.e. physical operations outside of
the information space.

Value-syntax:

procedure-declaration = "procedure” procedure-identifier “(" [ argument-list 1"

[ "returns” "(" retum-argument "]

[ "raises” "(" termination-list il e
procedure-identifier = identifier .
A procedure-declaration declares the procedure-identifier to refer to a (specific) value of the procedure
datatype whose type-specifier is identical to the procedure-declaration after deletion of the procedure-iden-
tifier. The means of association of the procedure-identifier with a particular value of the procedure datatype
is outside the scope of this draft International Standard.

Properties: unordered, exact, non-numeric,
Subtypes: For two procedure datatypes P and Q:

*  Pissaid to be formally compatible with Q if their argument-lists are of the same length, the direction
of each argument in the argument-list of P is the same as the corresponding argument in the argument-
list of Q, both have a return-argument or neither does, and the termination-lists of P and Q, if present,
contain the same termination-references.

+ If P is formally compatible with Q, and for every result argument of 0 . the argument datatype of the
corresponding argument of P is a (not necessarily proper) subtype of the argument datatype of the argu-
ment of Q, then P is said to be a result-subtype of Q. If the return argument datatype and all of the ar-
gument datatypes in the argument-list of P and Q are identical (none are proper subtypes), then each is
aresult-subtype of the other.

*  If P is formally compatible with Q, and for every input argument of Q . the argument datatype of the
corresponding argument of P is a (not necessarily proper) subtype of the argument datatype of the argu-
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ment of Q, then Q is said to be an input-subtype of P. If all of the input argument datatypes in the ar-
gument-lists of P and Q are identical (none are proper subtypes), then each is an input-subtype of the oth-
er.
Every subtype of a procedure datatype shall be both an input-subtype of that procedure datatype and a result-
subtype of that procedure datatype.

Operations: Equal, Invoke.

The definitions of Invoke and Equals below are templates for the definition of specific Invoke and Equals operators
for each individual procedure datatype. Each procedure datatype has its own Invoke operator whose first argument is
a value of the procedure datatype, and whose remaining input arguments, if any, have the datatypes in the input space
of that procedure datatype, and whose result-list has the datatypes of the result space of the procedure datatype.

Invoke(x: procedure(argument-list), vi: I j, ..., Voi I): record (1 Ry, ..., Iyt Rpy) is that value in the result space
which is produced by the procedure x operating on the value of the input space which corresponds to
values (v{, ..., V)

Equal(x, y: procedure(argument-list)): boolean is:
true if for each collection of values (vy: I}, .... vq: 1), corresponding to a value in the input space of x and

y, either:
— neither x nor y is defined on (vy, ..., V), Or

—  Invoke(x, vy, ..., Vo) = Invoke(y, v, ..., V)i
and false otherwise.

NOTES

1. The definition of Invoke above is simplistic and ignores the concept of altemative terminations, the implications of proce-
dure and pointer datatypes appearing in the argument-list, etc. The true definition of Invoke is beyond the scope of this draft Inter-
national Standard and forms a principal part of DIS ?: Language-Independent Procedure Calling.

2. Considered as a function, a given value of a procedure datatype may not be defined on the entire input space, that is. it may
not yield a value for every possible input. In describing a specific value of the procedure datatype it is necessary to specify limita-
tions on the input domain on which the procedure value is defined. In the general case, these limitations are on combinations of
values which go beyond specifying proper subtypes of the individual argument datatypes. Such limitations are therefore not con-
sidered to affect the admissibility of a given procedure as a value of the procedure datatype.

3. The subtyping of procedure datatypes may be counterintuitive. Assume the declarations:

type P = procedure (in a: integer: range (0..100), out b: typeX);

type Q = procedure (in a: integer: range (0..100), out b: typeY),

type R = procedure(in a: integer. out b: typeX);
If typeX is a subtype of typeY then P is a subtype of Q, as one might expect. But integer: range (0..100) is a subtype of Integer.
which makes R a subtype of P. and not the reverse! In general, the collection of procedures which can accept an arbitrary input
from the larger input datatype (integer) is a subset of the collection of procedures which can accept an input from the more restricted
input datatype (integer: range (0..100)). If a procedure is required to be of type P, then it is presumed to be applicable to values in
integer: range (0..100). If a procedure of type R is actually used, it can indeed be safely applied to any value in integer: range
(0..100), because integer: range (0..100) is a subtype of the domain of the procedures in R. But the converse is not true. If a pro-
cedure is required to be of type R, then it is presumed to be applicable to an arbitrary value of integer, for example, -1, and therefore
a procedure of type P, which 1s not necessarily defined at -1, cannot be used.

4. In describing individual values of a procedure datatype. it is common in programming languages to specify argument-names,
in addition to argument datatypes, for the arguments. These identifiers provide a means of distinguishing the functionality of the
individual argument values. But while this functionality is important in distinguishing one value of a procedure datatype from an-
other, it has no meaning at all for the procedure datatype itself. For example, Subtract(in a:real, in b:real, out diff: real) and Mul-
tiply(in a:real, in b:real, out prod: real) are both values of the procedure datatype procedure(in real, in real, out real), but the func-
tionality of the arguments a and b in the two procedure values is unrelated.

5. In describing procedures in programming languages, it is common to distinguish arguments as input, output, and input/out-
put, to import information from common interchange areas, and to distinguish returning a single result value from returning values
through the arguments and/or the interchange areas. These distinctions are supported by the syntax, but conceptually, a procedure
uperates on an set of input values to produce a set of output values. The syntactic distinctions relate to the methods of moving values
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between program elements, which are outside the scope of this draft International Standard. This syntax is used in other interna-
tional standards which define such mechanisms. It is used here 1o facilitate the mapping to programming language constructs.

6. As may be apparent from the definition of Invoke above, there is a natural isomorphism between the normal result space of
a procedure datatype and the value space of some record datatype (see 8.4.1). Similarly, there is an isomorphism between the gen-
eral form of the result space and the value space of a choice datatype (see 8.3.1) in which the tag datatype is the unspecified state
datatype and each alternative, including "normal”, has the form:
termination-name: althernative-result-space (record-type).

8.4  Aggregate Datatypes

An aggregate datatype is a generated datatype each of whose values is. in principle, made up of values of the com-
ponent datatypes. An aggregate datatype generator generates a datatype by

* applying an algorithmic procedure to the value spaces of its component datatypes to yield the value space of
the aggregate datatype, and

+ providing a set of characterizing operations specific to the generator.

Thus, many of the properties of aggregate datatypes are those of the generator, independent of the datatypes of the
components. Unlike other generated datatypes, it is characteristic of aggregate datatypes that the component values of
an aggregate value are accessible through characterizing operations.

This clause describes commonly encountered aggregate datatype generators, attaching to them only the semantics
which derive from the construction procedure.
aggregate-type = record-type | set-type | sequence-type | bag-type | array-type
| table-type .

The definition template for an aggregate datatype is that used for all datatype generators (see 8.3), with an addition of
the Properties paragraph to describe which of the aggregate properties described in clause 6.8 are possessed by that
generator.

NOTES

1. In general, an aggregate-value contains more than one component value. This does not, however, preclude degenerate cases
where the “aggregate™ value has only one component, or even none at all.

2. Many characterizing operations on aggregate datatypes are "constructors”, which construct a value of the aggregate datatype
from a collection of valuesof the component datatypes, or “selectors”, which select a value of a component datatype from a value
of the aggregate datatype. Since composition is inherent in the concept of aggregate, the existence of construction and selection
operations is not in itself characterising. However, the nature of such operations, together with other operations on the aggregate
as a whole, is characterising.

3. In principle, from each aggregate it is possible to extract a single component, using selection operations of some form. But
some languages may specify that particular (logical) aggregates must be treated as atomic values, and hence not provide such op-
erations for them. For example, a character-string may be regarded as an atomic value or as an aggregrate of Character components,
This international standard models character-string (10.1.4) as an aggregate, in order to support languages whose fundamental
datatype is (single) Character. But Basic, for example, sees the character-string as the primitive type, and defines operations on it
which yield other character-strings, wherein 1-character strings are not even a special case. This difference in viewpoint does not
prevent a meaningful mapping between the character-string datatype and Basic strings.

4. Some characterizations of aggregate datatypes are essentially implementations, whereas others convey essential semantics
of the datatype. For example, an object which is conceptually a tree may be defined by either:
type tree = record (
label: character_string ([ iso standard 8859 1 )),
branches: set of (tree))
or:
type tree = record (
label: character_string (| iso standard 8859 1 ),
son: pointer to (tree),
sibling: pointer to (tree)).
The first is a proper conceptual definition, while the second is clearly the definition of a particular implementation of a tree. Which
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of these datatype definitions is appropriate to a given usage, however, depends on the purpose to which this draft International Stan-
dard is being employed in that usage.

5. There is no "generic" aggregate datatype. There is no "generic” construction algorithm, and the “generic” form of aggregate
has no characterising operations on the aggregate values. Every aggregate is, in a purely mathematical sense, at least a "bag” (see
8.4.3). And thus the ability to “select one” from any aggregate value is a mathematical requirement given by the axiom of choice.
The ability to perform any particular operation on each element of an aggregate is sometimes cited as characterizing. But in this
draft International Standard, this capability is modelled as a composition of more primitive functions, viz.:

Applytoall(A: aggregate-type, P: procedure-type) is:
if not IsSEmpty(A) begin
e := Select(A);
Invoke (P, e);
Applytoall (Delete(A, e), P);
end;
and the particular “Select” operations available, as well as the need for IsEmpty and Delete, are characterizing.

8.4.1 Record

Description: Record generates a datatype, called a record datatype, whose values are heterogeneous aggregations of
values of component datatypes, each aggregation having one value for each component datatype, keyed by a
fixed "field-identifier".

Syntax:
record-type = "record" "(" field-list ")" .
field-list = field { "," field} .
field = field-identifier " field-type .
field-identifier = identifier .
field-type = type-specifier .

Components: A list of fields, each of which associates a field-identifier with a single field datatype, designated by
the field-rype, which may be any datatype. All field-identifiers of fields in the field-list shall be distinct.

Values: all collections of named values, one per field in the field-list, such that the datatype of each value is the field
datatype of the field to which it corresponds.

Value-syntax:
record-value = field-value-list | value-list .
field-value-list = "(" field-value { "" field-value } ")" .
field-value = field-identifier ":" independent-value .
value-list = "(" independent-value { "," independent-value } ")" .
A record-value denotes a value of a record datatype. When the record-value is a field-value-list, each field-
identifier in the field-list of the record datatype to which the record-value belongs shall occur exactly once in
the field-value-list, cach field-identifier in the record-value shall be one of the field-identifiers in the field-list
of the record-type, and the corresponding independent-value shall designate a value of the corresponding
field datatype. When the record-value is a value-list, the number of independent-values in the value-list shall
be equal to the number of fields in the field-list of the record datatype to which the value belongs, each inde-
pendent-value shall be associated with the field in the corresponding position, and each independent-value
shall designate a value of the field datatype of the associated field.

Properties: non-numeric, unordered, exact if and only if all component datatypes are exact; heterogeneous. fixed size,
no ordering, no uniqueness, access is keyed by field-identifier, one dimensional.

Subtypes: any record datatype with exactly the same field-identifiers as the base datatype, such that the field datatype
of each field of the subtype is the same as, or is a subtype of, the corresponding field datatype of the base
datatype.

Operations: Equal, FieldSelect, Aggregate.

Equal(x, y: record (field-list)): boolean is true if for every field-identifier f of the record datatype, field-
type.Equal(FieldSelect.f(x), FieldSelect.f(y)), else false (where field-rype.Equal is the equality
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relationship on the field datatype corresponding to f.
There is one FieldSelect and one FieldReplace operation for each field in the record datatype. of the forms:

FieldSelect field-identifier(x: record (field-list)): field-type is
the value of the field of record x whose field-identifier is field-identifier.

FieldReplace field-identifier(x: record (field-list), y: field-type): record (field-list) is
that value z: record(field-list) such that FieldSelect field-identifier(z) = y, and for all other fields fin
record(field-list), FieldSelect x) = FieldSelectf(z)
i.e. FieldReplace yields the record value in which the value of the designated field of x has been replaced
by y.

NOTES

1. The sequence of fields in a Record datatype is not semantically significant in the definition of the Record datatype generator.
An implementation of a Record datatype may define a representation convention which is an ordering of physically distinct fields,
but that is a pragmatic consideration and not a part of the conceptual notion of the datatype. Indeed, the optimal representation for
certain Record values might be a bit-string, and then FieldReplace would be an encoding operation and FieldSelect would be a de-
coding operation.

2. A record datatype can be modelled as a heterogeneous aggregate of fixed size which is accessed by key, where the key
datatype is a state datatype whose values are the field identifiers. But in a value of a record datatype, totality of the mapping is
required: no field (keyed value) can be missing.

3. A record datatype with a subset of the fields of a base record datatype (a "sub-record"” or "projection"” of the record datatype)
is not a subtype of the base record datatype: none of the values in the sub-record value space appears in the base value-space. And
there are, in general, a great many different "embeddings" which map the sub-record datatype into the base datatype, each of which
supplies different values for the missing fields. Supplying void values for the mussing fields is only possible if the datatypes of those
fields are of the form choice (tag-type) of (..., v: void).

4. "Subtypes" of a "record” datatype which have additional fields is an object-oriented notion which goes Beyond the scope of
this draft International Standard.

8.4.2 Set

Description: Set generates a datatype, called a set datatype, whose value-space is the set of all subsets of the value
space of the element datatype, with operations appropriate to the mathematical ser.

Syntax:
set-type = "set” "of" "(" element-type ")" .
element-type = type-specifier .

Components: The element-type shall designate an exact datatype, called the element datatype.

Values: every set of distinct values from the value space of the element datatype, including the set of no values, called
the empty-set. A value of a set datatype can be modelled as a mathematical function whose domain is the
value space of the element datatype and whose ran ge is the value space of the boolean datatype (true, false),
i.e., if s is a value of datatype set of (E), then 5: E — B, and for any value ¢ in the value space of E, s(e) = true
means e "is a member of” the set-value s, and s(e) = false means e "is not a member of™ the set-value s. The
value-space of the set datatype then comprises all functions s which are distinct (different at some value e of
the element datatype).

Value-syntax:
set-value = empty-value | value-list .
empty-value = "(" ")" .
value-list = "(" independent-value { "" independent-value } ")" .

Each independent-value in the value-list shall desi gnate a value of the element datatype. A set-value denotes
a value of a set datatype, namely the set containing exactly the distinct values of the element datatype which
appear in the value-list, or equivalently the function s which yields true at every value in the value-list and
false at all other values in the element value space.

Properties: non-numeric, unordered, exact if and only if the element datatype is exact: homogeneous, variable size.
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uniqueness, no ordering, access indirect (by value).

Subtypes:
i) any set datatype in which the element datatype of the subtype is the same as, or a subtype of, the element
datatype of the base set datatype: or
ii) any datatype derived from a base set datatype conforming to (i) by use of the Size subtype-generator (ref.
8.2.5).

Operations: IsIn, Subset, Equal, Difference, Union, Intersection, Empty, Setof, Select
IsIn(x: element-type, y: set of (element-type)): boolean = y(x), i.e.
true if the value x is 2 member of the set y, else false;

Subset(x,y: set of (element-type)): boolean is true if for every value v of the element datatype,
Or(Not(IsIn(v.x)), IsIn(v,y)) = true, else false; i.e. true if and only if every member of x is a member of y:

Equal(x, y: set of (element-rype)): boolean = And(Subset(x,y), Subset(y,x));

Difference(x, y: set of (element-type)): set of (element-type) is the set consisting of all values v of the element
datatype such that And(IsIn(v, x), Not(IsIn(v.y)));

Union(x, y: set of (element-type)): set of (element-type) is the set consisting of all values v of the element
datatype such that Or(IsIn(v.x), IsIn(v.y));

Intersection(x, y: set of (element-type)): set of (element-rype) is the set consisting of all values v of the element
datatype such that And(IsIn(v.x), IsIn(v,y));

Empty(): set of (element-type) is the function s such that for all values v of the element datatype, s(v) = false:
i.e. the set which consists of no values of the element datatype;

Setof(y: element-type): set of (element-type) is the function s such that s(y) = true and for all valuesv=y. s(v)
= false; i.e. the set consisting of the single value y;

Select(x: set of (element-type)): element-type, where Not(Equal(x, Empty()), is some one value from the value
space of element datatype which appears in the set x.

NOTE - Set is modelled as having only the (undefined) Select operation derived from the axiom of choice. In another sense.
the access method for an element of a set value is “find the element (if any) with value v"', which actually uses the characterizing
*IsIn” operation, and the uniqueness property.

843 Bag

Description: Bag generates a datatype. called a bag datatype. whose values are collections of instances of values from
the element datatype. Multiple instances of the same value may occur in a given collection: and the ordering
of the value instances is not significant.

Syntax:
bag-type = "bag" "of" "(" element-type ")" .
element-type = type-specifier .

Components: The element-rype shall designate an exact datatype, called the element datatype.

Values: all finite collections of instances of values from the element datatype, including the empty collection. A value
of a bag datatype can be modelled as a mathematical function whose domain is the value space of the element
datatype and whose range is the nonnegative integers. i.e.. if b is a value of datatype bag of (E), then b: £ —
Z, and for any value e in the value space of E, b(e) = 0 means e "does not occur in" the bag-value b, and b(¢)

= n, where n is a positive integer, means e "occurs n times in" the bag-value b. The value-space of the bag
datatype then comprises all functions b which are distinct.

Value-syntax:
bag-value = empty-value | value-list .
empty-value = "(" ")" .
value-list = "(" independent-value { "," independent-value } ")" .
Each independent-value in the value-list shall designate a value of the element datatype. A bug-value denotes
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a value of a bag datatype, namely that function which at each value e of the element datatype yields the num-
ber of occurrences of ¢ in the value-list. .

Properties: non-numeric, unordered, exact if and only if the element datatype is exact; homogeneous, variable size,
no uniqueness, no ordering, access indirect,

Subtypes:
i) any bag datatype in which the element datatype of the subtype is the same as, or a subtype of, the element
datatype of the base bag datatype; or
ii) any datatype derived from a base bag datatype conforming to (i) by use of the Size subtype-generator (ref.
8.2.5).

Operations: ISsEmpty, Select, Delete, Equal, Empty, Insert
ISEmpty(x: bag of (element-type)): boolean is true if for all ¢ in the element value space, x(e) = 0, else false:
Equal(x, y: bag of (element-type)): boolean is true if for all ¢ in the element value space, x(e) = y(e), else false;
Empty(): bag of (element-type) is that function x such that for all e in the element value space, x(e) = 0;
Select(x: bag of (element-type)): element-type, where Not(IsEmpty(x)), is some one value ¢ of the element

datatype such that x(e) > 0;

Delete(x: bag of (element-type), y: element-type): bag of (element-type) is that function z in bag of (element-
type) such that:
forall e #y, z(e) = x(e), and
if x(y) > O then z(y) = x(y) - 1 and if x(y) = 0 then z(y) = 0;
i.e. the collection formed by deleting one instance of the value y. if any, from the collection x;
Insert(x: bag of (element-type), y: element-type): bag of (element-type) is that function z in bag of (element-
rype) such that:
forall e #y, z(e) = x(e), and z(y) = x(y) + 1;
i.e. the collection formed by adding one instance of the value y to the collection x;

8.44 Sequence

Description: Sequence generates a datatype, called a sequence datatype, whose values are ordered sequences of val-
ues from the element datatype. The ordering is imposed on the values and not intrinsic in the underlying
datatype: the same value may occur more than once in a given sequence,

Syntax:

sequence-type = "sequence” "of" "(" element-type ")" .

element-type = type-specifier .
Components: The element-rype shall designate any datatype, called the element datatype.
Values: all finite sequences of values from the element datatype, including the empty sequence.
Value-syntax:

sequence-value = empty-value | value-list .

empty-value = "(" ")" .

value-list = "(" independent-value { "" independent-value } ")" .

Each independent-value in the value-list shall designate a value of the element datatype. A sequence-value
denotes a value of a sequence datatype, namely the sequence containing exactly the values in the value-list,
in the order of their occurrence in the value-list. .

Properties: non-numeric, unordered, exact if and only if the element datatype is exact: homogeneous, variable size,
no uniqueness, imposed ordering, access indirect (by position).

Subtypes:
{) any sequence datatype in which the element datatype of the subtype is the same as, or a subtype of, the
element datatype of the base sequence datatype; or
it) any datatype derived from a base sequence datatype conforming to (i) by use of the Size subtype-generator
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(ref. 8.2.5).
Operations: IsEmpty, Head, Tail, Equal. Empty, Append.

IsEmpty(x: sequence of (element-rype)): boolean is true if the sequence x contains no values, else false;

Head(x: sequence of (element-rype)): element-type, where Not(ISEmpty(x)), is the first value in the sequence
x;

Tail(x: sequence of (element-type)): sequence of (element-type) is the sequence of values formed by deleting
the first value, if any, from the sequence x;

Equal(x, y: sequence of (element-type)): boolean is:
if ISEmpty(x), then ISEmpty(y);
else if Head(x) = Head(y), then Equal(Tail(x), Tail(y)):
else, false;

Empty(): sequence of (element-type) is the sequence containing no values;

Append(x: sequence of (element-type), y: element-type): sequence of (element-type) is
the sequence formed by adding the single value y to the end of the sequence x.

NOTES
1. Sequence differs from Bag in that the ordering of the values is significant and therefore the operations Head, Tail. and Ap-
pend, which depend on position, are provided instead of Select, Delete and Insert, which depend on value.
2. The extended operation Concatenate(x, y: sequence of (E)): sequence of (E) is:
if IsSEmpty(y) then x; else Concatenate(Append(x, Head(y)), Tail(y));

3. The notion sequential file, meaning "a sequence of values of a given datatype, usually stored on some external medium”, is
an implementation of datatype Sequence.

8.4.5 Array

Description: Array generates a datatype, called an array datatype, whose values are associations between the product
space of one or more finite datatypes, designated the index datatypes, and the value space of the element
datatype, such that every value in the product space of the index datatypes associates to exactly one value of
the element datatype.

Syntax:
array-type = "array" "(" index-type-list ")" "of" "(" element-type ")" .
index-type-list = index-type { ", index-type } .
index-type = type-specifier | index-lowerbound ".." index-upperbound .
index-lowerbound = value-expression .
index-upperbound = value-expression .
element-type = type-specifier .

Components: The element-rype shall designate any datatype, called the element datatype. Each index-type shall des-
ignate an ordered and finite exact datatype, called an index datatype. When the index-rype has the form:

index-lowerbound .. index-upperbound,
the implied index datatype is;

integer: range(index-lowerbound .. index-upperbound),
and index-lowerbound and index-upperbound shall have integer values, such that index-lowerbound < index-
upperbound.

The value-expressions for index-lowerbound and index-upperbound may be dependent-values when the array
datatype appears as an argument-type, or in a component of an argument-type, of a procedure datatype. or in
acomponent of a record datatype. Neither index-lowerbound nor index-upperbound shall be dependent-vul-
ues in any other case. Neither index-lowerbound nor index-upperbound shall be parametric-values, except
in certain cases in declarations (see 9.1).

Values: all functions from the cross-product of the value spaces of the index datatypes appearing in the index-rype-
list, designated the index product space, into the value space of the element datatype, such that each value
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in the index product space associates to exactly one value of the element datatype.

Value-syntax:

array-value = value-list .
value-list = "(" independent-value { "" independent-value } ")" .
An array-value denotes a value of an array datatype. The number of independent-values in the value-list shall
be equal to the cardinality of the index product space, and each independent-value shall designate a value of
the element datatype. To define the associations, the index product space is first ordered lexically, with the
last-occurring index datatype varying most rapidly, then the second-last, etc., with the first-occurring index
datatype varying least rapidly. The first independent-value in the array-value associates to the first value in
the product space thus ordered, the second to the second, etc. The array-value denotes that value of the array
datatype which makes exactly those associations.

Properties: non-numeric, unordered, exact if and only if the element datatype is exact: homogeneous, fixed size. no
uniqueness, no ordering, access is indexed, dimensionality is equal to the number of index-types in the index-
type-list.

Subtypes: any array datatype having the same index datatypes as the base datatype and an element datatype which is
a subtype of the base element datatype.

Operations: Equal, Select. Replace.

Select(x: array (index, ..., index,) of (element-type), y,: indexy, ..., Yo' index,): element-rype is that value of
the element datatype which x associates with the value (¥1+ s ¥q) in the index product space;

Equal(x, y: array (index,, ..., index,) of (element-type)): boolean is true if for every value (v, ..., v,) in the
index product space, Select(x, vy, ..., Vo) = Select(y, vy, ..., v,), else false;

Replace(x: array (index;, ..., index,) of (element-type), Yi: indexy, ..., y: index,, z: element-type): array
(index,, ..., index,) of (element-type) is that value w of the array datatype such that w: (y,, ..., y,) = z.and
for all values p of the index product space except (yy, ..., Yp), w: p = x(p);
L.e. Replace yields the function which associates z with the value (yy, ..., y,) and is otherwise identical to
X.

NOTES

I. The general array datatype is “multidimensional”, where the number of dimensions and the index datatypes themselves are
part of the conceptual datatype. The index space is an unordered product space, although it is necessarily ordered in each "dimen-
sion”, that is, within each index datatype. This model was chosen in lieu of the "array of array"” model, in which an array has a single
ordered index datatype, in the belief that it facilitates the mappings to programming languages. Note that;

type arrayA = array (1..m, 1..n) of (integer);
defines “arrayA™ to be a 2-dimensional datatype, whereas

type arrayB = array (1:m) of (array [1:n] of (integer));
defines “arrayB" to be a |-dimensional (with element datatype array (1:n) of (integer), rather than integer). This allows languages
in which A[i][j] is distinguished from Ali, j] to maintain the distinction in mappings to the LI Datatypes. Similarly, languages which
disallow the A[i][j] construct can properly state the limitation in the mapping or treat it as the same as All, j], as appropriate.

2. The array of a single dimension is simply the case in which the number of index datatypes is | and the index product space

is the value space of that datatype. The ordering of the index datatype then determines the association to the independent-values in
a corresponding array-value.

3. Support for index datatypes other than integer is necessary to model certain Pascal and Ada datatypes (and possibly others)
with equivalent semantics.

4. Since the values of an array datatype are functions, the array datatype is conceptually a special case of the procedure datatype
(see 8.3.3). In most programming languages, however, arrays are conceptually aggregates, not procedures, and have such con-
straints as to ensure that the function can be represented by a sequence of values of the element datatype, where the size of the se-
quence is fixed and equal to the cardinality of the index product space.

5. In order to define an interchangeable representation of the Array as a sequence of element values, it is first necessary to de-
fine the function which maps the index product space to the ordinal datatype. There are many such functions. The one used in
interpreting the array-value construct is as follows:
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Let A be a value of datatype array(array (index;, ..., index,) of (element-type). For each index datatype index;, let lower-
bound; and upperbound; be the lower and upper bounds on its value space. Define the operation Map; to map the index datatype
index; into a range of integer by:

Map;(x: index;): integer is:

Map(lowerbound;) = 0; and

Map;(Successor;(x)) = Map;(x) + 1, for all x # upperbound;.
And define the constant: size; = Mapj(upperbound;) - Map;(lowerbound;) + 1. Then Ord(x,: index,, ..., X,: index,): ordinal is the
ordinal value corresponding to the integer value:

n n
1+ ¥ Mapgx,) -« ( IT sizej,; ¥
[= J=t

where the non-existent size,,; is taken to be 1. And the Ord(x), ..., x,)th position in the sequence representation is occupied by
A(X)y s Xp)-

EXAMPLE
The Fortran declaration: CHARACTER*1 SCREEN (80, 24)
declares the variable "screen” to have the LI datatype: array (1..80, 1..24) of character (unspecified).
And the FORTRAN subscript operation: S = SCREEN (COLUMN, ROW)
1s equivalent to the characterizing operation: Select (screen, column, row);
while SCREEN(COLUMN, ROW) =S
is equivalent to the charactenizing operation: Replace(screen, column, row, S).

The FORTRAN standard, however, requires a mapping function which gives a different sequence representation from that given in
Note 5.

8.4.6 Table

Description: Table generates a datatype, called a table datatype, whose values are sets of associations between values
in the product space of one or more key datatypes and values of the element datatype, such that any value in
the product space of the key datatypes associates to at most one value of the element datatype. Although the
key datatypes may be infinite, any given value of a table datatype contains a finite number of associations.

Syntax:
table-type = "table" "(" key-list )" "of" "(" element-type ")" .
key-list = key-type { "," key-type } .
key-type = type-specifier .
element-type = type-specifier .

Components: The element-rype shall designate any datatype, called the element datatype. Each key-rype shall des-
ignate any exact datatype. called a key datatype.

Values: all finite sets of associations, represented by pairs of values, in which each pair comprises one value from the
cross-product of the value spaces of all the key datatypes in the key-list, designated the key product spuce.
and one value from the value space of the element datatype, with the restriction that no value in the key prod-
uct space can appear in more than one pair.

Value-syntax:
table-value = empty-value | "(" table-entry { ",” table-entry } ™" .
table-entry = key-value-list ":" element-value .
key-value-list = independent-value { "," independent-value } .
element-value = independent-value .

A tuble-value denotes a value of a table datatype, namely the set comprising exactly the table-entrys appear-
ing in the table-value. Each independent-value in the key-value-list of a table-entry shall designate a value
of the key datatype in the corresponding position in the key-list of the table-type, and the key-value-list shall
denote that value from the key product space designated by that tuple of independent-values. The element-
value of a table-entry shall designate a value of the element datatype of the key datatype. A rable-entry shall
denote the single association between the value of the key product space designated by the key-value-list and
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the value of the element datatype designated by the element-value.

Properties: non-numeric, unordered, exact if and only if the element datatype is exact; homogeneous, variable size,
no uniqueness, no ordering, access is keyed, dimensionality is equal to the number of key-rypes in the key-list,
Subtypes:
i) any table datatype in which:
+ the element datatype of the subtype is the same as, or a subtype of, the element datatype of the base
table datatype, and
* the number of key-types in the key-list of the subtype is the same as the number of key-types in the key-
list of the base table datatype, and
» each key datatype of the subtype is the same as, or a subtype of, the key datatype in the corresponding
position in the key-list of the base table datatype; or
i) any table datatype derived from a base table datatype conforming to (i) by use of the Size subtype-gener-
ator (ref. 8.2.5).
Operations: Equal, Empty, IsPresent, Select, Insert, Delete.
IsPresent(x: table (key), ..., key,) of (element-type), y,: keyy, ... yn: key,): boolean is true if there is a pair in
the set x whose key member is the value (Y1s -0 Yp), else false,

Select(x: table (key,, ..., key,) of (element-type), Yi: keyy, we, Yo key,): element-type, where IsPresent(x, Y1,
-+ ¥n). is that value of the element datatype which x associates with the value (¥1+ +es Yn) in the key
product space.

Equal(x, y: table (key,, ... key,) of (element-type)): boolean is true if for every value
(V1. .... v) in the key product space such that IsPresent(x, Vi)

Select(x, vy, ..., v,) = Select(y, vy, ..., v,), else false;

Empty(): table (key, ..., key,,) of (element-type) is true if for every value (V1, ..., vp) in the key product space
Not(IsPresent(x, vy, ..., v,)), else false; i.e. the set containing no associations.

Insert(x: wable (keyy, ..., key,) of (element-type), y\: keyy. ... yp: key,, z:element-type): table (key,. ..., kev,) of
(element-type), where Not(IsPresent(x, y)), is the set formed by inserting the pair ((yy, ..., y,), z) in the
set x.

Delete(x: table (key,, ..., key,) of (element-type), y|: keyy, .... y,: key,): table (keyy. .... key,) of (element-rype),
where IsPresent(x, yy, ..., y,), is the set formed by deleting from the set x the pair whose key member has
value (yy, ..., y,)-

NOTES

1. A table datatype is a generalization of the Array notion to arbitrary “index" (key) types. A table datatype with multiple key
datatypes does not have multiple "independent” keys. but rather a single “joint" key. Without loss of generality, a table datatype
can be modelled as having a single key datatype of the form record(f,: keyy. ... f: key,) where key,, ..., key, are the key-rvpes in the
key-list. This is the meaning of the "key product space” model. The syntax given above was intended to facilitate mappings to
languages in which the notion of association to a "record-value" is foreign.

2. Following Note 1, the Table generator could be defined (see 9.1.3) by:
type table (key_type: type. element_type: type) = new set of (record(key: key_type, element: element_type)),
but only the characterizing operations Equal and Empty would be derived; all the others are praper to the table datatype. Changing
“set” to "bag” or "sequence” does not change the situation. The table datatype uses the heterogeneous character of the "record" to
distinguish the roles of "key" and “element”, but it defines the role of the key, and that definition is the distinguishing character of
the table datatype. :

3. Unlike array datatypes, in a value of a table datatype it is not required that an element value be present for every possible
value of the key datatype. This gives rise to subtle issues, such as: Can one model a Table as a complete mapping from the key
product space into choice (state(present. absent)) of (present: elemeni-type, absent: void)? This would mean that Not(IsPresent(T,
k)) implies Select(T.k) = nil. Is "not present” different from "present with value nil"? This detail is unimportant to understanding
the datatype. Neither answer conflicts with the characterizing operations given above, which don’t define Select(T.k) when IsPre-
sent(T k) = false.
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8.5  Defined Datatypes

A defined datatype is a reference to a datatype defined by a rype-declaration (see 9.1). Itis denoted syntactically by
a defined-type, with the following syntax:

defined-type = type-identifier [ "(" actual-parameter-list ")" | .

type-identifier = identifier .

actual-parameter-list = actual-parameter { "," actual-parameter } .

actual-parameter = value-expression | type-specifier .

The rype-identifier shall be the type-identifier of some type-declaration and shall refer to the datatype or datatype gen-
erator thereby defined. The actual-parameters, if any, shall correspond in number and in type to the formal-parame-
ters of the rype-declaration. That is, each actual-parameter corresponds to the formal-parameter-name in the corre-
sponding position in the formal-parameter-list. If the formal-parameter-type is a type-specifier, then the actual-pa-
rameter shall be a value-expression designating a value of the datatype specified by the rype-specifier. If the formal-
parameter-type is "type”, then the actual-parameter shall be a datarype and shall have the properties required of that
parametric datatype in the generator-declaration.

The type-declaration identifies the type-identifier in the defined-rype with a single datatype. a family of datatypes, or
a datatype generator. If the rype-identifier designates a single datatype, then the defined-rype refers to that datatype.
If the rype-identifier designates a datatype family, then the defined-type refers to that member of the family whose val-
ue space is identified by the rype-definition after substitution of each actual-parameter for all occurrences of the cor-
responding formal-parameter. If the type-identifier designates a datatype generator, then the defined-rype designates
the datatype resulting from application of the datatype generator to the actual-parameters, that is, the datatype whose
value space is identified by the rype-definition after substitution of each actual-parameter for all occurrences of the
corresponding formal-parameter. In all cases, the defined-datatype has the values, properties and characterizing op-
erations defined, explicitly or implicitly, by the datatype or generator declaration.

When a defined-type occurs in a rype-declaration, the requirements for its parameters are as specified by clause 9.1.
In any other occurrence of a defined-type, no actual-parameter shall be a parametric-value or a parametric-type.

9, Declarations

This draft International Standard specifies an indefinite number of generated datatypes, implicitly. as recursive appli-
cations of the datatype generators to the primitive datatypes. This clause defines declaration mechanisms by which
new datatypes and generators can be derived from the datatypes and generators of Clause 8, named and constrained.
It also specifies a declaration mechanism for naming values.

NOTE - This clause provides the mechanisms by which the facilities of this draft International Standard can be extended to
meet the needs of a particular application. These mechanisms are intended to facilitate mappings by allowing for definition of
datatypes and subtypes appropriate to a particular language, and to facilitate defintion of application services by allowing the defi-
nition of more abstract datatypes.

9.1 Type Declarations
A type-decluration defines a new type-identifier 10 refer to a datatype or a datatype generator. A datatype declaration
maty be used to accomplish any of the following:
+ (o rename an existing datatype or name an existing datatype which has a complex syntax. or
« as the syntactic component of the definition of a new datatype, or
+ as the syntactic component of the definition of a new datatype generator.
Syntax:
type-declaration = “"type" type-identifier [ "(* formal-parameter-list ")" ]
"=" [ "new" ] type-definition .
type-identifier = identifier .
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formal-parameter-list = formal-parameter { *" formal-parameter } .
formal-parameter = formal-parameter-name " formal-parameter-type .
formal-parameter-name = identifier .

formal-parameter-type = type-specifier | "type" .

type-definition = type-specifier .

parametric-value = formal-parameter-name .

parametric-type = formal-parameter-name .

Every formal-parameter-name appearing in the formal-parameter-list shall appear at least once in the rype-definition.
Each formal-parameter-name whose formal-parameter-type is a type-specifier shall appear as a paramerric-value and
each formal-parameter-name whose Jormal-parameter-type is "type" shall appear as a parametric-rype. Except for
such occurrences, no value-expression appearing in the type-definition shall be a parametric-value and no type-spec-
ifier appearing in the rype-definition shall be a parametric-type.

The rype-identifier declared in a rype-declaration may be referred in a subsequent use of a defined-rype (see 8.5). The
formal-parameter-list declares the number and required nature of the actual-parameters which must appear in a de-
fined-type which references this type-identifier. A defined-type which réferences this rype-identifier may appear in an
alternative-type of a choice-type or in the element-type of a pointer-type in the type-definition of this or any preceding
fype-declaration. In any other case, the rype-declaration for the type-identifier shall appear before the first reference
to it in a defined-rype.

No rype-identifier shall be declared more than once in a given context,

What the rype-identifier is actually declared to refer to depends on whether the keyword "new” is present and whether
the formal-parameter-rype " type" is present.

9.1.1 Renaming declarations

A type-declaration which does not contain the keyword "new" declares the type-identifier to be a synonym for the tvpe-
definition. A defined-rype referencing the type-identifier refers to the LI datatype identified by the type-definition, after
substitution of the actual parameters for the corresponding formal parameters.

9.1.2 New datatype declarations

A type-declaration which contains the keyword "new" and does not contain the formal-parameter-rype " type" is said
to be a datatype declaration. It defines the value-space of a new LI datatype, which is distinct from any other LI
datatype. If the formal-parameter-list is not present. then the type-identifier is declared to identify a single L1 datatype.
If the formal-parameter-list is present, then the rype-identifier is declared to identify a family of datatypes parame-
trized by the formal-parameters.

The type-definition defines the value space of the new datatype (family) — there is a one-to-one correspondence be-
tween values of the new datatype and values of the datatype described by the rype-definition and the ordering, if any,
is maintained. The characterizing operations, and any other property of the new datatype which cannot be deduced
from the value space, shall be provided along with the type-decluration to complete the definition of the new datatype
(family). The characterizing operations may be taken from those of the datatype (family) described by the type-defi-
nition directly, or defined by some algorithmic means using those operations.

NOTE - The purpose of the "new" declaration is to allow both syntactic and semantic distinction between datatypes with iden-
tical value spaces. It is not required that the characterizing operations on the new datatype be different from those of the type-def-
inition. A semantic distinction based on application concemns too complex to appear in the basic characterizing operations is pos-
sible. For example, acceleration and velocity may have identical computational value spaces and operations (datatype "real”) but
quite different physical ones.

9.1.3 New generator declarations

A type-declaration which contains the keyword "new" and at least one Sformal-parameter whose Jormal-parameter-
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type is "type" is said to be a generator declaration. A generator declaration declares the rype-identifier to be a new
datatype generator parametrized by the formal-parameters and the associated value space construction algorithm to be
that specified by the rype-definition. The characterizing operations, and other properties of the datatypes resulting
from the generator which cannot be deduced from the value space, shall be provided along with the generator decla-
ration to complete the definition of the new datatype generator.

The formal-parameters whose formal-parameter-rype is "type" are said to be component datatypes. A generator dec-
laration shall be accompanied by a statement of the constraints on the component datatypes and on the values of the
other formal-parameters, if any.

9.2 Value Declarations

A value-declaration declares an identifier to refer to a specific value of a specific datatype. The syntax of a value-
declaration is:

value-declaration = "value" value-identifier ":" type-specifier "=" independent-value .
value-identifier = identifier .

The value-declaration declares the identifier value-identifier to denote that value of the datatype designated by the
type-specifier which is denoted by the given independent-value (see 7.5.1). The independeni-value shall (be interpret-
ed to) designate a value of the specified LI datatype, as required by Clause 8.

No independent-value appearing in a value-declaration shall be a parametric-value and no type-specifier appearing in
a value-declaration shall be a parametric-type.

93 Termination Declarations

A termination-declaration declares a termination-identifier to refer to an alternate termination common to multiple
procedures or procedure datatypes (see 8.3.3) and declares the collection of procedure arguments returned by that ter-
mination. :

termination-declaration = "termination" termination-identifier
["(" termination-argument-list ")"] .

termination-identifier = identifier .

termination-argument-list = argument { "," argument } .

argument = argument-name ™" argument-type .

argument-type = type-specifier .

argument-name = identifier .

The urgument-names of the urguments in a termination-argumeni-list shall be distinct. No termination-identifier shall
be declared more than once, nor shall it be the same as any rype-identifier.

The termination-decluration is a purely syntactic object. All semantics are derived from the use of the termination-
identifier as a termination-reference in a procedure or procedure datatype (see 8.3.3).

10. Derived Datatypes and Generators

This clause specifies the declarations for commonly occurring datatypes and generators which can be derived from the
datatypes and generators defined in Clause 8 using the declaration mechanisms defined in Clause 9. They are included
in this draft International Standard in order to standardize their designations and definitions for interchange purposes.

10.1 Defined datatypes
This clause specifies the declarations for a collection of commonly occurring datatypes which are treated as primitive

datatypes by some common progrinming languages, but can be derived from the datatypes and generators defined in
Clause 8.
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The template for definition of such a datatype is:

Description: prose description of the datatype.

Declaration: a rype-declaration for the datatype.

Parameters: when the defined datatype is a family of datatypes, identification of and constraints on the

parameters of the family,

Values: formal definition of the value space.

Value-syntax:  when there is a special notation for values of this datatype, the requisite syntactic
productions, and identification of the values denoted thereby.

Properties: properties of the datatype which indicate its admissibility as a component datatype of
certain datatype generators:

—  numeric or non-numeric,

ordered or unordered,

approximate or exact,

if ordered, bounded or unbounded.,

Operations: characterizing operations for the datatype.

I

The notation for values of a defined datatype may be of three kinds, dependin g on the rype-declaration:

1) If the datatype is declared to have a specific value syntax, then that value syntax is a valid notation for
values of the datatype, and has the interpretation given in this clause.

2) If the datatype is defined without the keyword new, then the syntax for explicit-values of the datatype
identified by the rype-definition is a valid notation for values of the defined datatype. That is. the value-
literal or composite-value appropriate to the equivalent datatype may be used.

3) Inall cases. a qualified-value is a valid notation for values of the defined datatype (see 7.5.1).

10.1.1 Switch

Description: Switch is a family of state datatypes, each of which comprises two distinguished but unordered values
with the characteristic operation Invert.

Declaration:
type switch (on-value, off-value) = new state (on-value, off-value);

Parameters: on-value, off-value are distinct value-identifiers.

Values: Each instance of a Switch datatype has two named values, each of which is designated by a unique value-
identifier and is distinct from the other value of the datatype.

Properties: unordered. exact, non-numeric.
Operations: Equal from State; Invert

Invert(x: switch (on-value, off-value)): switch (on-value, off-value) is defined by:
X Invert(x)
on-value off-value
off-value on-value

10.1.2 Cardinal
Description: Cardinal is the datatype of the cardinal or natural numbers.

Declaration:
type cardinal = range (0..) of integer;

Parameters: none.
Values: the non-negative subset of the value-space of datatype Integer.
Properties: ordered, exact, numeric, unbounded above, bounded below.
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Operations: all those of datatype Integer, except Negate (which is undefined everywhere).

10.1.3 Bit string
Description: Bit-string is the datatype of variable-length strings of binary digits.
Declaration:
type bitstring = new sequence of (bit);
Parameters: none.
Values: Each value of datatype bit-string is a finite sequence of values of datatype bit. The value-space comprises
all such values.
Value-syntax:
bit-string-literal = quote { bit-literal } quote .
bit-literal = "0" | "1" .
The bit-string-literal denotes that value in which the first value in the sequence is that denoted by the leftmost

bit-literal, the second value in the sequence is that denoted by the next bit-literal, etc. If there are no bit-literals
in the bit-string-literal, then the value denoted is the sequence of length zero.

Properties: ordered, exact, non-numeric, bounded below, unbounded above.

Operations: (Head. Tail, Append, Equal, Empty, IsSEmpty) from Sequence (8.4.4),
InOrder is application-defined.

NOTES
1. Bitstring is assumed to be a Sequence, rather than an Array, in that the values may be of different lengths.

2. That bitstring is ordered is presumed to be a useful property, and is therefore specified, even though no standard for the In-
Order function 1s appropriate.

10.1.4 Character string
Description: Characterstring is a family of datatypes which represent strings of symbols from standard character-sets.
Declaration:
type characterstring (repertoire: object_identifier) =
new sequence of (character (repertoire));
Parameters: repertoire is a "repentoire-identifier” (see 8.1.4).
Values: Each value of a characterstring datatype is a finite sequence of members of the character-set identified by
repertoire. The value-space comprises the collection of all such values.
Value syntax:
string-literal = quote { string-character } quote .
string-character = non-quote-character | added-character | escape-character .
non-quote-character = letter | digit | hyphen | special | apostrophe | space .
added-character- = <not defined by this draft Intemational Standard> .
escape-character = escape character-name escape .
character-name = identifier { identifier } .
Euach string-character in the string-literal denotes a single member of the character-set identified by reper-
toire, as provided in 8.1.4, The string-literal denotes that value of the characterstring datatype in which the
first value in the sequence is that denoted by the leftmost string-character, the second value in the sequence

is that denoted by the next string-character, etc. If there are no string-characters in the string-literal. then
the value denoted is the sequence of length zero,

Properties: ordered. exact, non-numeric, bounded below, unbounded above.

Operations: (Head, Tail, Append, Equal, Empty, IsEmpty) from Sequence (8.4.4),
InOrder is application-defined.
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NOTES

1. There is no general intemational standard for collating sequences, although certain international character-set standards re-
quire specific collating sequences. Applications which need the ordering on characterstring, and which share a character- set for
which there is no standard collating sequence, need to create a defined datatype or a repertoire-identifier which refers to the char-
acter-set and the agreed-upon collating sequence.

2. Characterstring is defined to be a Sequence, rather than an Array, to permit values to be of different lengths.

10.1.5 Modulo

Description: Modulo is a family of dataypes derived from Integer by replacing the operations with arithmetic opera-
tions using the modulus characteristic.

Declaration:
type modulo (modulus: integer) = new integer: range(0..modulus)

Parameters: modulus is an integer value, such that 1 < modulus. designated the modulus of the Modulo datatype.
Values: all Integer values v such that 0 < v and v < modulus.

Properties: unordered, exact, numeric.

Operations: Equal, Add. Multiply, Negate.

Equal(x. y: modulo(modulus)): boolean = integer.Equal(
integer.Remainder(x, modulus), inte ger.Remainder(y, modulus));

Add(x.y: modulo (modulus)): modulo(modulus) =
integer.Remainder( integer.Add(x,y), modulus).

Negate(x: modulo (modulus)): modulo (modulus) is the (unique) value y in the value space of
modulo(modulus) such that Add(x, y) =0.

Multiply(x,y: modulo (modulus)): modulo(modulus) =
integer.Remainder( integer.Multiply(x,y), modulus).

10.1.6 Currency

Description: Currency is a daratype representing monetary values exact to two decimal places. It is a generated
datatype derived from a scaled datatype by limiting the operations.

Declaration:
type currency = new scaled (10, 2);

Parameters: none.

Values: all rational values which are integral multiples of 0.01.
Properties: ordered, exact, numeric, unbounded.

Operations: (Equal, Add, Negate) from Scaled: ScalarMultiply.

Let scaled.Multiply() be the Multiply operation defined on scaled datatypes. Then:
ScalarMultiply(x: scaled(10, factor), y:eurrency): currency, where 0 < factor, = scaled.Multiply(x.y).

10.1.7 Interval

Description: Interval is a family of datatypes representing elapsed time in seconds or fractions of asecond (as opposed
to Date-and-Time, which represents a point in time, see 8. 1.6). Itis a generated datatype derived from a
scaled datatype by limiting the operations.

Declaration:
type interval(radix: integer, factor: integer) = new scaled (radix, fuctor);

Parameters: Radix is a positive integer value, and factor is an integer value.

Values: all values which are integral multiples of radix{ /2€r).
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Properties: ordered. exact, numeric, unbounded.
Operations: (Equal, Add, Negate) from Scaled; ScalarMultiply.

Let scaled.Multiply() be the Multiply operation defined on scaled datatypes. Then:
ScalarMultiply(x: scaled(r f), y: interval(r f)): interval(r f) = scaled.Multiply(x.y).
EXAMPLE - interval(10, 3) is the datatype of elapsed time in milliseconds.

10.1.8 Octet
Description: Octet is the datatype of arrays of exactly 8 binary digits, as used for private encodings.
Declaration:
type octet = array (1..8) of (bit);
Parameters: none.

Values: Each value of datatype Octet is an indexable sequence of 8 bit-values, i.e. Os and 1s. The value-space com-
prises all 256 such values.

Properties: unordered, exact, non-numeric, finite.
Operations: (Equal, Select, Replace) from Array.

NOTE - Octet is a common datatype in communications protocols.

10.1.9 Private

Description: A Private datatype represents an application-defined value-space and operation set which are intention-
ally concealed tfrom certain processing entities.

Declaration:
type private(size: cardinal) = new array (1..size) of (bit);

Parameters: Size shall have a positive integer value,

Values: application-defined.

Properties: unordered. exact, non-numeric.

Operations: none.

NOTES
1. There is no denotation for a value of a Private datatype.

2. The purpose of the Private datatype is to provide a means by which:
a) anobject of a non-standard datatype, having a complex intemnal structure, can be passed between two par-
ties which understand the type through a standard-conforming service without the service having to inter-
pret the internal structure, or
b)  values of a datatype which is meaningless to all parties but one, such as "handles”, can be provided to an
end-user for later use by the knowledgeable service, for example, as part of a package interface.
In either case, the length and ordering of the bits must be properly maintained by all intermediaries. In the former case, the Private
datatype may be encoded by the provider (or his marshalling agent) and decoded by the recipient (or his marshalling agent). In the
latter case the Private datatype will be encoded and decoded only by the knowledgeable agent, and all others, including end-users.
will handle it as a bit-array.

10.1.10 Object-Identifier

Description: Object-identifier is the datatype of "object identifiers”, i.e. values which uniquely identify objects in a
(Open Systems Interconnection) communications protocol, using the formal structure defined by Abstract
Syntax Notation One (ISO 8824:1989),

Declaration:
type object_identifier = new sequence of (object_identifier_component): size(1..*);
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type object_identifier_component = new integer: range(0..*);

Parameters: none.

Values: The value space of datatype object_identifier_component is isomorphic to the cardinal numbers (10.1.2), but
the meaning of each value is determined by its position in an object-identifier value.
The value-space of datatype object-identifier comprises all non-empty finite sequences of object-identifier-
component values. The meaning of each object_identifier_component value within the object-identifier val-
ue is determined by the sequence of values preceding it, as provided by ISO 8824:1989 (Abstract Syntax No-
tation One). The sequence constituting asingle value of datatype object-identifier uniquely identifies an ob-
Jject.

Value syntax:
object-identifier-value = “{* object-identifier-component-list )" .
object-identifier-component-list = object-identifier-component-value

{ object-identifier-component-value } .

object-identifier-component-value = nameform | numberform | nameandnumberform .
nameform = identifier .
numberform = number .
nameandnumberform = identifier “(* numberform e,

An object-identifier-value denotes a value of datatype object-identifier. An object-identifier-component-val-
ue denotes a value of datatype object-identifier-component. A value-identifier appearing in the numberform
shall refer to a non-negative integer value. In all cases, the value denoted is that prescribed by ISO 8824:1989
Abstract Syntax Notation One.

Properties: unordered, exact, non-numeric.
Operations on object-identifier-component: Equal from Integer;
Operations on object-identifier: Append from Sequence:
Equal, Length, Detach, Last.
Length(x: object-identifier): integer is the number of object-identifier-component values in the sequence x;

Detach(x: object-identifier): object-identifier, where Length(x) > 1, is the object-identifier formed by
removing the last object-identifier-component from the sequence x;

Last(x: object-identifier): object-identifier-component is the the relative object-identifier-component value
which is the last element of the sequence x;

Equal(x.y: object-identifier): boolean =
if Not(Length(x) = Length(y)) then false,
else if Not(ohject-idenliﬁer-componcm.Equ;u(Lasl{x), Last(y))) then false,
else if Length(x) = 1 then true,
else Equal(Detach(x), Detach(y));

NOTES

1. IsEmpty, Head and Tail from Sequence are not meaningful on datatype object-identifier. Therefore, Length and Equal are
defined here, although they could be derived by using the Sequence operations.

2. Object-Identifier is treated as a primitive type by many applications, but the mechanism of definition of its value space. and
the use of that mechanism by some applications, such as Directory Services for OS], requires the values to be lists of an accessible
clement datatype (object-identifier-component).

10.1.11 Distinguished-Name

Description: Distinguished Name is the datatype of the external names of objects in ISO 777 Directory Services for
Osl.

Declaration: _
type distinguished-name-component = new characterstring(VisibleString);
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type distinguished-name = sequence of (distinguished-name-component);
value ROOT: distinguished-name = ();

Parameters: none.

Values: The value space of datatype distinguished-name-component comprises all characterstrings which meet the
syntactic requirements for component names of Distinguished-Names in ISO ??? Directory Services for OSI.
The value space of datatype distinguished-name comprises all non-empty finite sequences of distinguished-
name-components, in which each distinguished-name-component has a distinct meaning and that meaning
depends entirely on the sequence of distinguished-name-components which precedes it. The meaning of the
first distinguished-name-component in the sequence is dependent on the context in which it appears. In the
most global context, the meaning is defined by ISO ???. The value space is properly restricted at any given
time to those sequences which actually identify an object in the available OSI directories.

Properties: unordered, exact, non-numeric.
Operations on distinguished-name-component: Equal from CharacterString.

Operations on distinguished-name: Append from Sequence,
IsRoot, Equal, Detach, Last.

Detach(x: distinguished-name): distinguished-name is:
if there is only one distinguished-name-component in x, then the distinguished-name value ROOT: else
the value formed by removing the last distinguished-name-component from the sequence x;
IsRoot(x: distinguished-name): boolean = sequence.ISEmpty(x);
Last(x: distinguished-name): distinguished-name-component, where Not(IsRoot(x)), is the value which is
the last element of the sequence x;
Equal(x.y: distinguished-name): boolean =
if And(IsRoot(x), IsRoot(y)), then true;
else if Or(IsRoot(x), IsRoot(y)), then false;
else if distinguished-name-component.Equal(Last(x), Last(y)) then
Equal(Detach(x), Detach(y));
else false.

NOTE - Distinguished-Name is treated as a primitive type by many applications, but the mechanism of definition of its value
space, and the use of that mechanism by some applications, such as Directory Services for OSI, requires the values to be lists of an
accessible element datatype (distinguished-name-component).

10.2 Defined Generators

This clause specifies the declarations for a collection of commonly occurring datatype generators which can be derived
from the datatypes and generators appearing in Clause 8.

The template for definition of such a datatype generator is:

Description: prose description of the datatype generator.

Declaration: a type-declaration for the datatype generator.

Components: number of, and constraints on, the component-datatypes and other parameters used by the
generation procedure.

Values: formal definition of the resulting value space.

Properties: properties of the resulting datatype which indicate its admissibility as a component

datatype of certain datatype generators:
— ordered or unordered,
—  numeric or NoON-numeric,
—  approximate or exact,
- if ordered, bounded or unbounded.
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When the generator generates an aggregate datatype, the aggregate properties described in
clause 6.8 are also specified.

Operations: characterizing operations for the resulting datatype which associate to the datatype

generator. The definitions of operations have the form described in 8.1.

10.2.1 Stack

Description: Stack is a generator derived from Sequence by replacing the characterizing operation Append with the
characterizing operation Push. That is, the insertion operation (Push) puts the values on the beginning of the
sequence rather than the end of the sequence (Append).

Declaration:

type stack (element: type) = new sequence of (element):
Components: element may be any datatype.
Values: all finite sequences of values from the element datatype.

Properties: non-numeric, unordered, exact if and only if the element daatype is exact; aggregate properties from Se-
quence.

Operations: (IsEmpty. Equal, Empty) from List; Top, Pop, Push.
Top(x: stack (element)): element = sequence.Head(x).
Pop(x: stack (element)): stack (element) = sequence. Tail( x).

Push(x: stack (element), y: element): stack (element) is the sequence formed by adding the single value y to
the beginning of the sequence x.

10.2.2 Tree
Description: Tree is a generator which generates recursive list structures.

Declaration:
type tree (leaf: type) = new sequence of (choice( state(atom, list) ) of (
atom: leaf,
list: tree(leay)));

Components: leaf shall be any datatype.

Values: all finite recursive sequences in which every value is either a value of the leaf datatype. or a (sub-)iree itself.
Ultimately, every "terminal” value is of the leaf datatype.

Properties: unordered, non-numeric, exact if and only if the leaf type is exact;
the aggregate properties are those of Sequence.

Operations: (IsEmpty, Equal, Empty, Head, Tail) from Sequence; Join.
To facilitate definition of the operations, the datatype tree_member is introduced, with the declaration:

type tree_member(leaf: type) = choice( state(atom., list) ) of (atom: leaf, list: tree(lear));
tree_member(leaf) is then the element datatype of the sequence datatype underlying the tree datatype.

Join(x: tree(leaf), y: tree_member(leaf)): tree(leaf) is the sequence whose Head (first member) is the value Y.
and whose Tail is all members of the sequence x.

NOTE - Tree is an aggregate datatype which is formally an aggregate (sequence) of tree_members. Conceptually, tree i1s an
aggregate datatype whose values are aggregates of leaf values. In either case, it is proper to consider Tree a homogeneous aggregate.

10.2.3 Cyclic-Enumerated

Description: Cyclic-Enumerated is a generator which redefines the successor operation on an enumerated datatype,
so that the successor of the last value is the first value.

Declaration:
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type cyclic of (base: type) = new base;
Components: buse shall designate an enumerated datatype.
Values: all values v of the base datatype.
Properties: ordered, exact, non-numeric.
Operations: (Equal, InOrder) from the base datatype; Successor.

Let hase.Successor denote the Successor operation defined on the basedatatype; then:

Successor(x: cyclic of (base)): cyclic of (buse) is
if for all y in the value space of base, Or(Not(InOrder(x,y)), Equal(x,y)), then that value z in the value
space of base such that for all y in the value space of base, Or(Not(InOrder(y,z)), Equal(y.z));else
base.Successor(x).

11. Support of Datatypes

An information processing entity is said to supporr a L1 datatype if its mapping of that datatype onto some internal
datatype (see Clause 12) preserves the properties of that datatype as herein defined.

11.1  Support of equality

For a mapping to preserve the equality property, any two instances a, b of values of the internal datatype shall be con-
sidered equal if and only if the corresponding values a’, b" of the LI datatype are equal.

11.2  Support of ordering and bounds

For a mapping to preserve the ordering property, the ordering defined on the internal datatype shall be consistent with
the ordering defined on the LI datatype. That is, for any two instances a, b of values of the internal datatype, a < b shall
be true if and only if, for the corresponding values a’, b* of the LI datatype, a’ <b".

For a mapping to preserve the bounds, the internal datatype shall be bounded above if and only if the LI datatype is
bounded above, and the internal datatype shall be bounded below if and only if the LI datatype is bounded below.

NOTE - It follows that the values of the bounds must correspond.

11.3  Support of cardinality

For a mapping to preserve the cardinality of a finite datatype, the internal datatype shall have exactly the same number
of values as the LI datatype. For a mapping to preserve the cardinality of an exact, denumerably infinite datatype. there
shall be exactly one intemal value for every value of the LI datatype and there shall be no a priori limitation on the
values which can be represented. For a mapping to preserve the cardinality of an approximate datatype, it suffices that
it preserve the approximate property, as provided in 6.3.5.

NOTES

1. There may be accidental limitations on the values of exact, denumerably infinite datatypes which can be represented, such
as the total amount of storage available to a particular user, or the physical size of the machine. Such a limitation is not an intentional
limitation on the datatype as implemented by a particular information processing entity, and is thus not considered to affect support.

2. An entity which a priori limits integer values to those which can be represented in 32 bits or characterstrings to a length of
256 characters, however, is nof considered to support the mathematically infinite Integer and CharacterString datatypes. Rather
such an entity supports describable subtypes of those datatypes (see 8.2).

11.4  Support for the exact or approximate property

To preserve the exact property, the mapping between values of the LI datatype and values of the internal datatype shall
be 1-to-1.
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For an inward mapping to preserve the approximate property, the following shall hold:

Let C be the LI datatype and D be the corresponding intemnal datatype. Let M be the inward mapping from the value
space of C into the value space of D, and let M be the reverse inward mapping (see 12.3) from D into C. Then:
i) For any two values v| # v, in C, M(v) # M(vy), i.e. every value which is distinguishable in C must be dis-
tinguishable in D.
i) If, for any two values v, # v, in D, M(v,) = M(v,), then for all values x in D such thatlvy-xl<lvy- v, |,
M(x) = M(v)).
iii) If, for any two values vy and v, in D, M(v)) # M(vy), then for all values x in D such thatlv - vol<lv)-xlI,
M(x) # M(v,).

NOTE - the above rules permit the internal datatype to have more values than the L] datatype, i.e. a finer degree of approxi-
mation, as long as the mapping maintains consistency in the approximation.

For an outward mapping to preserve the approximate property, the mapping shall be 1-to-1 and onto.

11.5  Support for the numeric property

There are no requirements for support of the numeric property. Support for the numeric property is a requirement on
representations of the values of the datatype, which is outside the scope of this draft International Standard.

12. Mappings

This clause defines the general form of and requirements for mappings between the datatypes of a programming or
specification language and the LI datatypes.

generators. The primitive datatypes of a language are those object types which are considered in the language seman-
tics to be primitive, that is, not to be generated from other internal datatypes. The datatype generators of a language
are those language constructs which can be used to produce new datatypes, objects with new datatypes, more elaborate
information structures or static inter-object relationships.

This draft Intemnational Standard defines a neutral language for the formal identification of precise semantic datatype
notions — the LI datatypes. The notion of a mapping between the internal datatypes of a language and the LI datatypes
is the conceptual identification of semantically equivalent notions in the two languages. There are then two kinds of
mappings between the intemal datatypes of a language and the LI datatypes:

* amapping from the internal datatypes of the lan guage into the LI datatypes, referred to as an ourward mup-
ping, and
* amapping from the LI datatypes to the internal datatypes of the language, referred to as an inward mapping.

This draft International Standard does not specify the precise form of a mapping, because many details of the form of
amapping are language-dependent. This clause specifies requirements for the information content of inward and out-
ward mappings and conditions for the acceptability of such mappings.

NOTES

1. Mapping, in this sense, does not apply to program modules or service specifications directly, because they manipulate spe-
cific object-types, which have specific datatypes expressed in a specific language or languages. The datatypes of a program module
or service specification can therefore be described in the LI datatypes language directly, or inferred from the inward and outward
mappings of the language in which the module or specification is written.

2. The companion notion of conversion of values from an internal representation to a neutral representation associated with L]
datatypes is not a part of this draft International Standard, but may be a part of standards which refer to this draft International Stan-
dard.
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12.1 Outward Mappings

An outward mapping for a primitive internal datatype shall identify the syntactic and semantic constructs and relation-
ships in the language which together uniquely represent that internal datatype and associate the internal datatype with
a corresponding LI datatype expressed in the formal language defined by Clauses 7 through 10.

An outward mapping for an internal datatype generator shall identify the syntactic and semantic constructs and rela-
tionships in the language which together uniquely represent that internal datatype generator and associate the internal
datatype generator with a corresponding LI datatype generator expressed in the formal language defined in this draft
International Standard. .

The collection of outward mappings for the datatypes and datatype generators of a language shall be said to constitute
the outward mapping of the language and shall have the following properties:

i) to each primitive or generated internal datatype, the mapping shall associate a single corresponding LI
datatype; and

ity for each internal datatype, the mapping shall specify the relationship between each allowed value of the in-
ternal datatype and the equivalent value of the corresponding LI datatype; and

iif) for each value of each LI datatype appearing in the mapping, the mapping shall specify whether any value F)f
any internal datatype is mapped onto it, and if so, which values of the internal datatypes are mapped onto it.

NOTES

1. There is no requirement for a primitive internal datatype to be mapped to a primitive LI datatype. This draft [nternational
Standard provides a variety of conceptual mechanisms for creating generated LI datatypes from primitive or previously-created
datatypes, which are, inter alia, intended to facilitate mappings.

2. An internal datatype constructed by application of an internal datatype generator to a collection of intenal component
datatypes will be implicitly mapped to the LI datatype generated by application of the mapped datatype generator to the mapped
component datatypes. In this way, property (i) above may be satisfied for internal generated datatypes.

3. The conceptual mapping to LI datatypes may not be either 1-to-1 or onto. A mapping must document the anomalies in the
identification of internal datatypes with LI datatypes, specifically those values which are distinct in the language, but not distinct in
the LI datatype, and those values of the LI datatype which are not accessible in the language.

4. Among other uses, an outward mapping may be used to identify an internal datatype with a particular LI datatype in order
to require operation or representation definitions specified for LI datatypes by another standard to be properly applied to the internal
datatype.

5. An outward mapping may be used to ensure that interfaces between two program units using a common programming lan-
guage are properly provided by a third-party service which is ignorant of the language involved.

12.2 Inward Mappings

An inward mapping for a primitive LI datatype, or a single generated LI datatype, shall associate the LI datatype with
a single internal datatype, defined by the syntactic and semantic constructs and relationships in the language which
together uniquely represent that internal datatype. Such a mapping shall specify limitations on the parameters of any
LI datatype family which exclude members of that family from the mapping. Different members of a single LI
datatype family may be mapped onto dissimilar internal datatypes.

An inward mapping for a LI datatype generator shall associate the LI datatype generator with an internal datatype gen-
erator, defined by the syntactic and semantic constructs and relationships in the language which together uniquely rep-
resent that internal datatype generator.  Such a mapping shall specify limitations on the component datatypes of any
LI datatype generator which exclude corresponding classes of generated datatypes trom the mapping. The same LI
datatype generator with different component datatypes may be mapped onto dissimilar internal datatype generators.

An inward mapping for a LI datatype shall associate the LI datatype with an internal datatype on which it is possible
to implement all of the characterizing operations specified for that LI datatype.

The collection of inward mappings for the LI datatypes and datatype generators onto the internal datatypes and
datatype generators of a language shall be said to constitute the inward mapping of the lunguage and shall have the
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following properties:

f)  for each LI datatype (primitive or generated), the mapping shall specify whether the LI datatype is supported
by the language, and if so, identify a single corresponding internal datatype; and

i) foreach LI datatype which is supported, the mapping shall specify the relationship between each allowed val-
ue of the LI datatype and the equivalent value of the corresponding internal datatype; and

iif) for each value of an internal datatype, the mapping shall specify whether that value is the image (under the
mapping) of any value of any LI datatype, and if so, which values of which LI datatypes are mapped onto it.

NOTES

1. A LI generated datatype which is not specifically mapped by a primitive datatype mapping, and whose components are ad-
missible under the constraints on the datatype generator mapping, will be implicitly mapped onto an internal datatype constructed
by application of the mapped internal datatype generator to the mapped internal com ponent datatypes.

2. When a LI datatype, primitive or generated, is mapped onto a language datatype, whether explicitly or implicitly by map-
ping the generators, the associated internal datatype must support the semantics of the L] datatype. The proof of this support is the
ability to perform the characterizing operations on the internal datatype. It is not necessary for the language to support the charac-
terizing operations directly (by operator or built-in function or anything the like), but it is necessary for the characterizing operations
to be conceptually supported by the internal datatype. Either it should be possible to write procedures in the language which perform
the characterizing operations on objects of the associated internal datatype, or the language standard should require this support in
the further mappings of its internal datatypes, whether into representations or into programming languages.

3. The conceptual mapping onto internal datatypes may not be either 1-to-1 or onto. A mapping must document the anomalies
in the association of internal datatypes with LI datatypes, specifically those values which are distinct in the LI datatype, but not
distinct in the language, and those values of the internal datatype which are not accessible through interfaces using LI datatypes.

4. An inward mapping to a programming language may be used to ensure that an interface between two program units specified
in terms of LI datatypes can be properly used by programs written in that language, with language-specific, but nor application-
specific, software tools providing conversions of information units.

12.3 Reverse Inward Mapping

An inward mapping from a LI datatype into the internal datatypes of a language defines a particular set of values of
internal datatypes to be the image of the LI datatype in the language. The reverse inward mapping for a L1 datatype
maps those values of the internal datatypes which constitute its image to the corresponding values of that LI datatype
using the correspondence which is established by the inward mapping. For the reverse inward mapping to be unam-
biguous, the inward mapping of each LI datatype must be 1-to-1. This is formalized as follows:

) ifais a value of the LI datatype and the inward mapping maps a to a value ¢’ of some internal datatype. then
the inward mapping shall not map any value b of the same LI datatype into &', unless b = a; and

i) ifa is a value of a LI datatype and the inward mapping maps « to a value ¢’ of some internal datatype. then
the reverse inward mapping maps «’ to ¢; and

ii) if cisavalue of a LI datatype which is excepted from the domain of the inward mapping, i.e. maps to no value
of the corresponding internal datatype, then there is no value ¢' of any internal datatype such that the reverse
inward mapping maps ¢’ to c.

The reverse inward mapping for a language is the collection of the reverse inward mappings for the LI Datatypes.

NOTES

I. When an interface between two program units is specified in terms of LI datatypes. it is possihle for the interface to be uti-
lized by program units written in different languages and supported by a service which is ignorant of the languages involved. The
inward mapping for each language is used by the programmer for that program unit to select appropriate internal datatypes and val-
ues to represent the information which is used in the interface. Information is then sent by one program unit, using the reverse in-
ward mapping for its language to map the internal values to the intended values of the LI datatypes, and received by the other pro-
gram unit, using the inward mapping to map the LI datatype values passed into suitable internal values. The actual transmission of
the information may involve three software tools: one to perform the conversion between the sender form and the interchange form,
automating the reverse inward mapping, one to transmit the interchange form based on LI datatypes, and one to perform the con-
version between the interchange form and the receiving intemnal form, automating the inward mapping. None of these intermediate
tools depends on the particular interface being used. Thus, it is possible to implement an arbitrary interface using LI datatypes, in
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any programming language which supports those datatypes without interface-specific tools.

2. The reverse inward mapping for a language does not have useful formal properties. The same internal value can be mapped
to several different values, as long as the different values belong to different LI datatypes. It is the per-datatype reverse inward
mapping which is useful.
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Annex A. [Informative]
Character-Set Standards

The following is a partial list of International Standards which define character-sets and collating sequences. Character
sets defined by such standards are suitable for reference by a "repertoire-identifier” in the Character and Character-
String datatypes.

ISO 646: ISO seven-bit coded character set for information interchange
ISO 2375: Procedures for registration of escape sequences
ISO 4873: ISO eight-bit code for information interchange -
structure and rules for implementation
ISO 6093: Representation of numeric values in character strings
(defines character sets for numeric strin gs)
DIS 6862: Mathematical coded character set for bibliographic information interchange
ISO 6937: Coded character sets for text communication

ISO 8824:1989  Abstract Syntax Notation One
(defines interchange character sets as explicit subsets of ISO 646)

ISO 8859: Eight-bit single-byte coded graphic characters
DIS 10646: Multiple-octet coded character set

(It is presumed that the identifiers for specific subsets of ISO 10646 which are defined in ISO
10646 are effectively “registered” thereby for purposes of reference within the Character and
Character-string datatypes until a more formal character-set registration process is undertaken.
That is,

( iso standard 10646 latin I
for example, is a valid reference to the Latin character-set defined in ISO 10646.)
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Annex B. [Informative]

Recommended Placement of Annotations

An annotation (see 7.4) is a descriptive information unit attached to a rype-specifier, or a component datatype, or a
procedure (value), to characterize some aspect of the representations, variables, or operations associated with values
of the datatype, or the component or procedure. in some particular context. This draft International Standard does not
specify the syntax or semantics of any specific annotations. Common conventions for the placement of annotations.
however. makes it easier for the reader to determine the object to which an annotation is intended to apply and the
context in which it is intended to apply. This annex contains guidelines for placement of annotations in the syntax and
corresponding distinctions in the scope of application of the annotations, as required by clause 7.4.

Use of the recommended placement conventions improves the compatibility of usages and implementations of the LI
datatypes. to the extent that they involve such annotations. Use of additional or substitute conventions by other stan-
dards and implementations is consistent with this draft International Standard.

B.1  Type-attributes

A type-attribute is an annotation attached to a type-specifier, and in particular to the rype-specifier of a rype-defini-
tion, which characterizes some aspect of the values or variables of the datatype specified, or the operations on those
values or variables, in some particular context. Type-attributes may include, among others:

« limitations on. or identification of parameters describing, the value-space of the datatype as implemented, or
as used in a particular context,

- constraints on, or specifications for. representation of the values of the datatype.

- constraints on, or specifications for, the operations which may be performed on values of the datatype,

« identification of procedures or parameters to be used for conversion of values of the datatype for a particular
interchange or external medium.

Type-attributes should immediately follow the rype-specifier for the datatype to which they are intended to apply. In
particular, an annotation which applies to the element-type of an aggregate-type should appear inside the parentheses.
while an annotation which applies to the aggregate-type should appear outside the parentheses.

B.2  Component-attributes

A component-attribute is an annotation attached to a component of a generated-type which characterizes some as-
pect of the operations on, or representations of, values in that component of the particular generated datatype (i.e. val-
ues used in that role, as distinct from general limitations on values of the datatype of the component) in some particular
context. Component-attributes may include. among others:

« any of the attribute notions given in B.1, but restricted to the component,
» specification of the ordering, representation or alignment of the component in an aggregate structure,
» limitations on access to the component.
Component-attributes should immediately precede the component rype-specifier for the component to which they are

intended to apply. That is, in a record-rype, they should precede the field-type; in a choice-type. they should precede
the alternative-rype; and in a homogeneous aggregate-rype, they should precede the element-type.

B.3 Procedure-attributes

A procedure-attribute is an annotation attached to a procedure-declaration which characterizes some aspect of the
invocation or use of the named procedure, in some particular context. Procedure-attributes may include, among others:
- specification of the location of its instantiations,

« specification of the procedure interface.
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Procedure-attributes should precede the keyword “procedure” or follow the entire type-specifier. In addition, proce-
dure-attributes should be distinguishable from type- or component- attributes by their text,

B.4  Argument-attributes

An argument-attribute is an annotation attached to an argument o a procedure-declaration or procedure-type which
characterizes some aspect of the operations on, or representations of, values passed through that argument of the par-
ticular procedure or procedure datatype (as distinct from general limitations on the datatype which is the argument-
type) in some particular context. Argument-attributes may include, among others:

* any of the attribute notions given in B.1, but restricted to the use of the datatype in this argument,
* specification of the means of passing the argument.

Argument-attributes should immediately precede the argument or return-ar gument which they are intended to describe
(in a procedure-type, a procedure-declaration, or a lermination-declaration).
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Annex C. [Informative]

Implementation Notions of Datatypes

This annex defines a collection of datatype notions excluded from this draft International Standard, because they were
deemed to be notions of implementation or representation of datatypes, rather than conceptual notions.

The values of the datatypes defined by this draft International Standard are abstract objects conforming to a set of given
rules. Each computer system has its own internal datatypes, whose value spaces are (typically fixed-length) sequenc-
es of n distinguished symbols (most commonly, the two symbols "0" and "1"), and whose characterizing operations
are the instructions built into the computer system. A representation of a L1 datatype is a mapping from the value
space of the LI datatype to a computer system value space.

In addition to values of datatypes. a computer system has the notion of variable — an object to-which a value of some
datatype or datatypes is dynamically associated. (In a certain sense, a variable is an implementation of a value of a
pointer datatype (8.3.2).) The characterizing operations defined by this draft International Standard are abstract com-
putational notions of functions applicable to the values of datatypes, used to identify the semantics of the datatypes.
In a computer system, the operations on representations of those values and variables containing those representations
are actually executed.

The characteristics of representations, variables, and the execution of operations are beyond the scope of this draft In-
ternational Standard. Nonetheless, because these characteristics are inextricably mixed with the datatype notions in
many programming languages, and because these characteristics are important to many applications of this draft In-
ternational Standard. this draft International Standard provides for their inclusion in rype-specifiers and in datatype-
and procedure-declarations via annotations (see 7.4). An annotation is a descriptive information unit attached to a
datatype. or a component of a datatype, or a procedure (value), to characterize some aspect of the representations. vari-
ables, or operations associated with values of the datatype, or the component or procedure, in some particular context.

This annex identifies notions for which such annotations may be appropriate and even necessary for certain language
mappings. This draft International Standard does not specify the syntax or semantics of any specific annotations 0
describe implementation notions. The development of standards for such annotations may be appropriate, but is out-
side the scope of this draft International Standard.

C.1 Size

Size is a type-attribute specifying the number (and type) of storage units required or alloted to represent values of the
datatype. [t may also specify whether the number of storage units is constant over all values of (this instance of) the
datatype, or varies according to the requirements of the particular value to be represented.

Size may apply to any datatype, except procedure datatypes.

NOTE — If there is a limitation on the maximum size of representable values, it implies that there is a imitation on the value
space of this datatype, which may be better documented by appropriate subtype specifications (see 8.2).

C.2 Mode

Mode is a type-attribute which specifies the radix of representation of a numeric datatype, the representation ot the
digits. the representation of the decimal-point. if any, and the sign representation and placement conventions. Such
notions as “two’s complement binary™, “packed decimal with trailing sign™ and the numeric representation formats of
ISO 6056 are examples of “modes™.

Mode applies only to numeric datatypes, principally Integer and Scaled.

C.3  Floating-Point

Floating-point is a type-attribute which specifies that a numeric datatype has a floating-point representation and the
characteristics of that representation.
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Following DIS 10967-1, a floating-point representation of the value v has the form:
v=S+M - RE
where
R is the radix of the representation;
E is the exponent;, and
S is the sign, i.e. eitherS=1orS=-1;
M is the mantissa, either zero or a value of the datatype scaled(radicx, precision):range(d,1).

This representation can be characterized by five parameters:
radix and precision, from above;
emin and emax, with the requirement: emin < E < emax; and

denorm. with the requirement that denorm = “false™ implies d = R™! and denorm = “true”™ implies d = RPrecision
Floating-point applies only to numeric datatypes, principally Real and Complex.

C.4 Fixed-Point

Fixed-point is a type-attribute which specifies that a numeric datatype has a fixed-point representation and the charac-
teristics of that representation.

A fixed-point representation has the form:
v=S x M x R?
where
R is the radix of the representation;
S is the sign, i.c. eitherS=lorS=-1;
M is the mantissa, a value of the datatype Integer;
P is the precision. ‘
This representation can be characterized by the radix and precision parameters,
Fixed-point applies only to numeric datatypes, principally Scaled.
C.5 Tag

Tag is a type-attribute which specifies whether and how the tag-value of a value of a value of a choice datatype is rep-
resented.

Tag applies only to choice datatypes or their generators.

C.6  Discriminant
Descriminant specifies the source of the discriminant value of a Choice datatype.

Discriminant applies only to choice datatypes or their generators.

C.7  Sequence

Sequence attributes describe the order of presentation of the component values of a value of an aggregate datatype.
Their values and meaning depend on the aggregate datatype involved.

Sequence attributes apply only to aggregate datatypes or to their generators.

C.8 Packed

Packed and “unpacked” or “aligned” are type-attributes which characterize the Juxtaposition of all components of 2
value of an aggregate datatype. They distinguish between the optimization of space and the optimization of access-
time,

Packed attributes apply only to aggregate datatypes or to their generators.
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C.9 Alignment

Alignment is a component-attribute that characterizes the forced alignment of the representations of values of a given
component datatype on storage-unit boundaries. It implies that "padding" to achieve the necessary alignment may be
inserted in the representation of the aggregate datatype which contains the annotated component.

C.10 Form

Form is a type-attribute which specifies that one datatype has the same representation as another. In particular, form
permits an implementation to specify thata primitive LI datatype has a visible information structure, or that a particular
generated datatype has a primitive implementation.

Form may apply to any datatype.
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Annex D. [Informative]

Syntax for the Common Interface Definition Notation

The syntax used in this draft International Standard is a subset of the syntax prescribed for the Interface Definition
Notation (IDN) in the Language-Independent Procedure Calling standard. This annex contains the the complete IDN
syntax, for reference only. A conforming IDN text is an interface, whereas a conforming LI datatype specification is
arype-specifier. In addition, 2 mapping, as provided in Clause 12 may contain declarations.

In each production below, the numbers to the right of the production identify the page numbers on which the syntax
rule appears in this draft International Standard.

Character-set productions:

letter = "a" | "b" | "¢" | "d" ["e" | "f" [ "g" | "h" | "i"| 1% ] m

S el b R BT R 13
digit = 0N [%27 ] 8° | 4¥ | *57] 6" | ~7" B | "9" . 13
spadlals "CTY PV T PR PSTE R T 13
hyphen= "_" . 13
quote = "™ | 13
apostrophe = " | 13
space= " " | 13
escape = "I" . 13
added-character = <not defined by this draft Intemational Standards . 13, 21, 52

NOTE - Lexical productions are always subject to minor changes from implementation to implementation, in or-
der to handle the vagaries of available character-sets.

Productions of the IDN used in this draft Intemational Standard:

actual-parameter = value-expression | type-specifier . 48
actual-parameter-list = actual-parameter { "" actual-parameter } . 48
aggregate-type = record-type | set-type | sequence-type | bag-type | array-type

| table-type . 39
alternative = tag-value-list ":" alternative-type . 33
alternative-list = alternative { "," alternative } [ default-alternative | . 33
alternative-type = type-specifier . 33
alternative-value = independent-value . - 34
annotation = "<" annotation-label ":" annotation-text ">" . 15
annotation-label = object-identifier-component-list . 15
annotation-text = <not defined by this draft International Standard> . 15
any-character = bound-character | added-character | escape-character . 14, 21
argument = argument-name ":" argument-type . 36, 50
argument-declaration = direction argument . 36
argument-list = argument-declaration { "," argument-declaration ). 36
argument-name = identifier . 36,50
argument-type = type-specifier . 36, 50
array-type = "array” "(" index-type-list ")" "of" "(" element-type ")" . 44
array-value = value-list . 45
bag-type = "bag" "of" "(" element-type ")" . 42
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bag-value = empty-value | value-list . 42
base = type-specifier . 30, 31,32
bit-literal = "0" | "1" . 23,52
bit-string-literal = quote { bit-literal } quote . 52
bit-type = "bit" . 23
boolean-literal = "true" | “false" . 19
boolean-type = "boolean” . 19
bound-character = non-quote-character | quote . 13, 21
character-literal = "" any-character "™ . 14, 21
character-name = identitier { identifier } . 14, 21, 52
character-type = "character” [ "(" repertoire-list ")" ] . 20
choice-type = "choice" "(" tag-type ")" "of" "(" altemnative-list ")" . 33
choice-value = "(" tag-value "" alternative-vaiue ")" . 34
complex-literal = "(" real-part ",” imaginary-part ")" . 28
complex-type = "complex" [ "(" radix "," factor ")" ] . 27
component-reference = field-identifier | ™" . 16
composite-value = choice-value | record-value | set-value | sequence-value

| bag-value | array-value | table-value . 16
default-alternative = "default” ":" alternative-type . 33
defined-type = type-identifier ["(" actual-parameter-list ")" ] . 48
dependent-value = primary-dependency { "." component-reference } . 16
derived-value = string-literal | object-identifier-value . 16
digit-string = digit { digit } . 14
direction = "in" | "out" | "inout" . 36
element-type = type-specifier . 35, 41,42, 43, 44, 46
element-value = independent-value . 46
empty-value = "(" ")" . 41,42, 43
enumerated-literal = identifier . ' 20
enumerated-type = "enumerated” "(" enumerated-value-list ")" . 20
enumerated-value-list = enumerated-literal { "," enumerated-literal } . 20
escape-character = escape character-name escape . 14,21, 52
excluding-subtype = base " "excluding" "(" select-list )" . 31
explicit-subtype = base ":" "subtype" "(" subtype-definition ")" . 32
explicit-value = value-literal | composite-value | derived-value . 15
extended-literal = identifier . 31
extended-type = base "" "plus" "(" extended-value-list ")" . 31
extended-value = extended-literal | parametric-value . 31
extended-value-list = extended-value { "," extended-value } . 31
factor = value-expression . 22,25, 26, 27
field = field-identifier ":" field-type . 40
field-identifier = identifier . 40
field-list = field { "" field } . 40
field-type = type-specifier . 40
field-value = field-identifier ":" independent-value . 40
field-value-list = "(" field-value { "," field-value } ")" . 40
formal-parameter = formal-parameter-name ":" formal-parameter-type . 49
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formal-parameter-list = formal-parameter { "" formal-parameter } . 49
formal-parameter-name = identifier . 49
formal-parameter-type = type-specifier | "type" . 49
generated-type = pointer-type | procedure-type | choice-type | aggregate-type . 33
identifier = letter { pseudo-letter }. 14
imaginary-part = real-literal . 28
independent-value = explicit-value | qualified-value | value-identifier | parametric-value . 15
index-lowerbound = value-expression . 44
index-type = type-specifier | index-lowerbound ".." index-upperbound . 44
index-type-list = index-type { "" index-type } . 44
index-upperbound = value-expression . 44
integer-literal = signed-number . 23
integer-type = "integer" . 23
key-list = key-type { "" key-type } . 46
key-type = type-specifier . 46
key-value-list = independent-value { "" independent-value } . 46
lowerbound = value-expression Jime 30, 31, 33
maximum-size = value-expression | ==, 32
minimum-size = value-expression . 32
nameandnumberform = identifier “* numberform “)* . 55
nameform = identifier . 55
non-quote-character = letter | digit | hyphen | special | apostrophe | space . 13, 21, 52
number = digit-string . 22,23
numberform = number . 55
object-identifier-component-list = object-identifier-component-value

{ object-identifier-component-value ). 55
object-identifier-component-value = nameform | numberform | nameandnumberform . 55
object-identifier-value = “{* object-identifier-component-list g e 55
ordinal-literal = number | 22
ordinal-type = "ordinal" . 21
parametric-type = formal-parameter-name . 49
parametric-value = formal-parameter-name . 16, 49
pointer-literal = "null" . 35
pointer-type = "pointer" "to" "(" element-type ")". 35
primary-dependency = field-identifier | argument-name . 16

primitive-type = boolean-type | state-type | enumerated-type | character-type

| ordinal-type | time-type | bit-type | integer-type | rational-type

| scaled-type | real-type | complex-type | void-type . 18
procedure-declaration = "procedure” procedure-identifier "(" [ argument-list ] )"

[ "returns” "(" retum-argument )" |

[ "raises” "(" termination-list ")" 1. 37
procedure-identifier = identifier . 37
procedure-type = "procedure” “(" [, argument-list 17"

[ "returns” "(" retum-argument ")" |

[ "raises” "(" termination-list ")" ]. 36
pseudo-letter = letter | digit | hyphen . 14
qualified-value = type-specifier "." explicit-value . 15
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radix = value-expression . 22, 25, 26, 27
range-subtype = base ":" "range" "(" select-range ")". 30
rational-literal = signed-number [ "/* number ] . 24
rational-type = "rational” . 24
real-literal = integer-literal [ "*" scale-factor | . 26
real-part = real-literal . 28
real-type = "real" [ "(" radix "," factor ")" ] . 26
record-type = "record" "(" field-list ")" . 40
record-value = field-value-list | value-list . 40
repertoire-identifier = value-expression . 20
repertoire-list = repertoire-identifier { "," repertoire-identifier } . 20
return-argument = [ argument-name " ] argument-type . 36
scaled-literal = integer-literal [ ™" scale-factor ] . 25
scaled-type = "scaled" "(" radix "," factor ")" . 25
scale-factor = number "A" signed-number . : 25, 26
selecting-subtype = base ™" "selecting" "(" select-list ")" . 30
select-item = value-expression | select-range . 30,31,33
select-list = select-item { "," select-item } . 30, 31, 33
select-range = lowerbound ".." upperbound . 30, 31,33
sequence-type = "sequence” "of" "(" element-type )" . 43
sequence-value = empty-value | value-list . 43
set-type = "set" "of" "(" element-type ")" . 41
set-value = empty-value | value-list . 41
signed-number = [ "-" ] number . 23
size-subtype = base ™" "size" "(" minimum-size [ ".." maximum-size ] ")" . 32
state-literal = identifier . 19
state-type = "state" "(" state-value-list ")" . 19
state-value-list = state-literal { "," state-literal } . 18
string-character = non-quote-character | added-character | escape-character . 15, 52
string-literal = quote { string-character } quote . 15, 52
subtype = range-subtype | selecting-subtype | excluding-subtype

| extended-type | size-subtype | explicit-subtype . 29
subtype-definition = type-specifier . 32
table-entry = key-value-list ":" element-value . 46
table-type = "table" "(" key-list ")" "of" "(" element-type ")" . 46
table-value = empty-value | "(" table-entry { "," table-entry } ")" . 46
tag-type = type-specifier . 33
tag-value = independent-value . 34
tag-value-list = select-list . 33
termination-argument-list = argument { "," argument } . 50
termination-declaration = "termination” termination-identifier

["(" termination-argument-list ")"] . 50
termination-identifier = identifier . 50
termination-list = termination-reference { "," termination-reference } . 36
termination-reference = identifier . 36
time-literal = digit-string [ "." digit-string ] . 22
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time-type = "time" "(" time-unit [ "" radix "" factor ]")" . 22
time-unit = "year" | "month” | "day” | "hour" | "minute" | "second"

| parametric-value . 22
type-declaration = "type" type-identifier [ (" formal-parameter-list "]

"=" [ "new" ] type-definition . 48
type-definition = type-specifier . 49
type-identifier = identifier . 48
type-specirier.—.prim'ﬂive-type|subtype|generated-type | defined-type | parametric-type . 17
upperbound = value-expression | ™" . 30, 31, 33
value-declaration = "value" value-identifier "" type-specifier "=" independent-value . 50
value-expression = independent-value | dependent-value . 15
value-identifier = identifier . 16, 50
value-list = "(" independent-value { " independent-value } ")" . 40, 41, 42, 43, 45

value-literal = boolean-literal | state-literal | enumerated-literal | character-literal
| ordinal-literal | time-literal | bit-literal | integer-literal | rational-literal
| scaled-literal | real-literal | complex-literal | void-literal

| extended-literal | pointer-literal . 15
void-literal = "nil" . 29
void-type = "void" . 29

Additional Productions of the IDN not used in this draft International Standard:

interface-body = { import } declaration { ";* declaration }.
interface-identifier = object-identifier-value .
interface-synonym = identifier .
interface-type = "interface" [ interface-synonym ":" | interface-identifier
"begin” [ interface-body ] "end" .
import = "import" [ "(" import-symbol-list ")" ]
"from" [ interface-synonym ": ] interface-identifier .
import-symbol-list = import-symbol { *" import-symbol } .
import-symbol = identifier .
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Annex E. [Informative]

Example Mapping

This annex contains a draft “inward” mapping from the LI datatypes into the programming language Pascal. These
mappings are not definitive and may not be quite correct. The purpose of this annex is to exemplify the nature and
content of a mapping.

E.1 LI Primitive Datatypes

E.1.1 Boolean

Boolean maps to the Pascal “boolean” type. “True” and “false™ map to the corresponding values of Pascal “boolean™.
All characterizing operations are preserved, using the boolean operators of Pascal.

E.1.2 State

A state datatype of the form “state(state-value-list)” maps to the Pascal enumeration datatype (state-value-list). Each
state-value is mapped to the Pascal value with the corresponding identifier. All characterizing operations are pre-
served. '

E.1.3 Enumerated

An enumerated datatype of the form “enumerated(enumerated-value-list)” maps to the Pascal enumeration datatype
(enumerated-value-list). Each enumerated-value is mapped to the Pascal value with the corresponding identifier. All
characterizing operations are preserved.

E.1.4 Character

A single character datatype of the form “character™ or “character(repertoire)” maps to the Pascal character datatype.
Pascal requires each implementation to define the character-set associated with the character datatype. The default
character-set identified by the LI datatype syntax “character” is presumed to be that character-set, and repertoire. if
present, must identify that character-set. Each character-value in that character-set is mapped to the Pascal value hav-
ing the same character-code. All characterizing operations are preserved.

No other character datatype is mapped into a Pascal datatype. although an implementation may specify a mapping of
the character-codes into the Pascal datatype “integer”.

E.1.5 Ordinal

The LI datatype “ordinal:range(1..maxint) maps to the Pascal integer type “(1..maxint)”. Pascal requires each imple-
mentation to define the value of “maxint”. The ordinal datatype with the corresponding maximum value (and any sub-
type thereof) is mapped as given above. with each ordinal value being mapped to the corresponding integer value under
the mathematical isomorphism. All characterizing operations are preserved.

No ordinal value greater than maxint can be mapped. and no datatype containing such a value can be mapped into Pas-
cal.

E.1.6 Time
The Time types are not mapped into Pascal.

E.1.7 Bit

Bit maps to the Pascal Integer type declared by
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type bit = (0..1);

0 and 1 map to the corresponding integer values. All characterizing operations are preserved. although the Add oper-
ation must be defined as:

procedure Add(x,y: bit):bit
begin
if (x = y) then Add := O else Add := 1:
end;

E.1.8 Integer

The LI datatype “integer: range(minint..maxint)” maps to the Pascal integer type. Pascal requires each implementation
to define the values of “minint” and “maxint”, The integer datatype with the corresponding minimum and maximum
values (and any subtype thereof) is mapped to the Pascal integer type, with each integer value being mapped into the
identical Pascal integer value. All characterizing operations are preserved.

No integer value greater than maxint can be mapped, no integer value less than mininr can be mapped, and no datatype
containing such a value can be mapped into Pascal.

E.1.9 Rational

Rational maps to the Pascal type declared by
type rational = array [1:2] of integer:
with the characterizing operations defined as follows:

procedure Reduce(x: rational):rational
var t:rational;
begin
end;
procedure Add(x,y: rational):rational
var trational;
begin
if (x[2] = y[2]) then begin
t(1] = x[(1] + y[1];
t[2] := x[2];
end else begin
t1] = x[1] * y[2] + y[1] * x[2];
t2] := x[2] * y[2];
end;
Add := Reduce(1);
end;

procedure Multiply(x,y: rational):rational
var trational;

begin
t1]:=x[1]*y[1];
t2] == x(2] * y[2];
end;
Multiply := Reduce(t);

end;

procedure Negate(x: rational):rational
var trational;
begin
t[1] := - x[1];
t[2] := x[2];
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end;
Negate :=t;
end;

procedure Reciprocal(x: rational):rational
var t:rational;

begin
t(1] := x[2];
t2] = x[1];
end;
Reciprocal :=t;
end;

procedure NonNegative(x:rational); boolean := (x[1] >=0);
procedure Equal(x, y: rational): boolean := ((x[1] = y[1]) and (x[2] = y[2]));

Only rational values whose numerator and denominator are both within the range [minint, maxint] can be mapped into
the Pascal datatype. (This cannot be stated as a range constraint on the value space of the Rational datatype.)

E.1.10 Scaled

The LI datatype Scaled(r, f): range(minrf..maxrf) maps to the Pascal type “integer”, where minrf has the value
minint » 'O and maxrf has the value maxint » i, A scaled datatype with the corresponding minimum and maximum
values (and any subtype thereof) is mapped to the Pascal integer type, with each scaled value M « D being mapped
into the Pascal integer value M. In order for the characterizing operations to be preserved scaled multiply and divide
operations have to be defined. as follows:

type scaled := integer;

(* const rtothef :=r ** f; *)

procedure scaledMultiply(x, y: scaled): scaled
var
t: scaled;
round: boolean;
negate: boolean;
begin
ti=x*y;
negate := (t < 0);
if negate then t := -t;
round := (mod(t, rtothef) > rtothef / 2);
t := t / ntothef;
if (round) thent:=1+ I;
if (negate) then t := -t;
scaledMultiply :=1t;
end;
procedure scaledDivide(x, y: scaled): scaled
vir
t: scaled;
round: boolean;
negate: boolean;
begin
negate := (x < 0);
if negate then x :=-x;
if y < 0 then begin
negate := not negate;
y=-y
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end;
= (x *rtothef ) / y;
if (mod(x * rtothef, y) > rtothef / 2) then t :=t + 1;
if (negate) then t := -t;
scaledDivide :=1;
end;

Only those values of the datatype scaled(r, f) which are within the above range can be mapped and no scaled datatype
containing values outside this range can be mapped into Pascal.
NOTE — A more general version of the scaled datatype can be defined using the Pascal datatype:
type scaled = record (

value: integer;

radix: (0..maxint);

factor: integer);
with “characterizing operations™ which generalize the arithmetic on scaled datatypes. This model can be further tailored to a fixed
radix (like 10) to get improved performance. The integer model is more useful for simple exchanges of information, while the gen-
eralized model is preferable for extensive manipulation of scaled values.

E.1.11 Real

The LI datatypes “real: range(rmin..rmax)” and “real(radix, precision): range(rmin..rmax)” map to the Pascal real
type. only if the given or default radix, precision, rmin and rmax parameters define a subset of the real values which
is distinguishable in the subset of the mathematical real values defined by the Pascal implementation under the follow-
ing mapping: Each LI Real value is mapped into the Pascal real value which is mathematically nearest it and if two
values are equidistant then either may be chosen. All characterizing operations are conceptually preserved, although
the implementation-defined arithmetic may affect the correctness of results.

No real value requiring more range or more precision can be mapped, and no datatype containing such a value can be
mapped into Pascal.

E.1.12 Complex

The LI datatypes “complex” and “complex(radix, precision)” map to the Extended Pascal complex type, only if the
given or default radix and precision parameters define a subset of the complex values which is distinguishable in the
subset of the mathematical complex values defined by the Pascal implementation under the following mapping: Each
LI Complex value is mapped into the Pascal complex value which is mathematically nearest it and if several values
are equidistant then any may be chosen. All characterizing operations are conceptually preserved, although the imple-
mentation-defined arithmetic may affect the correctness of results.

No complex value requiring more precision can be mapped, and no datatype containing such a value can be mapped
into Pascal.
NOTE — A complex datatype can be mapped into basic Pascal (1SO) 7185) using the Pascal datatype:
type complex = record (

realpart: real;

imagpart: real);
and the definition of “characterizing operations" appropriate to the x + iy representation of a complex-number. This model defines
a representable subset of the complex numbers, but its relationship to the radix and precision parameters of the LI dataypes is dif-
ficult to specify.

E.1.13 Void

The LI datatype “void” can be mapped into Pascal only when it appears as an alternative of a choice datatype. In this
case, it is mapped into an empty-variant **()” of a variant-record (see E.2.1).
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E.2 LI Generated Types

E.2.1 Choice

A choice datatype of the form:

choice (tag-rype) of (
select-list] : alternative-rypel,

select-listN : alternative-typeN )

can be mapped into the Pascal variant-record type:

record (
case (rag-variable : mapped-tag-tvpe) of (
case-constant-list! : mapped-typel

case-constant-listN : mapped-rypeN )

only when the following conditions are met:

i) The rag-rype maps to a Pascal ordinal type, as specified herein. The mapped-tag-type is then the ordinal type
which is the image of the mapping.

ii) Each alternative-type can be mapped into a Pascal type, as specified herein. If the alternative-rype maps to a
Pascal record-type, then the corresponding mapped-type is: **( all-fields-of-the-Pascal-record-type )”. 1f the alternu-
tive-type is “void”, then the corresponding mapped-type is “()". If the alternative-rype does not map to a Pascal record-
type then the corresponding mapped-rype is: **( invented-field-identifier : mapped-alternative )", where mapped-alter-
native is the image of the alternative-type under the mapping, and invented-field-identifier is any identifier which does
not conflict with any other field-name in the Pascal record-type.

No other choice datatype can be mapped into Pascal.

The tag-variable is an invented identifier, used solely to implement the characterizing operations (see below), and is
not otherwise required.

Each select-item in the select-list which is a single value is mapped to the case-constant denoting the corresponding
value of the mapped-tag-type. Each select-item in the select-list which is a select-range is mapped into a case-con-
stant-list containing the denotations of all corresponding values of the mapped-tag-type (or into the analogous abbre-
viated-list form in Extended Pascal). A select-list which is “default” is mapped into the case-constant-list “otherwise™
in Extended Pascal, or into the case-constant-list containing the denotations of all corresponding values of the mapped-
tag-rype in basic Pascal.

All values of the choice datatype are mapped to the corresponding values of the mapped-types specified above.

The characterizing operations Tag and Cast are implemented (at least conceptually) in Pascal by referencing a partic-
ular field of the corresponding mapped-type. or assigning to it. respectively. The characterizing operations IsType and
Equal can be implemented by appropriate case-statements using the tag-variable as discriminant.

E.2.2 Pointer

A pointer datatype of the form “pointer to (element-rype)” can be mapped into the Pascal type “pointer to mapped-
type”, only when the element-type maps to a Pascal type, as specified herein. The mapped-type is then the Pascal type
which is the image of the mapping.

Only those values of the pointer datatype which refer to objects on the Pascal “heap” can be mapped into the corre-
sponding Pascal pointer-value. Other pointer-values may be supported by dereferencing them and copying the ele-
ment-value onto the Pascal heap, thereby generating an “equivalent” Pascal pointer-value, in the sense that Derefer-
ence will work correctly, but the unspecified “assignment” operation (see Note 3 to clause 8.3.2) will not.
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The Dereference operation is the Pascal identified-variable, i.e. pointer-value “N”,

E.2.3 Procedure

A procedure datatype of the form: “procedure (arguments)” can be mapped into a Pascal “procedure parameter spec-
ification™, only when it appears as the datatype of a parameter (argument) to a procedure, and only if all of its argu-
meni-types can be mapped to Pascal types as provided herein. A procedure datatype of the form: “procedure (argu-
ments) returns (return-argument)” can be mapped into a Pascal ““function parameter specification”, only when it ap-
pears as the datatype of a parameter (argument) to a procedure, and only if all of its argument-types, including that of
the return-argument, can be mapped to Pascal types as provided herein.

The argument-type of the LI return-argument is mapped into the result-type of the Pascal functionparameter-specifi-
cation. Every LI argument of the form “in identifier : argument-type™ is mapped into a Pascal val ue-parameter-spec-
ification of the form “identifier : mapped-type” where mapped-type is the image of the argument-type under the map-
ping into Pascal. Every LI argument of the forms “inout identifier : argument-type” or “out identifier : argument-type”
is mapped into a Pascal variable-parameter-specification of the form “var identifier : mapped-type” where mapped-

type is the image of the argument-rype under the mapping into Pascal.

Conceptually, every value of an LI procedure datatype which satisfies the above constraints could be defined as a Pas-
cal procedure or function and could then appear as an actual parameter satisfying the corresponding formal parameter
specification,

The Invoke operation is supported by the Pascal function-designator (call) within an expression or the Pascal procedure
(call) statement, as appropriate to the form. Equal. in the sense defined for the LI datatype, is supported in Pascal by
comparing all results of the invocations, to the extent that this is possible.

Terminations other than normal are not supported by Pascal, and no procedure datatype involving them can be mapped
into Pascal.

E.2.4 Record

A LI record datatype of the form: “record (field-list)” can be mapped into a Pascal record-type of the form: “record
(field-list), only if all of its field-types can be mapped to Pascal types as provided herein. No other record datatype can
be mapped into Pascal.

Every LI field of the form “identifier : field-type™ is mapped into a Pascal field of the form “identifier : mapped-type™
where mapped-type is the image of the field-tvpe under the mapping into Pascal.

Every value of an LI record datatype which satisfies the above constraints is mapped to a value of the correspondin g
Pascal record-type by mapping the value of each field to its corresponding value, as specified herein.

The FieldSelect operation is supported by the Pascal field-selection expression. The Aggregate operation is supported
in Pascal by assignment of the given values to the appropriate fields of the record-variable. Equal is supported in Pas-
cal by the relation =",

E.2.5 Set

A set datatype of the form *set of (element-type)” can be mapped into the Pascal type “set of mapped-type™, only if the
element-type maps to a Pascal ordinal-type, as specified herein, and the cardinality of the ordinal-type does not exceed
the implementation-defined maximum set cardinality required by Pascal. The mapped-type is then the Pascal ordinal-
type which is the image of the mapping.

Every value of an LI set datatype which satisfies the above constraints is mapped to a value of the corresponding Pascal
set-type by mapping the value of each member of the set-value to its corresponding value, as specified herein.

All characterizing operations are supported by Pascal set operations.

No other set datatype can be mapped into Pascal directly. It is possible to map some other set datatypes into a linked
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structure as a variant of Sequence (see E.2.7), by defining the characterizing operations specifically for that structure.

E.2.6 Bag

No bag datatype can be mapped into Pascal directly. Some bag datatypes can be mapped into a linked structure as a
variant of Sequence (see E.2.7), by defining the characterizing operations on that structure.

E.2.7 Sequence
No sequence datatype can be mapped into a Pascal datatype directly.

Values of a sequence datatype of the form “sequence of (element-type)”, where the element-type maps to some Pascal
type mapped-type, as specified herein, can be mapped into Pascal using the type:

type sequenceofrype = record (
next: pointer to sequenceofrype;
elementvalue: mapped-type);

Each member (value of element-type) of a value of the sequence datatype is mapped to a heap variable of the Pascal
type sequenceoftype, by mapping its value to the corresponding value of mapped-type, as specified herein, and placing
that value in the field “elementvalue”. The value of sequence datatype is then represented by a value of the type *“point-
er to sequenceofrype”, which is the pointer to the heap variable representing the first member, or “null” it the sequence
is empty. The “next” field of the first member is set to point to the heap variable representing the second member, etc.
The “next” field of the last member is set to “null”.

All characterizing operations can be defined on this representation.

E.2.8 Array

An array datatype of the torm “array (index-list) of (element-type)” can be mapped into the Pascal type “array
[mapped-index-list] of mapped-element-rype”, only if the following conditions hold:

1) The element-rype maps to some Pascal type mapped-element-rype, as specified herein.

2) Each index-type in the index-list can be mapped into some Pascal ordinal-type mupped-index-type. as
specified herein. The mapped-index-list is then the list of the mapped-index-rypes, in corresponding or-
der.

No other array datatype can be mapped into Pascal.

Every value of an LI array datatype which satisfies the above constraints is mapped to a value of the corresponding
Pascal array-type by mapping the value of each element of the array-value to its corresponding value, as specified here-
in.

The Select operation is supported by Pascal indexing. The Replace operation is supported by assignment to the appro-
priate cell of an array variable. The Equal operation is the Pascal operation “=",

E.2.9 Table

No table datatype can be mapped into a Pascal datatype directly.

Values of a tble datatype of the form “table (key-list) of (element-type)”, where the element-type maps to some Pascal
type mupped-element-rype and each key-rype in the key-list maps to some Pascal type mapped-key-type. as specified
herein, can be mapped into Pascal using the type:
type tablevalue = record (
keyl: mapped-key-type-1;

keyN: mapped-key-type-N;
element: mapped-element-type);
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and the structuring mechanism described for sequence datatypes in E.2.7. Each value of the table datatype has the
corresponding key values assigned to the fields “keyl”, ..., “keyN", and the element value assigned to the “element”
field. The value of the table datatype is then represented as a value of the type “sequence of (tablevalue)™, by defining
the characterizing operations on that structure.

E.3 LI Subtypes

E.3.1 Range

LI range-subtypes map into Pascal subrange-types, but only if the base type maps into a Pascal ordinal-type, as spec-
ified herein.

E.3.2 Selecting

LI selecting-subtypes do not have equivalents in Pascal, A selecting-subtype is mapped as if it were the base type

E.3.3 Excluding
LI excluding-subtypes do not have equivalents in Pascal. An excluding-subtype is mapped as if it were the base type

E.3.4 Extended

LI extended-types cannot be mapped into Pascal. in general. In the case of enumerated datatypes, definition of an en-
tirely new type with value isomorphisms based on ordinal position may be possible.

E.3.5 Size

LI size-subtypes do not map into native Pascal concepts. Size-subtypes could be supported by the sequence datatype
implementation in E.2.7, and certain size-subtypes are mapped to specific Pascal types in E4

E.3.6 Explicit

LI explicit-subtypes do not have equivalents in Pascal. An explicit-subtype is mapped as if it were the base type.

E.4 LI Defined Datatypes

Most of the defined datatypes in Clause 10 can be mapped into Pascal by simply mapping their type-definitions. The
exceptions are described in this clause.

E.4.1 Bit-String

A bit-string datatype all of whose values are of a fixed constant length, i.e. bitstring : size(k), can be mapped into the
Pascal datatype “packed array [1..k] of bit”, where “bit” is defined as in E.1.7.

The characterizing operations Head and Tail are defined as follows:

procedure Head(x : packed array [1..4] of bit):bit:
begin Head := x[1] end:

procedure Tail(x : packed array [1..4] of bit) : packed array [1.. (k-/)] of bit;
var

i integer;

y: packed array [1.. (k-/)] of bit
begin

fori:=11t0k-1do

~ylil = x[i+1];
Tail :=y;
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end;
Equal is Pascal “=". Append, Empty, ISEmpty are not meaningful operations on a bit-string of fixed size.

No other bitstring datatype can be mapped into a Pascal datatype directly, although it is possible to support values of
the bitstring datatype by a “package™ utilizing a complex data structure as in E.2.7, although more efficient structures
for bit-string can be developed.

E.4.2 Character-String

A character-string datatype all of whose values are of a fixed constant length, i.e. characterstring : size(k), can be
mapped into the Pascal datatype “packed array [1..k] of char”,

The characterizing operations Head and Tail are defined as follows:

procedure Head(x : packed array [1..k] of char):char;
begin Head := x[1] end;
procedure Tail(x : packed array [1..k] of char) : packed array [1.. (k-/)] of char;
var
i: integer;
y: packed array [1.. (k-1)] of char;
begin
fori:=11tok-1do
y(i] := x[i+1];
Tail :=y;
end;
Equal is Pascal “=". Append, Empty. ISEmpty are not meaningful operations on a character-string of fixed size.

No other characterstring datatype can be mapped into a Pascal datatype directly, although it is possible to support val-
ues of the characterstring datatype by a “package” utilizing a complex data structure as in E.2.7, although more effi-
cient structures for character-string can be developed.

E.4.3 Octet

Octet can be mapped into any of:
i) the analogous Pascal datatype: type octet = packed array [1..8] of bit;
ii) the Pascal datatype: type octet = packed array [1..8] of boolean;
iii) the Pascal integer-type: type octet = (0..255;
in which the 8 binary digits are interpreted as an 8-place binary value.

The choice is largely a matter of intended usage and the nature of implementations. Mappings (i) and (ii) support the
characterizing operations directly, except that in (ii) the bit results have to be derived from the boolean values via the
Pascal function “ord()”. Some implementations of (i) may be much less efficient than those of (ii), which is why (ii)
is proposed. Either (i) or (ii) will generally be less efficient than (iii), unless Select and Replace are actually going to
be used in the context: whereas (iii) will generally have a more efficient implementation for the manipulation of 8-bit
information units, although the definitions of Select and Replace will be complex.

E.4.4 Private

Private is defined in Pascal essentially as it is in 10.1.9:
type private = packed array [1..size] of bit;
or:
type private = packed array [1..size] of boolean;
In many cases, only the latter will produce the desired (contiguous bitstring) implementation, although neither is in
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fact required to do so..

E.4.5 Object-identifier

The object-identifier datatype cannot be mapped directly into Pascal. The datatype must be mapped into Pascal as
follows:

The object-identifier-component type must be mapped into Pascal as:
type object_identifier_component = 0..maxint;

Object-identifier values must be mapped into Pascal using a data structure similar to that proposed for the sequence
datatypes in E.2.7, wherein the element-type is object-identifier-component.

E.4.6 Distinguished-Name

The distinguished-name datatype cannot be mapped directly into Pascal. If necessary, this datatype can be mapped as
follows:

The distinguished-name-component datatype can be mapped into Pascal by adopting a convention for the maximum
length of a name-component and assuming trailing spaces are not significant. This gives:

type distinguished_name_component = packed array [1..name_component_max] of char:
where it is assumed that the implementation of the char-type contains the { iso standard 8824 type VisibleString } char-
acter-set. Since this is a subset of the ISO 646 character set, most implementations will support it, but there is no Pascal
requirement for such support.

Values of the type distinguished-name must be mapped into Pascal using a data structure similar to that proposed for
the sequence datatypes in E.2.7, wherein the element-type is distinguished_name_component.

E.5  Type-Declarations and Defined Datatypes

In Pascal two type-specifiers refer to the same datatype only if they are both identifiers and spelled identically. Type-
specifiers which are not (simply) identifiers always refer to distinct datatypes, although those datatypes may be “com-
patible” in many cases. Because of this, additional datatype definitions may be needed in a mapping Pascal to correctly
support the identity of LI datatypes which do not have names.

E.5.1 Renaming declarations

This concept is not sipported in Pascal. A datatype declaration in Pascal is effectively a “new” datatype declaration
in all cases.

E.5.2 Datatype declarations

An LI datatype declaration which declares a single datatype (no parameters) can be mapped to Pascal as a Pascal type-
declaration in which the LI rype-definition is mapped into Pascal as specified herein. If the type-definition does not
have a mapping, then the datatype so declared cannot be mapped into Pascal.

An LI datatype declaration which declares a family of datatypes, using one or more parameters, cannot. in general, be
mapped into Pascal. In many cases, however, each member of the family which is to be used in a given context can
be mapped into a distinct Pascal datatype, by inventing a unique name and mapping the type-definition after making
lexical substitutions for the parameter values,

E.5.3 Generator declarations

An LI generator declaration cannot, in general, be mapped into Pascal. In many cases, however, each resulting
datatype which is to be used in a given context can be mapped into a distinct Pascal datatype, by inventing a unique
name and mapping the rype-definition after making lexical substitutions for the parameter values.
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Annex F. [Informative]

Resolved Issues

This annex contains a brief discussion of technical problems encountered in the development of this draft International
Standard and the consensus resolution thereof by the technical committee.

Issue 1.  Should the LI datatypes have a concrete syntax?

To allow the standard to be used to specify datatypes unambiguously, it must have a syntax, with specific production
rules for each of the datatypes and generators. Moreover, this syntax must permit datatype definitions to be recursive
or contain forward references, in order to permit definition of datatypes such as Tree, or the LISP-characteristic indef-
inite-list datatype.

Issue 2.  Should the LI datatypes provide axiomatic datatype definitions?

Much of the axiomatic definition work would be replication of well-known mathematical work. There was consensus
that mathematical datatypes should be defined by appeal to standard mathematical references. There was also consen-
sus that most "axiomatic definition” of other datatypes was nothing more than mathematical statement of closure under
what is herein called "characterizing operations”.

Issue 3.  How many characterizing operations are enough?

There was consensus that the characterizing operations on any datatype should be limited to those which are necessary
to distinguish the datatype from types with similar value spaces. It was later determined to be useful to include oper-
ations which, though redundant with respect to distinguishing the datatype, would be used in the definitions of char-
acterizing operations on other datatypes, e.g. Boolean And and Or.

Issue 4.  Are conversion operations between datatypes characterizing?

"Conversion operations”, that is, operations which map one datatype into another, are of several kinds, each of which
needs to be considered differently:

a. Operations which are part of the mathematical derivation of primitive datatypes are generally "characterizing".
Specifically, the Promote operation, which maps Bit into Integer and Integer into Rational, etc. is part of the mathe-
matical characterization of the numeric datatypes. ’

b. Other operations which map one primitive datatype into another are clearly not "characterizing", if the datatype
is well-defined. Specifically, the Pascal ORD operation on enumerated types is not characterizing - it has nothing to
do with the meaning of the enumerated datatype itself. Similarly. Floor, which maps Real to Integer, is useful but not
characterizing for either the Real or Integer datatypes.

c. Operations which create a value of a generated type from values of the component datatypes may be charac-
terizing for the generator. Thus Setof is characterizing for the Set generator, and Replace is characterizing for the Ar-
ray generator.

d. Operations which project a value of a generated type onto any of its component datatypes may be characterizing
for the generator. Thus Select (subscripting) is characterizing for Array and Dereference is characterizing for Pointer.
e. All characterizing operations on datatype generators must be one of the above, but not necessarily are all such

operations characterizing. It suffices to define any set of such operations which unambiguously identifies the datatype
generator.

Issue 5.  Should implementations be required to support the characterizing operations?

The purpose of considering operations in this draft International Standard is solely to distinguish semantically distinct
datatypes which have common or similar value spaces. Moreover, where several choices were available, the choices
of characterizing operations included in the standard are arbitrary. Consequently, mappings between language
datatypes and LI datatypes should not necessarily imply express support for the characterizing operations appearing
in the standard. However, an internal datatype should never be mapped into a LI datatype having characterizing op-
erations which the internal datatype COULD NOT support. Such a mapping violates the notion of semantic equiva-
lence of the datatypes.
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Issue 6.  Is InOrder necessary? Does the standard need to define an ordering operation?

Ordering is an important property of a datatype, and when the value space has multiple possible orderings, the choice
of a particular ordering is what makes the datatype ordered. When a datatype has a universally accepted ordering, it
is appropriate to require that ordering in the standard. When there is no such ordering, or when everyone disagrees on
the ordering, then not necessarily will a given implementation of the datatype support the ordering, and the LI datatype
should not be defined to be ordered.

Issue 7.  How much of the concept "mapping onto the LI datatypes” should be standardized?

Consensus is that formal requirements for indirect compliance are necessary to relate language standards to language-
independent specifications. The mapping is a necessary part of the concept of indirect compliance and therefore a nec-
essary part of this standard. There was further consensus that the standard should specify exactly what a mapping, or
a set of mappings, consists of. This should include specifying values of all "parameters” of the LI datatypes, and a
discussion of the distinction between "logical identification of two datatypes” and "physical transformation between
two datatypes". It should be left to the language standards to formalize the individual mappings, since distinguishing
the language syntax constructions which equate to various LI datatypes might be quite complicated.

Issue 8.  What is the nature of the Bit datatype?

The LI datatypes define four two-valued datatypes, all of which are semantically different, and each of which is some
expert’s definition of "Bit". Making some or all of these datatypes identical is a feature of some programming lan-
guages, while making them distinct is a feature of others. The LI datatypes must support the latter, while proper use
of mapping will support the former.

In the standard, the datatype Bit is used to refer to the numeric finite field of two values, as this seems most clearly
to be the fundamental numeric datatype - the Integer Modulo 2 datatype which is conveyed by the term "binary digit”.
The datatype Range (0.1) of Integer is different. Add (1.1) produces different results in the two datatypes. Invert is
defined and meaningful on Bit: it is not defined or meaningful on Integer and consequently not on Range (x.y) of In-
teger. The datatype Boolean is mathematically equivalent to Bit, in that astute identification of the Xor and And op-
erations produces the same finite field. But semantically, Boolean is not a numeric datatype and has only operations
associated with the logic notions true and false. while Bit is a numeric datatype and has numeric operations. The
datatype Switch is none of the above. It is a State datatype, which has no native operations, on which the Invert oper-
ation, but neither numeric nor logical operations, are defined.

Issue 9.  How is Scaled distinct from Real? [s Scaled an implementation?

Scaled is a mathematically tractable datatype which has a number of properties which tend to be associated with rep-
resentation, such as rounding. Scaled is not merely a subtype of Real, nor a poorer representation of Real values than
floating-point. (In fact, Scaled is properly represented by integral values and not, in general, by floating-point.) It is
the datatype of objects which are exact to some number of (radix) places. Scaled. with these semantics, is the most
frequently occurring datatype in COBOL programs, and also appears in other standard languages, such as PL/I. Pa-
rameters radix and factor are provided for consistency with the usage in programming languages. Only a single pa-
rameter, giving the common denominator of the datatype, is semantically necessary. Since both base-two and base-
ten scaling are in common usage, generalizing to an arbitrary radix seems to be appropriate. Mappings and implemen-
tations will limit this.

Issue 10. Is Null a value of multiple types, as in SQL2, or a datatype itself?

Null'is not a value of every type (or of many types). Every value of type Integer, for example, can be compared with
zero. Is Null <0? Is Null = 07 Allowing such a comparison is clearly inappropriate. Null must therefore be a value
distinct from those of any other primitive type. The SQL2 null-valued column is properly described in LI datatypes
as a choice datatype one of whose alternatives is the true datatype of the column and and the other is some state
datatype representing the "null values".

Issue 11. Is Undefined the same as Null or Void?

There was consensus that Undefined is not a datatype, at least not one that has any useful properties. Null, on the other
hand, is needed to model the empty variant in Pascal and Ada (and possibly the Null of ASN.1) and certain other places
where a datatype is syntactically or semantically required but no (other) datatype is appropriate. This datatype is re-
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tained and has been renamed Void, to avoid confusion with “null values™ in SQL and the null pointer value in other
languages, which do not have these semantics.

Issue 12. Is the ordering of fields in a Record significant?

Conceptually, a record is a collection of related information units which are accessible by name rather than by position.
Therefore, the ordering of fields in a Record is not a property of the conceptual datatype itself. Order is, however, an
important consideration in mappings and representations of the datatype.

Issue 13. What is the proper model of Pointer datatypes?

i) Is Pointer a conceptual datatype or solely an implementation mechanism?
Pointer is the name of an implementation mechanism, but it has a conceptual foundation. Pointer is the datatype form
of the concept relationship in conceptual models, specifically of relationships between otherwise independent data ob-
jects which may possess multiple such relationships. Objects of pointer datatype represent single-ended relationships.
i.e. from (undefined) to (object of element type), in which the usage of the pointer determines the other object in the
relationship. In this regard. pointer may be considered to be similar to the database concept key, which also conveys
a single-ended relationship to the object which the key identifies. The related concept handle, meaning a manipulable
representative for an otherwise inaccessible object, does not appear to be quite the same, since the notion of accessing
the data object to which the handle refers is intentionally not supported, while accessing the object to which a pointer
refers is a characterizing operation of Pointer.

it) Is Pointer a primitive datatype or a generated datatype?
There was consensus that Pointer is a primitive datatype in that its values are objects with the property that values of
another datatype can be associated to them. These objects are not ““constructed from” values of the associated datatype:
rather they are distinct primitive objects drawn from a conceptually large state-value space by the process of associa-
tion. This notion is similar to the mapping notion of Arrays and Tables, but unlike these explicit mappings, the values
in the domain - the pointer value-space - have no other semantics.

Issue 14. Must there be a characterizing operation which produces values of type Pointer to x?

After much debate on the merits of the Allocate and Associate operations, there was consensus that no single "con-
structor” for datatype pointer is truly characterizing, in the sense that any implementation of the datatype Pointer would
necessarily be able to support it.

Issue 15. Should the element type of a Set be required to be finite?

At the conceptual level, there is no reason to require the base datatype of a Set to be finite. There may, of course, be
implementation limitations.

Issue 16. Should the base types of Set and Selecting be restricted to exact datatypes?

Exactness is required to assure independence of implementation. Any implementation of an exact datatype must be
able to distinguish exactly the conceptual values. This requirement does not exist for approximate datatypes — it is
permissible in representing approximate datatypes to have more than the conceptual values and to be unable to distin-
guish values which are sufficiently close. If this is permitted for "Selecting” datatypes, the same LI datatype as imple-
mented by two machines might actually have non-isomorphic value spaces. Similarly, the values of members of a set-
value must be clearly distinguishable, in order for the uniqueness constraint to be well-defined.

Issue 17. Should Cardinal or Unsigned be LI datatypes?

Cardinal is a semantic datatype, but for LI datatype purposes, it is nothing more than integer: range(0..*) and is so de-
clared. "Unsigned" is an implementation convention for the representation of certain Integer and Enumerated
datatypes, including Cardinal.

Issue 18. What should be done about Modulo?
In various drafts, Modulo has been:
a) adefined datatype derived from Integer,

b) adatatype generator applicable to any ordered datatype, with extremely complex charactenizing opera-
tions,
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¢) adefined generator, applicable only to enumerated datatypes, which redefines Successor.
Characterization (a) was deemed to be the only commonly occurring instance of (b) and has properties such as multi-
plication which do not generalize. Characterization (b) was determined to be inappropriate because Modulo affects
only the operations, not the value space, (i.e. it should be at most a defined-generator) and applicability to arbitrary
ordered datatypes was an unnecessarily complex generalization. Characterization (c), however, was thought to be po-
tentially useful and is retained as *“Cyclic of (enumerated datatype)”.

Issue 19. Should mathematical Matrix and Tensor constructors be standard generators?

Atone level, Tensor-of-degree-n is simply an array datatype with mathematical operations, e.g.

type tensor2 (rows, columns) of (numbers) = new array (1..rows, l..columns) of (numbers);

But Tensor is, at another level, a legitimate mathematical datatype generator, which generates vector spaces, or linear
operator spaces, over a numeric datatype. The consensus was:

a. The tensor datatype generator is adequately supported by generator-declaration, and could be added to Clause
10.2 if there were consensus on the numbering of the elements (from 0, from 1) and on the ordering of the dimension
specifications (rows first, columns first, etc.). (There was no such consensus.)

b. Conceptually, Tensor should be the mathematical object, but the mathematical type generator is not really sup-
ported by any programming language. Some programming languages (e.g. BASIC, APL) support special operations
on array datatypes which support the mathematical interpretation of the array representation, but these operations tend
to be generalized to the array datatypes as such and only in some cases emulate the mathematical operations. Thus
Tensor is outside the scope of the LI datatypes.

Issue 20. Is the notion file adequately supported by the datatype-generators?

A file, seen as a medium or the object managed by the operating system, which has name, type, organization, state,
position, etc., attributes, goes beyond the scope of this standard. The datatype, its attributes and operations, are better
defined by an operating system services standard. To the extent that such file objects are integral to programming lan-
guages, it is necessary that they be defined for the specific programming language. since there does not appear to be a
common model.
The accepted notion of access mechanisms for common file organizations, however, map exactly onto the character-
izing operations for the generators List, Array and Table.
For example, sequential organization maps onto List:

Open for Input is obtaining an object of datatype List of X in the first place;

Open for Output is Empty(); ~

Read is Head();

Write is Append(); and

Close is releasing the object.
A sequential file which is simply a BitString or CharacterString is adequately modelled by those datatypes. which are
themselves Lists. A sequential file which contains a single record type is List of Record(field1., field2. ... fieldN); and
asequential file with multiple record datatypes is List of Choice(recordtypel, recordtype2, ..., recordtypeM). In a sim-
ilar way, the FORTRAN/COBOL relative organization maps onto Array and the indexed Sequential organization maps
onto Table.
The notion which is not supported by the List generator is that a file can simultaneously be a sequence of some record-
type(s) and a string of bits or bytes. Such a notion requires an appeal to the representation of the datatype, which is
outside the scope of this standard.

Issue 21. Are Pragmata/Attributes appropriate in the standard?

The Scope of the project expressly says that representation will not be a part of the standard, but a number of repre-
sentation concerns, such as the characterization of Real as floating-point and the ordering of fields in a Record, clearly
need to be addressed by any use of the LI datatypes. Moreover, the datatypes of programming languages often have
representation properties which are important in distinguishing "internal datatypes" and are therefore necessary for
mappings. Moreover, representation attributes are only a fraction of the datatype annotation capabilities needed by
procedure calling standards and applications. Some common mechanism is necessary, but it is consensus that it should
not be a normative part of this draft Intemational Standard.
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Issue 22. Relationship of the LI Datatypes syntax to the LI Procedure Calls syntax.

There is consensus that both the LI Procedure Calling standard and the Remote Procedure Calling standard will require
an "Interface Definition Notation" (IDN), and that this syntactic notation will necessarily include provision for datatyp-
ing of procedure parameters and other objects. There is further consensus that the syntactic notation of the LI
Datatypes standard should be identical to a subset of the IDN.

Issue 23. Must there be a null value of every datatype Pointer to x?

While it may be possible to treat Pointer datatypes as choice(pointer to x. null), every programming language which
supports the pointer datatypes supports null values of such a datatype. For consistency with all expected applications,
"null" is made a value of pointer datatypes.

Issue 24. Is Amay a variant of List?

No. The important characteristic of an Array is the mapping of the index types onto the element type, while List cap-
tures the fundamental notion of sequence. They are only related by having similar representations. An Array can be
made into a sequence by adopting a convention for mapping the index space into the ordinals. There is nothing intrinsic
about this mapping: if one chooses different conventions, as Fortran and Pascal do, one gets different sequences which
represent the same array value. And in general, there is no array datatype which can be mapped to the value space of
a list datatype: the set of values of a given size is the image of many array datatypes, but each different size is the
image of a different array datatype.

Issue 25. Is Character-string primitive?

No. A character- string must be manipulated as a sequence of members of some character-set in order for the defi-
nition of the character-set itself to be useful. That is. the definition of any such datatype is dependent on the (Interna-
tional) Standard defining the character-set. Thus the character datatype whose value space is defined by the standard
is the primitive datatype and the character-string datatypes are constructed from it. Some programming languages
make the character-string primitive in order to define useful operations that don’t generalize to Lists or Arrays in that
language. Others, such as LISP, APL and Pascal make the single character a primitive type.

Issue 26. Should Character and Character-string types be ordered?

The problem is that the accepted ordering of characters in a standard character-set may vary from nation to nation or
from application to application, and the collating sequence for character-strings is clearly application-dependent.
Thus, although everyone agrees that these datatypes are conceptually ordered, there is no agreement on what that or-
dering is. Therefore, no standard InOrder function can be defined, and for that reason these types are said to be unor-
dered. (See Issue 6.)

Issue 27. Should support of certain datatypes be required of complying entities?

The nature of the standard should not be such as to require the support of any datatype. Rather other standards which
incorporate the LI Datatypes, such as LI Procedure Calling and Remote Procedure Call. should specify what datatypes
are required for the purposes of those standards.

Issue 28. Is it necessary to support radices of Scaled datatypes other than 2 and 10?

Many applications use conceptually Scaled datatypes with unusual radices, notably 60 and 360, although they are rep-
resented in programs by an Integer with the scale-factor hidden in the semantic units. There is no reason not to make
such datatypes expressible in the CLID, although there may be strong constraints on the mappings o programming
languages.

Issue 29. What is the computational notion of datatypes Real and Complex?

The LI Datatypes Real and Complex cannot usefully be the mathematical datatypes. The computational notion of these
types, regardless of representation mechanism, is one of “approximate” values. The model used is the *'scientific num-
ber”, which was a widely accepted computational model in the physical sciences before the advent of computers. It is
conceptually similar to the “floating point™ model, but the standard floating-point models (IEC 559) are too closely
tied to representation concerns.
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Issue 30. How will multiple and contradictory definitions of defined-datatypes be avoided?

Itis expected that datatype definitions will occur in at least the following places:

this draft International Standard

standards containing the outward mappings of programming languages

. standards defining service interfaces

- the LI Procedure Calling and Remote Procedure Calling standards

users using the Interface Definition Notation for the LIPC/RPC.

other user applications

In all of cases a-d, the reference to a standard ensures common understanding of the name and meaning of the defined-
datatype. In case e, it is expected that all users of the same procedure interface will share a common IDN description
- akind of “local standard” ensuring common understanding. In case f, if the application is private to a particular user,
it is not necessary for it to be shared, and if it is not private, then one of the means a-e should be sought. Nonetheless,
over time. it may be expected that multiple definitions of a common datatype will occur in cases b and c. This would
certainly be grounds for modifying Clause 10 of this draft International Standard. On the other hand, definitions of
different datatypes with the same name can be expected in cases b, ¢ and e as well. This is unfortunate and cannot be
avoided in the general case, but it does not affect the interchange of datatypes, except when conflicting standards are
used in the same application. A work-around for this should be provided in the LIPC/RPC, but in general, this situation
is probably grounds for a revision of the standards in question.

meaoop

Issue 31. What datatypes should be included in the standard?

Consensus is that the standard should include all of the datatypes needed to support ISO programming languages and
the expected needs of interface specifications. If any language finds the need to distinguish two "possibly equivalent”
datatypes or constructors, then the standard should distinguish them; and if it is necessary to insure that datatypes of
two different languages could be mapped into different LI datatypes, then the standard should distinguish them: oth-
erwise the standard should not.

Issue 32. Should some of the daatypes in Clause 8 be in Clause 10?

The question of whether Enumerated can be “derived from™ State, or Bit from Boolean, or Ordinal from Integer, etc.
depends on the particular taxonomy of datatypes which is chosen. Other taxonomies of datatypes are possible which
might entail such changes. No claim is made that the taxonomy in Clause 8 is the best available, but it is viable. and
changing taxonomies would not bring about substantive improvements in the specification. What is important is that
datatypes that are similar but can be distinguished are distinguished.

Issue 33. Should LI Datatypes be a reference model only?

Consensus is that L1 Datatypes has characteristics of a reference model, but its scope goes beyond that. An entity
claiming to use this draft International Standard as a “reference model™ is said to comply indirectly, but indirect com-
pliance places requirements on the entity for formal statements of the relationships (mappings). These requirements
are necessary to meet the original intent of the standard. Because of the formal syntax for the identification and defi-
nition of datatypes, direct compliance is also possible. Direct compliance is needed so that products such as cross-
language or cross-entity utilities can reference,use, and claim conformity to CLID, especially where no other relevant
standards exist, Inaddition, the possibility of direct compliance may encourage future software products, including
new Kinds of products, to use standard CLID datatypes directly rather than defining their own syntax and semantics
and then performing the mapping.
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