Common Language-independent Procedure Calling Mechanism
Working Draft 4

(ISO/SC22/WG11 N295)

Document Number ISO/IEC JTC1/SC22/WG11 N295

December 13, 1991

ii Common Language-Independent Procedure Calling Mechanism Working Dralt 4 (1ISO.SC22WGITT N295)

SC22/WGI1 N295

0. Introduction

The purpose of this International Standard is to provide a common reference point to which all languages
can relate. The Common Language-Independent Procedure Calling Mechanism is an enabling standard to
aid in the development of language-independent tools and services. This International Standards will aid in
the devclopment of common procedure libraries and mixed language programming. In mixed language
applications, called procedures would run on language processors operating in server mode, and the proce-
dures would be called from language processors operating in client mode. Note that the languages need not
be different, and if the processors are the same the model collapses into conventional single processor pro-
gramming,

Most if not all programming languages include the concepts of procedures and their invocation. The main
variance between these methods mainly lics in the ways paramecters arc passed between the client and server
procedures. Procedure calling is a simple concept at the functional level, but at the language level it is not so
simplistic. The interaction of procedure calling with datatyping and program structurc along with the
numerous variations on procedure calling and restrictions on calling that are applied by vanious programming
languages transforms this scemingly simple concept of procedure calling into a much more complex feature
of programming languages.

The need for a standard model for procedure calling is evident from the multitude of variants of procedure
calling that arc cvident in"the standardized languages Ict alone those which arc not standardized. The exist-
ence of the Common Language-Independent Procedure Calling Mcchanism does not necessitate that all pro-
gramming languages should adopt this model as their sole means of procedure calling. ‘The nominal
requirement is for programming languages to provide a mapping to the CLIPCM from their native proce-
durc calling mechanism, and to be able to accept calls from other programming languages who have defined
a mapping to this International Standard.

The Common Language-Independent Procedure Calling Mechanism is a specification of a common model
for procedurce calling. This international standard is not intended to be a specification of how an implemen-
tation of the CLIPCM is to be provided. Also, it is important to note that this international standard does
not address the question of how the procedure call initiated by the client mode processor is communicated to
the server mode processor, or how the results are retumed. ‘The model defined in the CLIPCM is intended
for usc by languages so that they may provide standard mappings from their native proccdure model. The
CLIPCM will rcly on the Common Language-Independent Data Types standard for the definition of
datatypes that arc to be supported in the model for procedure calls provided by the CLIPCM.

ISO/IEC JTC1/SC22/WGI | reached consensus on this standard on the st day of January 199x. At that
time, the working group had the following member body participation:

(TBD)

ISO/IEC JTCI approved this document as an International Standard on the Ist day of J.mua.ry 199x. At
that time, the Joint ‘Technical Committee had the following member body participation:

(TBD)

‘I'he cfforts are acknowledged of all those who contributed to the work of 1ISO/IEC JTC1/SC22/WGl1, and
in particular:

(TBD)

The efforts are acknowledged of all those who contributed to the work of X312, and in particular:

(TBD)

SC22/WGI11 N295

1. Scope

1.1 This International Standard specifies a model for procedure calls, and a reference syntax for mapping to
and from the modcl. This syntax is referred to as the Interface Definition Notation. The model for proce-
dure calls that is specificd in the CLIPCM is intended-to be utilized by the Remote Procedurce Call standard
as the basc model for remote calls with extensions being applied by RPC where they arc necessary in order
to support RPC specific features of procedure calling. The model defined in this International Standard will
include such fcatures as procedure invocation, paramcter passing, completion status, and cnvironmental
issucs relating to non-local references and state.

1.2 'T'his standard doces not specify:

« the method by which the procedure call initiated by the clicnt mode processor is communicated to the
scrver mode processor;

« the minimum requircments of a data processing system that is capable of supporting an implementation
of a processor to support CLIPCM; -

« the mechanism by which programs written to support CLIPCM are transformed for use by a data proc-
cssing system.

2. References .
1SO/SC22/WG11/N233: Common Language-Indépendent Data Types Working Draft #5.
X3T5/91-124: Proposal for OSI RPC Language-Independent IDN
ISO 8824-1SO 8825: Abstract Syntax Notation - Onc

3. Definitions

For the purposes of this Intecrnational Standard, the following definitions apply.

3.1 argument: Paramcter of a procedure.

3.2 ASN.I: Abstract Syntax Notation - One

3.3 by reference: The passing of an argument such that an cffective reference to the actual argument is sup-
plied to the called routine. Modification of the formal paramcter does not affect the actual argument value.

3.4 by value: The passing of an argument such that only a copy of the actual argument valuce is supplicd to
the called routine. Modification of the formal parameter does not affect the actual arpument value.

3.5 by value-return: A paramcter is passed by valuc-return if the mathematical value of the paramecter is
made available to the called procedure, but the vanable holding that parameter is not made available to the
called procedure. The value of the parameter in the called procedure upon completion (which may be dif-
ferent than the initial values) is copied back into the varable that held that parameter in the caller upon exit.
3.6 call: The cexccution of a procedure, starting with the designation of cxplicit parameters continuing with
the modification of the environment including the modification of parameters and concluding with the desig-
nation of a return value (if any) to the calling procedure.

3.7 called procedure: Procedure which is invoked by a procedure call.

3.8 calling mechanism: The logical and functional operations and organization of parameters that define
interfaces between communicating procedures.

3.9 calling procedure: Procedure which invokes another procedure.

2 Common Language-Independent Procedure Calling Mechanism Working Drafl 4 (ISO'SC22'WGILI N295)

SC22/WGI11 N295
3.10 CLIDT: Common Language-Independent Data Types

3.11 conversion: (1) Transformation between values that represent the same data item, but belong to a dif-
ferent data type. (2) Transformation between values that represent the same data item but belong to data
types in different languages.

3.12 IDN: Interface Definition Notation
3.13 implementation defined: Possibly differing between processors, but defined for any particular processor.

3.14 implementation dependent: Possibly differing between processors, and not nccessarily defined for any
particular processor.

3.15 input paramcter: Data valuc passed to the called procedure on entry from the calling procedure.

3.16 input/output paramecter: A pair of rclated data values representing the transformation of a single param-
eter during the exccution of a procedure. Onc valuc is passed to the calling procedure, and the other from the
called procedure on return to the calling procedure.

3.17 interface: Externally visible characteristics of a set of procedures. These characteristics might include
data type declarations, procedure declarations, and exception declarations.

3.18 marshalling: Process of collecting paramcters, converting them to an standard data representation, and
assembling them for transmission.

3.19 output parameter: Data value passed from the called procedure on retumn to the calling procedure.,

3.20 procedure: An abstraction of an action, command, or operation that can specify implicit and explicit
paramcters, modify the environment including the implicit and explicit parameters, and possibly provide a
return value. Procedures may also be referred to as operations, routines, subroutines, and functions.

3.2/ return: Upon completion of the finalization process of the called procedure, control is then returned to
the calling procedure.

3.22 RPC: Remote Procedure Call
3.23 state: Existence of an environment for a procedure call.

3.24 unmarshalling: Process of disasscmbling a list of parameters from the message in which they were trans-
mitted, and converting them to the format used by the procedure. '

4. Definitional conventions

The metalanguage uscd in this standard to specify the syntax of the language-independent procedure calling
mcchanism is defined below:
* Brackets [] enclosc an optional part of the syntax.
» Ellipsis ... indicates that the left clause can be repeated either 0 or more times if it is optional or 1 or
more times if it is required.,
» Notation punctuation that does not conflict with punctuation characters used in the BNF, appear in a
production in the appropriate position. Notation punctuation that does conflict with punctuation char-

acters in the BNF, is enclosed in less-than and greater-than symbols, e.g. <[>. Quotation marks that
appear in a production arc part of the notation and must appear in the interface definition source.

SC22/WGI11 N295

« Elements in the grammar that are capitalized are terminals of the grammar. For example, < Identifier>
is not further cxpanded. Also, keywords of the notation are terminals of the grammar. For cxample, the
keyword “char” is not further expanded.

« The Interface Definition Notation contains two kinds of keywords. Reserved keywords may not be used
as identifiers. Kcywords which are not reserved may be used as identifiers, except when used as attni-
butes.

« The punctuation used in the Interface Definition Notation consists of period *.’, comma °,’, parentheses

‘(" and *Y’, slash °/’, squarc brackets ‘[" and 7', semicolon “, colon “*’, astcrisk “*’, single quotc ™, double
quotc “, and cqual sign ‘=",

« White space is a character sequence that can be used to delimit any of the other low level constructs.
The syntax of white space consists of a blank, a rctum, a horizontal tab, a form feed in column 1, a
comment, and a sequence of onc or more white space constructs.

« A notation keyword, an < Identifier>, or a list of <Digit>s not preceded by a punctuation character
must be preceded by whitespace. A notation keyword, an < Identifier > or a list of < Digit>s not fol-
lowed by a punctuation character must be followed by whitespace. Any punctuation character may be
preceded or followed by whitespace.

 The characters “/*” introduce a comment. The contents of a comment arc cxamined only to find the
characters “*/” that terminate it. Comments thercfore do not nest in the IDN.

5. Compliance

An information processing entity may comply with this International Standard by mapping the native calling
mechanism of the cntity to the model of procedures that is defined in thc CLIPCM.

Note: The general term “information processing cntity” is used in this clausc to include anything which
processes information and contains the concept of procedure calling. Information processing entitics for
which compliance with this Intcmnational Standard may be appropriate include other standards (c.g., stand-
ards for programming languages or language related facilitics), specifications, and common procedure
librarics.

5.1 Modecs of conformance

A information processing entity claiming conformance to this International Standard shall conform in onc of
thrce ways:

1. It may allow programs written in its Janguage to call procedures written in another language and sup-
ported by another processor, using the model of procedure calls defined in this standard. In this case it
is said to conform in (and be capable of operating in) client mode.

2. 1t may allow programs written in another language to call procedures in its language (i.c. it will accept
and exccute procedure calls gencrated by another processor which is cxceuting a program in that other
language and which is operating in client mode, and rctum control to that client processor upon com-
pletion), using the model of procedure calls defined in this standard. In this casc it is said to conform in
(and be capable of operating in) server mode.

3. It may conform in (and be capable of operating in) both client mode and server mode.

Note: It is possible in principle for a clicnt processor to use the model for procedure calls defined in this
International Standard also to call proccdures in the same language running on a scrver processor in the
same language, and if the processor conforms in both client and server mode it is even possible for it to
“serve itsclf” using this model.

5.1.1 Clicnt mode conformance

4 Common Language-Independent Procedure Calling Mechanism Working Draft 4 (1ISO'SC22°WGI1T N295)

SC22/WGI11 N295

In order to conform in clicnt mode, an information processing entity shall define a mapping from its own
language proccdure calling mechanism to the common language-independent procedure calling mechanism
(CLIPCM) defined in this International Standard.

Note: If a program using the CLIPCM facility is to be portable between processors for its language which
conforms in client mode, then the program and processors will also need to conform to the relevant language
standard and the rclevant standards binding that language to the CLIPCM and CLIDT standards.

5.1.2 Server mode conformance

In order to conform in server mode, an information processing entity shall define a mapping from the model
of procedure calls defined in the CLIPCM to its own procedure call model.

Note: If a procedure is to be portable between processors for its language which conforms in server mode
and still to be called by client processors and programs, then the procedure, and the processors, will also
nced to conform to the relevant language standard and the relevant standards binding that language to the
CLIPCM and CLIDT standards.

6. Requirements.
6.1 L anguage-Independent Call Modcl

The general structure of a language-independent procedure call can be described as a single thread of exc-
cution in a particular program where the flow of control is passed from one procedure to another. The
onginator of the call is know as the “clicnt procedure” and the procedure being called is referred to as the
"scrver procedurc”. '

Note: It is possible for a server procedure to also be a client procedure if it makes a call to another proce-
dure in order to complete its desired function.

Procedures have the ability to exchange data between the client- and server via the use of parameters (sce
6.4). If addition, clicnt and server procedures may also share data through the use of global data (sec 6.4.6).
In order for the paramcters specified by the client procedure to be interpreted correctly, the parameters arc
required to be marshalled (see 6.4.7) to a basc form for transmission that is shared by both the client and the
server procedure. After the data has been transmitted, the server procedure must then unmarshall (sec 6.4.7)
the data from the base form into datatypes that are defined in the server language or language binding into
the CLIDT for that particular language.

Note: An cxample of the process of marshalling and unmarshalling of paramcters would be if a Pascal client
procedure made a call to a Fortran server procedure passing a single character parameter. ‘The Pascal “char”
typc would map to a CLIDT character. In order to have the CLIDT character be transmitted to the server
procedure, the CLIDT character 1s marshalled to an ASN.1 “char” fonn, for cxample, which is a form that
would be understood by both the client and server procedures. The ASN.1 “char” would then be trians-
mitted to the server and upon receipt it is unmarshalled into a CLIDT character, which in tum maps to a
“character*1” in Fortran.

The following diagram outlines the basic components of the language-independent call model:

SC22/WG11 N295

Common Language—Independent Procedure Call Model

“H

Client Server

Procedure S Procedure

Ercpaint
Bptia
Airlout=

This language-independent procedure calling model shall be the basc model for the remote procedure call
standard. The Interface Definition Notation contained in the CLIPCM is intended to be shared between the
CLIPCM and thc RPC standards with the RPC standard applying appropriate extcnsions to support
remoteness.

6.1.1 Call Environment

The call environment consists of the available resources for the language processor.

Note: An example of one such resource would be a common library.

Within cach call environment is an address space which is logically scparate for other call cnvironments.
The specification of a call that crosscs call cnvironment boundarics is out side the scope of this standard.

Note: The Remote Procedure Call standard will define such a specification.

A call environment can contain one or more procedure environments. Each procedure environment defines
the scope of language semantics, such as local names. Data utilized by a procedure contained within a pro-
cedure environment can be cither local or external. Local data is data which has a scope that is limited to a
single procedure cnvironment. External data is data which has a scope defined to be the entire call cnviron-
ment. ‘Thercfore, cach procedure environment contained within a call environment has the ability to access
external data that is defined in its call environment. :

6.1.1.1 Procedure Environment Initialization/Identification

The procedure environment consists of three basic parts; the body of the procedure, parameters, and an asso-
ciated state. An implementation conforming to this International Standard shall cnsure that the procedure
cnvironment is created and initialized in an implementation defined method. Upon creation of a procedure
environment, there shall be a unique identificr associated with the newly created cnvironment. The purpose
of this identificr is to identify a previously initialized environment that has maintained a certain state from a
previous invocation.

6 Common Language-Independent Procedure Calling Mechanism Working Drafl 4 (1ISO'SC22/WGI11 N295)

SC22/WGI11 N295

The key component of the state of any particular procedurc environment is the ability for the procedurc
environment to maintain values of variables from one instantiation to another. A procedure call that relics
on a procedurc environment being in a particular statc must have access to the unique identificr for that
cnvironment; otherwise a new procedure cnvironment would be created which would likely have a state that
differs from that of the existing cnvironment.

6.1.1.2 Environment Sharing

As has alrcady been discussed, global data can be shared between procedures whose procedure environments
exist in a common call cnvironment. Another form of sharing environments takes place when passing a
procedure as a paramcter. In order for the called procedure to have the ability to access the procedure it has
received as a parameter, it is necessary for the environment identificr to be passed to lhc called procedure to
ensurc the appropriate state for the procedure.

6.1.1.3 Proccdure Termination

Upon complction of the intended task of the called procedure, the called procedure must terminate its thread
of exccution and return control back to the thread of exccution that initiated the call. Return control back
to the calling procedure includes making any nccessary value substitutions for paramecters passed by value
(scc clausc 6.4.1). In addition to paramcter handling, the procedure environment of the calling procedure
must be reinstated in an implementation defined manner. In the case where the called procedure must main-
tain its state for a subscquent call, an implementation conforming to this International Standard shall main-
tain the state of this procedure environment in an implementation defined manner.

Upon termination of a procedure, the called procedure must communicate the completion status of the call
to the calling procedure. Issuc resulting from normal and exceptional returns from a called procedure are
covered later in this standard under cxception handling (sce 6.7.1).

6.2 Interface Definition Notation Grammar Syntax

6.2.1 Interface Structurce

<interface> ::= interface <interface_identification>
begin <interface_body> end

Possible syntaxcs for < interface_identification > :

<interface_identification> ::= <interface_identifier>

[version <integer_literal>]

<interface_identification> ::= <interface_ identifier>
[compatible with <Object_ 1dent1f1er> [, <Object_ 1dent1f1er>].

Fach interface must have an associated (globally) unique < Object_Identifier>. For convenicnce, one can
also assign a local “name” to an interface that one can locally refer to. Furthermore, this local name can be
used within an import list. (Sce below).

Note: The usage of a local name to identify an interface is for local usage only. When communicating the
interface to a nonlocal entity, an < Object_identificr > must be used.

<interface_identifier> ::= <Object_identifier>
| <local_name> <Object_identifier>

<local_name> ::= <lIdentifier>

List of imported RPC interfaces

SC22/WGI11 N295
<interface body> ::= [<imports>] <declaration>; [<declaration>;] ...
<imports> ::= import (<import_list>)
<import_list> ::= <import> [, <import>] ...

Each import is either identificd by a unique Object id or by a local name.
<import> ::= <Object_identifier> | <local_name>
<declaration> ::= <value_decl>

| <type_decl>
| <proc_decl>

6.2.2 Valuc Declarations

A value declaration introduces an abbreviation (an Identificr) for a constant valuc.

<value_decl> ::= value <Identifier> : <type_spec> = <value_expr>

For CLIDT, one can construct a constant valuc for (almost) any type. For RPC, the only valuc cxpressions
needed are integers, and possibly some others for use within attributes. RPC will therefore restrict the pro-
ductions in this section.

= <Identifier>

| <literal>

| <qualified_value>
| <composite_value>

<value_expr> ::

An identifier is a reference to a value declaration (or to a parameter if the valuc expression occurs on the
RHS of a parametcrized declaration). A literal is a simple immediate valuc.

<literal> ::= <integer_literal>

| <real_literal>

| <character_literal>

| <Boolean_literal>

| <enumerated_literal>

| <rational_literal>

<integer literal> ::= [-]<Digit>...

<real_literal> ::= <integer_literal>.<Digit>...
<character literal> ::= '<Character>' [(<char_set>)]
String literals are used in building other litcrals.
<string_literal> ::= "<Character>...* [(<char_set>)]
<Boolean_literal> ::= true | false
<enumerated_literal> ::= <Identifier>

<rational_literal> ::= <integer_li teral>/<Digit>...

A qualificd valuc T.V is the valuc V interpreted as a value of type T. This is used only when there is a
unique injection of V into T. For example, Time.” <iso8601-datc > . Not uscd in RPC, more on this later.

<qualified_value> ::= <type_spec> . <value_expr>

8 Common Language-Independent Procedure Calling Mcchanism Working Draft 4 (1IS0O;SC22/WGI11 N295)

SC22/WGI11 N295

A compositc is used for arrays, lists, tables, and so on. [ach such typc of composite places additional
restrictions on this basic syntax. For example, a record looks like (id: value, id:value, ...). Not used in
RPC, more on this later.

<composite_value> ::= ([elt [, elt] ...])
<elt> ::= [<value_expr> :] <value_expr>
<integer_value> ::= <integer_literal> | <Identifier>

6.2.3 Datatype Declarations

<type_decl> :== <new_type_decl> | <type_macro>

A <new_type_decl > introduces a new type. This is the same as the current CLIDT “new” keyword. ‘This
type is not the same as any other structurally cquivalent type. “The Ieft hand side can contain free vanables
that arc referenced on the right hand side.
<new_type_decl> ::= type <Identifier> [(<Identifier> [, <Identifier>]...)]

= <type_spec>

A <typc_macro > introduces an abbreviation -- the left hand side is an abbreviation for the right hand side.
Unlike a <type_decl>, a <type_macro> DOLS NOT introduce a new type. ‘The left hand side can
contain free variables that are referenced on the right hand side.

<type_macro> ::= macro <Identifier> [(<Identifier> [, <Identifier>]...)]
= <type_spec>

= [<type_attributes>] <primitive_type_spec>

| [<type_attributes>] <generated_type_spec>

| [<type_attributes>] <type_decl_ref>

| [<type_attributes>] <type_spec> <subtype_qualifier>

<type_spec> ::

6.2.3.1 Pnmitive Datatypes

<primitive_type_spec> ::= <integer_type>

| <real_type>

| <char_type>

| <Boolean_type>

| <enumerated_type>
| <procedure_type>
| <octet>

| <state>

| <ordinal>

| <time>

| <bit>

| <rational>

| <scaled>

| <complex>

RPC restrictions: RIPC docs not support the types <state >, <ordinal>, <time>, <bit>, < rational > 5
< scaled >, and <complex>.

Note: The <octet> type given above is not in CLIDT. It can be viewed as the CLIDT type: array [1 ..
8] of bit. For RPC usages, <bit> is almost never useful (whereas <octet > is). Therefore, RPC uscs
<octet> as the primitive type in place of <bit>.

SC22/WGI11 N295

<integer_type> ::= integer
<real_type> ::= real (<relative_error>)
<relative_error> ::= <integer_value>
<char_type> ::= character [(<char_set>)]
The standard will indicate a default character set to be used if one is not specified.
<char_set> ::= <Identifier>
<Boolean_type> ::= Boolean
<enumerated_type> ::= enumerated (<Identifier> [, <Identifier>] ...)
<procedure_type> ::= proc (<parameter_dcls>)

[returns (<return_arg>)]

[<exception_list>]

<octet> ::= octet

Note: The IDN does not definc context_handles or binding_handles as primitive datatypes. The RPC
standard, however, defines them as generated types defined in an standard interface that all interfaces implic-
itly import:

array [(] .. ¢_handlcSizc] of octet

* type context_handle

e type binding_handle = array [0 .. b_handleSize] of octet
<state> ::= state (<Identifier> [, <Identifier>] ...)

<ordinal> ::= ordinal

<time> ::= time (<relative_precision> [, <radix>, <factor>])
<bit> = bit
<rational> ::= rational

<scaled> ::= scaled (<radix> , <factor>)
<complex> ::= complex (<relative_error>)

6.2.3.2 Generated Datatypes

<generated_type_spec> ::= <record_type>
| <choice_type>
| <array_type>
| <ptr_type>

| <list>

| <set>

| <bag>

| <table>

Note: RPC restrictions: RPC docs not support the types <list>, <sct>, <bag>, and <tablc>.

Note: The array type given here differs from the array type in CLIDT in 3 ways: the index st is always
integer, the size of the array can vary (like CLIDT lists), and arrays can be multi-dimensional. Except for
the last issuc, arrays presented here could be viewed as CLIDT lists. Ilowever, the last issuc is more intri-
cate. As multi-dimcensional arrays are viewed as important by RPC, this document presents the more
general array concept. Since there is disagreement on this issue, however, the array concept given here is

10 Common Language-Independent Procedure Calling Mechanism Working Draft 4 (1ISO/SC22'WG11 N295)

SC22/WGI1 N295

only prcliminary. A joint discussion between CLIDT and RPC committees is needed to iron out these
differences.

<record_type> ::= record (<member_list>)

<member_list> ::= <member> [, <member>] ...

<member> ::= [<component_attributes>] <Identifier> : <type spec>

<choice_type> ::= choice (<member_list>)

The index of cach array dimension is implicitly always integer. The array_bounds_list is a scquence of
subtypes, one for cach array dimension. Llach subtype is a range of integer values, where cither (or both)
sides of the bound arc allowed to be “*7, indicating an indcterminate bound. An empty range significs [0 ..
‘]‘

<array_type> ::= array <array_bounds_list> of <type_spec>

<array_bounds_list> ::= <array_bounds_declarator>
[<array_bounds_declarator>] ...

<array_bounds_declarator> ::= <[> [<array_range>] <]>
<array_range> ::= <array_bound> .. <array_bound>
<array_bound> ::= <integer_value> | *

<ptr_type> ::= pointer_to <type_spec>
<list> ::= list_of <type spec>

<set> ::= set_of <type_ spec>

<bag> ::= bag_of <type spec>

<table> ::= table_of (<element> , <ke;>)
<element> ::= <type_spec>

<key> ::= <type_spec>

6.2.3.3 Type Declaration References

A <type_decl_ref> is reference to a new type declaration or a type macro. If the reference is only a single
identifier, and it occurs on the RIS of a parameterized declaration, it also may be a reference to a parameter.

<macro_instance> ::= <Identifier> [(<expr_list>)]
<expr_list> ::= <expr> [, <expr>] ...
<expr> ::= <type_spec> | <value_expr>

6.2.3.4 Subtypces

<subtype spec> ::= <range> | <max> | <min> | <plus> | <restrict> | <view>

‘I'he range subtype can be used on any ordered type. A precisc bound must be a value of that ordered type.
The infinitics are only usable in subtyping intcger and rcal.

SC22/WG11 N295

<range> ::= range (<lower_bound> , <upper_bound>)
<lower_bound> ::= <precise_bound> | neg_infinity
<upper_bound> ::= <precise_bound> | pos_infinity

<precise_bound> ::= <value_expr>

The max and min subtypes can be used to form subtypes of the list, set, bag, and table types. They bound

the size of the aggregate.

<max> ::= max (<integer_value>)

<min> ::= min (<integer_value>)

Plus is CLID's extended. Restrict is CLID’s sclected. View is CLID’s explicit subtype.

used in RPC.

<plus> ::= plus (<expr_list>)
<restrict> ::= restricted_to (<expr_list>)
<view> ::= viewed_as (<type_spec>)

6.2.4 Procedure Declarations

<proc_dcl> ::= [<proc_attributes>]
proc <Identifier> ([<parameter_dcis>])
[returns (<return_arg>)]
[<exception_list>]

<parameter_dcls> ::= <param_dcl> [, <param_dcl>] ...

<param_dcl> ::= <direction> <parameter> -

<parameter> ::= [<param_attributes>] <Identifier> : <type_spec>
<direction> ::= in | out | inout

<return_arg> ::= [<param_attributes>] [<Identifier> :] <type_spec>
<exception_list> ::= raises (<exception_dcl> [, <exception_dcl> ...])
<exception_dcl> ::= <Identifier> ([<parameter> [, <parameter>] ...])

6.2.5 Attnbutes -

<type_attributes> ::= <[> <type_attribute> [, <type_attribute>] ... <]J>
<proc_attributes> ::= <[> <proc_attribute> [, <proc_attribute>] ... *5}:'
<param_attributes> ::= <[> <param attribute> [, <param_attribute>] ... <]>

<component_attributes> ::= <[> <comp_attribute> [, <comp_attribute>] ... <]>
The rest of this section contains proposed attributes for RPC.
6.2.5.1 Type Attributes

There arc two kinds of <typec_attributes > .

These 3 are NOT

12 Common Language-Independent Procedure Calling Mcchanism Working Draft 4 (1ISO,SC22/WG11 N295)

SC22/WGI1 N295

* (I) cndpoint-specific attributes specify how to map the interface type to a particular implementation on
cither the caller/called side (or both). An endpoint specific attribute contains only local mapping infor-
mation; thcrefore, it docs not cffect any protocol. Examples include: how to map the choice type to
discriminated unions.

* (1) Contractual attributes (also called type_restriction_attributes) contain information that both sides
must agree to. These attributes may affect protocol. Examples include: type restrictions that indicate a
more cfficicnt wirc encoding of the datatype (c.g., sparsc), a restricted use of pointers (c.g., unaliased)
that allows a more cfficicnt marshalling routine to be used, ctc.

<type_attribute> ::= <type_restriction_attribute>
| <endpoint_specific_attribute>

The sparse attributce is used in conjunction with the array, list, sct, bag, and table types. It indicates that
most values of the aggregate are expected to have a default value. ‘The unaliased attribute is used to indicate
that a pointer structure contains no aliasing. It can be used only in conjunction with a pointer type.

The nonnull attribute is used to indicate that a pointer cannot have a null value. It can be used only in
conjunction with a pointer type. This attribute only makes sense if pointers are allowed to have null valucs,
a still unresolved issue. .
<type_restriction_attribute> ::= sparse (<value_expr> | <Identifier>)

| unaliased

| nonnull

| <lifetime>

| <procedure_attribute>

The <lifetime> attribute indicates that a procedure parameter (i.c., a closure) may only have a restricted
lifctime. In particular, the cnvironment in which the procedure parameter lives may only exist during the
current call (i.c., the procedure parameter is a “callback”) or during the duration of the current caller/called
binding.

<lifetime> ::= callback | extended_callback

An <cndpoint_specific_attributc > may be qualified by the keyword “caller”/“called” to indicate that the
attribute applics only to once cndpoint.

The local_representation(X) attribute is used to indicate that a given type is represented by a local type X.
The encode/decode attributes provide the names of local routines to encode and decode the interface type
to/from a local representation. The < switch_type > attribute is used to indicate a “switch” type that is uscd
locally to discern what case a choice is in. (An cxample is given below).

<endpoint_specific_attribute> ::= caller (<endpoint_specific_attribute>)
| called (<endpoint_specific_attribute>)
| Tocal_representation(<Identifier>)
| encode(<Identifier>)
| decode(<Identifier>)
| switch_type (<s_type>)

<s_type> ::= <integer_type>
| <char_type>
| <Boolean_type>
| <enumerated_type>
| <ldentifier>

6.2.5.2 Procedure Attributcs

<procedure_attribute> ::= at_most_once | idempotent

6.2.5.3 Paramcter Attributes

13

SC22/WGI1 N295

Note: The following param attributes are open for discussion. Param attributes indicate a restricted
relationship that must cxist between the in and out values of an inout parameter. The same_structurc attri-
butc is used in conjunction with an inout pointer parameter to indicate that the “topology” of the structure
pointed to by the param docs not change during the call. The same_size attribute is used in conjunction
with an inout open array, list, set, bag, and table parameter. It indicates that the sizc of the aggregate does
not change during the procedure call. The samc_case attribute is used in conjunction with an inout choice
parameter to indicate that the case of the choice docs not change during the procedure call.

The <dynamic_information > attribute is used to inform thc marshalling routinc where certain runtime
information can be found to help in marshalling (scc below).

<param_attribute> ::= same_structure
| same_size
| same_case

<dynamic_information>
6.2.5.4 Component Attributes

The <discriminant_value> attribute is used in each arm of a choice in order to identify the particular arm
of the choice with a set of valucs from the <switch_type> domain. It must be used in conjunction with
the <switch_type> attribute. The <dynamic_infonmation> attribute is used to inform the marshalling
routine where certain runtime information can be found to help in marshalling (sce below).

<comp_attribute> ::= <discriminant_value>
| <dynamic_information>

<discriminant_value> ::= case (<d_value> [, <d_value>] ...)
<d_value> ::= <value_expr> | default

T'he <discriminant_is> attribute is used to tell the marshalling routine where the discriminating valuc for a
choice is. (If the choice is embedded within a record, then the discriminating valuc must be another compo-
nent of the record. If the choice is a parameter of a procedure, then the discriminating value must be
another parameter of the procedure.) Similarly, the <bounds_is> attribute is used to tell the marshalling
routine where the bounds of a conformant array or a varying array can be found. ‘The caller attribute is used
to indicatc that a component of a record or a parameter of a procedure call is provided by the caller only for
use by the runtime. It is not part of the type and is not to be transferred on the wirc. A typical usage of
this attributc is in conjunction with the <discriminant_is> and <bounds_is> attributes. Upon rctumn
from the call, this component or parameter is reconstructed by the runtime. Similarly, the called procedure
attribute indicates that a component or parameter is not part of the type and is not transferred on the wirc.
Instead, it is constructed by the runtime and provided to the called procedure. A typical usage of this attni-
bute is in conjunction with the < discriminant_is> and < bounds_is> attributes.

<dynamic_information> ::= <discriminant_is>
| <bounds_is>
| caller

called
<discriminant_is> ::= discriminant_is (<Identifier>)

Onc can now write the following in an interface:

declare T = [switch_type(integer)]
choice([case(5)] a: int,
[case(10)] b: real,
[case(default)] c: Boolean);

proc foo([caller] x: integer, [discriminant_is(x)] y: 1)

14 Common Language-Independent Procedure Calling Mcchanism Working Draft 4 (1ISO,SC22-WGI11 N295)

SC22/WGI11 N295

<bounds_is> ::= first_is (<attr_var_list>)
| length_is (<attr_var_list>)
| min_is (<attr_var_list>)
| size_is (<attr_var_list>)

<attr_var_list> ::= <attr_var_dcl> [, <attr_var_dcl>] ...
<attr_var_dcl> ::= [<attr_var>]

<attr_var> ::= <Identifier>

6.3 Uscr Defined 1 .ctters

The sct of letters in the character sct defined by a processor shall be user specified. The default st of letters
defined by the CLIPCM are the upper casc letters ‘A’ through “Z’. A user defined set of letters shall include
the default set of letters.

Note: Uscr defined Ictters allow an implementation to have internationalized procedurc-ids.
Note: Issucs concemning case sensitivity are the responsibility of the link-cditor which is outside the scope of
the CLIPCM standard.

6.4 Parameter Passing

Any datatype defined in the Common Language-Independent Data Types standard can be a formal param-
cter of a language-independent procedure call. The CLIPCM defines paramcter passing solely on the passing
of values. ‘Therefore an actual parameter may be any expression yiclding a valuc of the datatype required by
the call. The parameter passing model defined in this International Standard is a strongly typed modcl.

Notc: Weak typing can be accomplished by relaxing association rules and adding implicit type conversions
in the language bindings to this International Standard. '

‘There are four basic types of parameter passing defined in this Interational Standard:

1. Call by Value Sent on Initiation
2. Call by Value Sent on Request
3. Call by Value Returned as Specified

4. Call by Value Returned when Available

6.4.1 Call by Value Sent on Initiation

This is the simplest form of parameter passing. The formal parameter of the scrver procedure requires a
valuc of the datatype concemed. ‘The virtual contract is that the caller evaluates the actual parameter and
supplics the resulting value at the time of transfer of control. The called procedure accepts this value and no
further interaction takes place.

Note: This type of parameter passing is probably better known as Call by Valuc.
6.4.2 Call by Value Sent on Request
The virtual contract for this type of paramcter passing is that the caller undertakes to cvaluate the actual

paramcter and supply the resulting value, but only upon receipt of a request to do so from the called proce-
dure. The evaluation and passing of the actual parameter takes place if and only if the called procedure

rcquests it.

15

SC22/WGI11 N295

The essential difference from Call by Value Sent on Initiation is that in some cases the valuc sent will be
different.

Note: An example would be date-and-time.

Call by Value Sent on Request could be regarded as a call of an implicit procedure paramcter where the
called procedure does the evaluation one time. Any further reference in the called procedure to the formal
parameter simply uses the valuc supplied. The called procedurc does not issue a further request for a value.

6.4.3 Call by Valuc Returned as Specified

This type of paramcter passing is cssentially the “out” cquivalent to Call by Valuce Sent on Initiation. The
virtual contract is that the called procedure will supply a valuc of the datatype of the formal paramcter and
the caller will accept is and act appropniately.

Note: ‘T'his type of paramcter passing is probably better known as Call by Valuc Return.

For a conventional “out” parameter it mcans that the destination is cvaluated by the caller at the initiation of
the call, and then sends the returned valuce to that destination at the conclusion of the call.

Note: In the case where the expression is simply the name of the vanable, the timing of the trivial evalu-
ation is of no significance, but is necessary to specify to accommodate the more general case, and make it
clear that this is the usual evaluation of actual parameters on initiation.

It is necessary to specify that it is the caller and not the called procedure which sends the returned value to
the destination, in order to accommodatce situations, as in RPC, where the caller and called procedures may
be decoupled. In a closely coupled environment where providing the actual destination (hardware address)
to the called procedure is a trivial task, there is no reason why the actual service contract at the implementa-
tion level should not include providing the actual destination to the called procedure, which then sends its
returned value dircctly there. This is an additional service level function that the called procedure contracts
to perdform for the caller, which docs not affect the logical division of responsibility at the virtual contract
level. - ;

This kind of parameter passing also accommodates the return of a valuc for the procedure as a whole, in the
case of function procedures. Parameter passing utilizing Call by Value Retumncd as Specified accommodates
function procedures through the usce of an additional anonymous parameter.

6.4.4 Call by Value Returned when Available

This type of parameter passing is primarily here for completencess to cover the case where the caller does not
cevaluate the destination for an “out” parameter on initiating the call, but delays it until the returned value is
actually received. Therefore, the called procedure can determine the timing of the evaluation to be any time
after the retumed value is available. It could be retumed while the call is still in progress, at the termination
of the call, or some time later. What time is chosen is determined by the binding of the CLIPCM based
service and is not a matter for the CLIPCM itself. All the CLIPCM model requires is that this possibility
be accommodated for. The virtual contract is that the caller will reccive the returned value when the called
procedure sends it, and then evaluate the destination and send the valuce there.

6.4.5 Relation of Conventional Parameter Passing to the CLIPCM

In this scction, the common parameter passing mechanisms that exist in current languages will be mapped to
the four defined parameter passing schemes that are defined in this International Standard.

6.4.5.1 Call by Value (In paramcters)

This is the simplest of all common parameter passing mechanism and appears directly in the CLIPCM as
Call by Value Sent on Initiation (see clause 6.4.1). The virtual contract is fulfilled by the caller evaluating

16 Common Language-Independent Procedure Calling Mechanism Working Draft 4 (ISO/SC22'WGI11 N295)
guag p g 8

SC22/WGI11 N295

the actual baramctcr and scnding the value to the called procedure, and the called procedure accepting it.
No further action is required of the caller. The called procedure does what it likes with the received value,
but can make no further demands on the caller with respect to the actual parameter that generated the value.

6.4.5.2 Call by Value Return (Out paramcters)

This common parameter passing mechanism is also directly supported in the CLIPCM by Call by Valuc
Rctumned as Specificd. The virtual contract for this mechanism involves the concept of passing only as a
mcans of rcceiving a value. If in a specific language binding, a parameter is passed at the language processor
level, what is passed is an implicit pointer to a valuc of the datatype concerned, which the called procedure
contracts to sct. The called procedure can not access the value of the datatype prior to the call. Somec
languages in their datatyping modecl, explicitly distinguish between the datatypes of values held by variables
and thosc of the variables themselves. For example, some languages have an explicit dercference (i.c., obtain
the value of). For languages without such a model, the CLIPCM allows that distinction to be made at the
language binding service contract level without disturbing the virtual contract model.

6.4.5.3 Call by Value Scend and Retumn (In-out parameters)

This common parameter passing mechanism is an in/out mechanism where the actual parameter can be cval-
uated to a destination for Call by Value Retumn as Specified (see clause 6.4.3). However, in the CLIPCM
model it is regarded as a paramcter with both that property and that of Call by Value Sent on Initiation (sce
clause 6.4.1). Equivalently, it can be expanded into two implicit parameters being of cach kind.

The actual parameter corresponding to a formal paramcter of a given datatype “t” must be capable, on cvalu-
ation, of yiclding a destination for such a value (i.c., an implicit or explicit pointer to a value of datatype “t*).
FFor the "in” part of the in/out the current value held in that destination on initiation of the call is retreved
by the caller and relayed to the called procedurce. The destination itself is also recorded. In the virtual con-
tract, the caller receives the returned value, the “out part of the in/out, from the called procedure and sends it
to that destination.

Where the language binding or service contract passes the destination itsclf to the called procedure as part of
the copy-in/copy-out, the called procedure must contract to retrieve the “in” value immediately on transfer
and then to send the retumced “out” value to the destination on completion of the call. While the call is in
progress, the caller explicitly or implicitly marks the destination as “read once only, write once only” and any
attempt by the called procedure to violate that condition is an exception.

6.4.5.4 Call by Reference

In this casc a formal parameter of datatype “t” is interpreted as an implicit “pointer to “t”* and the actual
parameter must evaluate to such a pointer accordingly. This pointer to “t” is then passed by value as an “in”
parameter.
Note: This is not passed as an inj/out duc to the fact that this would cause an extra level of indirect
addressing,.

The virtual contract is that the caller provides an access path to the destination. The destination is fixed, but
the access path can be used by the called procedure both reading and writing of values of datatype “t”. In
the close-coupled case the service contract may well involve passing the actual destination with the caller
nceding to take no further action until the call is complete. In a loosely-coupled service environment the
service contract will involve caller action duning the call, responding to requests by the server for a value of
datatype “t” to be rcad or written. In cffect this would be reciprocal calls with the "in” and “out” dircctions
reversed.

Note: These reciprocal calls implied by Call by Reference in a loosely-coupled environment represent a
potential significant overhead, which may result in Call by Reference not being supported in such services.

6.4.6 Global data

17

SC22/WGI11 N295

Global data refers to data that is defined in one procedurc environment that can be referenced by another
procedure exccuting in a different procedure environment within the same call cnvironment. Implementa-
tions conforming to the Common Language-Independent Procedure Calling Mechanism shall support an
implementation-defined mechanism for the sharing and partitioning of global data. Partitioning of data
refers to the ability to insulate data from a procedure. It is recommended that implementations choose to
support global data via implicit paramcters that arc passed on the call.

6.4.7 Parametcr Marshalling / Unmarshalling

It is nccessary that data to bc communicated between the client procedure and the scrver procedure be
assimilated into a transmissible form. This transmissible form will allow the clicnt and server procedurces to
encode their CLIID'T mapped data into a form that is suitable for both language independent calling on the
same system and remote procedure calls. The specification of this transmissible form is outside the scope of
this standard.

Note: An cxample of a form that would be suitablc for this usc would be Abstract Syntax Notation - Onc.

The marshalling of data refers to what the calling procedure must do in order to transform its data into' a
form that is understood by the called procedurc. Unmarshalling of data refers to what the called procedure
must do in order take the data passed by the calling procedure and transform this into data suitable for the
language of the called procedure. Marshalling is not limited to the calling procedure as upon return, the
called proccdurc must marshall any rctumed data into the form sharcd by the two procedurcs.
Unmarshalling of data is not limited to the called procedure, since the calling proccdurc must be able to
unmarshall any data that is returned by the called procedure.

Since marshalling and unmarshalling of data for procedure calls is often complex and degrades performance,
it would be beneficial to implementations to perform optimization of this process wherever possible. Opti-
mizations will likely be available when the client and scrver systems arc homogencous and the languages
involved in the procedure call have the same data representation. -

6.4.8 Pointer Parameters

A Call by Value Sent on Initiation of a pointer allows access to the entity pointed to. ‘The pointer value
itsclf cannot be changed in order for the pointer to refer to something clsc after the call.

Note: For example, if the value sent is a pointer to a record, after the call the pointer still points to the
same record even though the values in the fields of the record may have changed.

If changing what the pointer refers to is needed, then another level of indirect referencing has to be invoked,
cither dircetly (as with call by reference) or indirectly (as with call by value-rcturned). An access path via
pointer parameters implies access to all lower levels, including the primitive datatype values referenced by the
lowest level pointers.

6.5 Synchronous and Asynchronous Calling

The issuc of whether of not a call exccutes synchronously or asynchronously is outside the scope of the
CLIPCM standard. It is the intent of the CLIPCM not to inhibit cither synchronous or asynchronous calls.
An implementation can choose whether or not to limit the number of threads of exccution in any particular

call environment.

6.6 Recursion

It is the intent of the Common Language-Independent Procedure Calling Mechanism not to prohibit
recursion. It is outside the scope of the CLIPCM as to how an implementation should implement a recur-
sive procedure call.

I8 Common Language-Independent Procedure Calling Mcchanism Working Draft 4 (ISO,SC227WGI11 N295)

SC22/WGI11 N295

Note: Implementors should be aware that optimization considerations for CLIPCM calls needs to take
recursion into account.

6.7 Run-time Control
6.7.1 Condition Iandling

An implementation conforming to the Common Language-Independent Procedure Calling Mcechanism shall
provide a mcthod for handling conditions that occur during the initialization, cxccution, or termination of a
procedure call. Conditions can be defined in a number of ways. Some examples of conditions are:

* hardwarc or softwarc detected cvents which may or may not be critical to the proper exceution of the
application
= asynchronous cvents

« successful or unsuccessful completion of a unit of work

Systems today communicate information about these conditions in various ways, for cxample, rcturn codes
and/or exceptions, and there is little if any commonality in the usc, representation, or communication meth-
odology used for these conditions across’ these systems. Therefore, in order to provide for consistency in
multi-lingual callable services, implementations conforming to the Common Language-Independent Proce-
durc Calling Mcchanism shall provide an implementation defined data type for the representation of condi-
tions and for the communication of information required to process the conscquences of their existence.
Called procedures shall utilize this implementation defined data type for conditions to return information as
a fecdback code. '

Note: Advantages resulting from the condition data type:

¢ A condition handler can be established to process return information from called services. This method
would free the programmer from coding ‘invoke then check” type of calls. Instcad, a centralized location
would be used to handle retum information.

* As a shared data type among callable services, condition management and message services, it ties
together these components.

* A message that can be displayed or logged in a file is associated with cach instance of a condition.
* As a feedback code, it can be stored for later processing. ‘
As a minimum, implementations conforming to the Common [.anguage-Independent Procedure Calling
Mechanism should report the following conditions during exccution.
e Server procedure unavailable, call not exceuted.
* Client or server procedure does not have defined mapping from its language to the CLIDT form defined
by the 1DN.

* Value out of range for data type. (c.g. An integer is passed as a paramcter from a Pascal program to a
COBOL program that is outside of the allowable decimal range for the COBOL data type.)

« Mecchamism broken on server procedure side of call.

Implementations conforming to this International Standard shall also support exception raising in an imple-
mentation defined manner. Exception raising occurs when the calling procedure decides for some reason
that the called procedure should be terminated immediately.

The condition handling mechanism supported by the implementation shall be made available to the
Common |.anguage-Indcpendent Procedure Calling Mechanism in an implementation defined method. An
implementation shall document all conditions flagged by the implementation during procedure initialization,

exccution, and termination.

19

SC22/WG11 N295

6.8 Private types

A private type is a type that is protected from modification within the procedure regardless of the attributes
on a paramcter being passed as a private type. No operations shall be permitted on a protected paramcter.
A private type is declared by including the restricted keyword prior to the CLIDT type in the IDN.

Note: A privatc type can basically be considered as a byte strcam that can have no operations performed on
it.

20 Common lLanguage-Independent Procedure Calling Mechanism Working Draft 4 (1ISO/SC22°'WGI1 N295)

SC22/WGI11 N295

Appendix A

A.I Procedure parameters

The syntax for the languagc-independent calling mechanism allows for a procedure to be a paramcter of
another procedure. There are three different cascs that result from the procedure parameters feature.

A.l1.1 CLI Reference / Local Access

In this case, procedure A in language X calls procedure B in language Y and passcs to procedure B a pointer
to procedure C which is also in lunguage Y. There shall exist a way for language X to reference procedure C
in order to generate a pointer to pass to procedure B. This reference to C shall be referred to as the cli-
reference. After B has begun cxccution, it will eventually call C, but this is simply a local call therefore no
cli-access 1s nccessary.

Note: Procedure B must understand how to call procedure C “locally” based on the cli-reference informa-
tion it was passed.

Longuogs X Longuoge Y
A begin B: begin
B(C) c
end end
C: begin
end

A.1.2 CLI Reference / CLI Access

In this case, procedure A in language X calls procedure B in language Y and passes to procedure B a pointer
to procedure C which which is in language X. Eventually, B will call C and in this case the call to C must
use cli-access since the call crosses the boundary. In addition to this for B to call C, it must have the cli-
reference of C. This information is obtained from that which was passed from procedure A.

21

SC22/WGI11 N295

Longuogs X Longuoge Y

A: begin B: begin
B(C) G
ond ond
C: begin
end

A.1.3 Local Reference [Local Access

In this case, procedure A in language X calls procedure B in language Y and passes to procedure B a pointer
to routinc D in language X. Eventually, B will call procedure C in language X and pass to procedure C the
pointer to routine D. C will then call D, but in this case both the reference and access of 1D by C arc local.
Therefore it is not necessary for the pointer information describing D to be a cli-reference, but it must be in
a form that allows the transformation to B’s cnvironment and back to its original state.

Longuoge X Longuoga Y

A bagin B: begin
B(0): c(o)

22 Common lLanguage-Independent Procedure Calling Mcchanism Working Draft 4 (1ISO,SC22:-WGI11 N295)

