JTC1/sc22/waGil N222R

Response to International Comments on the
Language Compatible Arithmetic Standard

1 March 1991



1

Introduction

The CD ballot results on the Language Compatible Arithmetic Standard [1] includes detailed
comments from France and the Netherlands. Subsequently, Czechoslovakia [2] and the United
Kingdom [3] submitted further comments. This document is a response to those comments.
All of the comments are detailed and constructive, and we wish to thank the anonymous
authors for their work.

2

1.

Response to Comments from France

The proposed document does not reflect ezactly the decision of the May/June
meeting of WG11...

The text of the LCAS was not changed, since time did not allow a full revision of the
standard after the WG11 meeting. The WG11 requests have been included in version
3.0, which has just been submitted to WG11.
The discussion about the NWI in the Foreword is irrelevant.
That discussion has been removed.
Warning should be given in the Foreword that NOTES in the tezt are infor-
mative only.
ISO-CS are of the view that it is not necessary to state that NOTES are informative
only. However, we have added such a sentence to the Foreword.
“Denormalized” is specified in terms of non ISO standards. The full defini-
tion should be given.
The reference to the non ISO standard has been removed. The term “denormalized”
is defined in 3.2 and the glossary, and is described more fully in 4.2.
“Possible extensions to this Standard” is irrelevant and should be deleted.
We have deleted this subclause from the Standard, and have included a discussion of
proposed future work (now assigned to WG11) in the Rationale.
The term “ezponent bias” in “Specifications not within the Scope” is not well
known and should be defined.
We now define “exponent bias” in 3.2.

How can a standard implementation of a language also conform to the LCAS
if the language does not support all of the LCAS types?



10.

11.

12.

The LCAS requires that a signed integer type and a floating point type be supported
by a conforming implementation. It is our intention that an implementation of pro-
gramming language X that does not provide both a signed integer type and a floating
point type can not conform to the LCAS.

How can a standard implementation of a language also conform to the LCAS
if the language standard supports arithmetic types other than those in the
LCAS?

LCAS places no requirement on those data types not specified in LCAS. For instance,
LCAS does not specify anything about type COMPLEX as in FORTRAN 77. Simi-
larly, unsigned integers in the C programming language do not conform to LCAS and
therefore are not an integer type in the sense of LCAS. This implies that the con-
formity statement for an implementation is essential to understand how a language
implementation conforms. This should be clearer in version 3.0 of the LCAS, which
gives detailed descriptions of the connections between the requirements of the LCAS
and programming languages commonly used in numeric computing, in annex B.

How can a standard implementation of a language also conform to the LCAS
if the language does not support all of the LCAS operations?

To conform to the LCAS, a language implementation must provide all the operations
required by the LCAS. We believe that nearly all existing language implementations,
in practice, provide the ability to call to vendor-supplied libraries. However, vendors
can certainly provide the user with source code that can be inserted textually in the
user’s own code. The LCAS does not require compilers to provide any special support
for the LCAS operations. An NPL report is available giving a sample implementation
of the LCAS operations in Pascal.

How can a standard implementation of a language also conform to the LCAS
if the language does not permit eztensions, or does not provide all of the
intrinsic inquiry functions required by the LCAS?

To conform to the LCAS, a language implementation must provide all the parameters
and constants required by the LCAS. We believe that nearly all existing language
implementations, in practice, provide the ability to call to vendor-supplied libraries to
access special constants. However, vendors can certainly provide the user with source
code containing definitions for these parameters and constants that can be inserted
textually in the user’s own code. The LCAS does not require compilers to provide
any special support, e.g. intrinsic inquiry functions, for the LCAS parameters and
constants.

It should be said that X is a discrete subset of R.
We have added “discrete” to the definition of rounding function (3.2).

Two’s complement floating point (or other specific hardware ) should not be
ezcluded.



13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

Frankly, we are still undecided about two’s complement. We have not changed our
floating point definitions to accommodate two’s complement, but we welcome input
on this issue. Radix complement floating point is not uniquely defined; we know of
at least two different architectures, with slightly different characteristics. There are
very few radix complement floating point implementations that are current. A general
set of properties for radix complement greatly complicates our definitions. We have
included a discussion of these issues in the Rationale (see A.4.2.0.3).

Simplify the definitions of the operations with a new “range checking” func-
tion.

We have added a function rnd.and_chkr as suggested.

What does “it is recommended that Fy, Fy, F3, ... satisfy” mean?
The sentence has been clarified.
Misspelling of “shall”.

This has been corrected.

“Relationship with language standards” pertains to “Conformity”.
We have provided new annexes detailing the connection between standard program-
ming languages and the requirements of the LCAS.

Conflicts between standard languages and the LCAS.
We have removed this statement. Currently, we know of no real conflict between a
language standard and the LCAS.

Much of the tezt in “Relationship with language standards” is ezample.
We have made this clearer in the text.

These ezamples should cite the appropriate language standards.

We have included references fo the language standards.

Some of the ezamples refer to languages not yet standardized.

This reference occurs in an illustrative NOTE, which has no normative impact. Com-
mon Lisp is widely known, and is currently being standardized in the US. We believe
it is acceptable, in informational NOTES, to reference standards work which is nearly
complete.

The lists of non-supported features should be gathered together.

The list of non-supported features now appears as 1.2 “Specifications not within the
scope of this standard.”

Page 23 was missing.

Sorry. We will send a copy of version 3.0.

3



-23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

The annezes should be clearly identified.
The annexes now have the proper headings and correct references.
1t is stated that each primitive operation has at most one rounding error, but
does “pre-rounding” 1introduce additional rounding errors?
We will reword the “Approximate addition” clause to avoid misunderstanding. The
cumulative effect of add}, followed by rndp is one rounding error.
References to “this standard” are not always clear in the contezt of standard
programming languages.
We have clarified the use of “this standard”.

The term “ulp” is used without definition.
We have inserted the definition of “ulp”.

Complete references should be given for the language standards mentioned.

We have included citations for language standards.

The standard cited is not correct.
We have changed this to cite the Basic Encoding Rules of ASN.1. -The complete
reference is in the Bibliography.

Change “conformity” to “A conforming system” in A.2.
We have made this change.

Misspelling of “conformity”.
We have corrected this.

Include the title of ISO-9001.
We have included the title.

Reword: “if the standard were written in an informal way...”

We have clarified this sentence.

Mathematical definitions needed for set definition and manipulation.

We have noted in 3.1 all mathematical symbols which are used in the standard. We
assume a familiarity with set theory notation.

In the discussion of “notification” and “ezception”, a harmonization should
be attempted between the LCAS and the Technical Report on the preparation
of programming language standards.

The Technical Report [5] uses “exception” to mean the occurrence of a violation. The
LCAS uses “notification” to mean the subsequent informing of the program or user.
We will try to make this clearer.



-35.

36.

37.

38.

39.

40.

41.

42,

43.

44,

45.

46. -

47.

X is a discrete subset of R (A.8.2).

We have clarified this section.

Mathematical definitions needed for “implies”.

We have added the implication symbols to our list (3.1).

In the definition of mody, need < y.
We have changed “< y” to “< y”.
Define NaNs.
We have added the definition of NaN to the text and to the Glossary.

Need citations for IEEE 754.

We have included citations for IEEE 754 and 854.
Formatting of “all”.

We hope that we can avoid similar problems with IATEX.

References to specific vendor implementations should be deleted.

The table of actual parameters from vendor systems is of substantial practical use and

interest. However, we have moved it to annex F (which will be removed before final
balloting).

Define geometric mean.

We have included the definition of geometric mean.

Misplaced footnote.

We have reformatted the notes to the table of machine parameters (now in annex F).
Remove hyphen in “in range”.

We have made this change.
Replace the word “ties”.

We have clarified these sentences.

The word “model” does not seem appropriate.

The classic Brown paper (6] on floating point uses the term “model.” We are following
Brown’s usage.

Change wording.

We have made these changes as requested.



- 48,

49.

50.

51.

52.

53.

54.

55.

56.

3

3.1

Ezplain notation of half-open interval.
We now define interval notation in A.3.2. Interval notation is not used in the standard
itself.
Misspelling of “ways”.
We have made the correction.
Accepted comments on the body of the standard should be reflected in this
annez A.

We have incorporated many changes suggested by reviewers into both the standard
and the Rationale. The list of reviewers is included in the Acknowledgements clause,

in annex A.

ISO references should be given for language standards that are cited.

We include ISO citations where they exist. Some language standards are under devel-
opment or have no ISO counterparts as yet, e.g. Common Lisp.

Need an ISO reference for Fortran 90.
We have included an ISO reference for Fortran 90.

Citation for IEEE 754 should be found in the Bibliography.

All citations are now found in the Bibliography annex.
Definition of “aziom”.
The definition of “axiom” has been clarified.

Definition of “denormalized”.

The definition of “denormalized” has been clarified.

Definitions for “ezception” and “violation”.

These definitions have been expanded in the Glossary and elsewhere (A.5).

Response to Comments from the Netherlands

Notification

The LCAS defines a notification as either the alteration of control flow such that execution
can continue only because of a (user-supplied) handler, or the output of an exception report.
After the notification occurs, the program execution may continue, either as a result of the
handler or as the system default, using an in range value (An in range value is a floating



point number whose magnitude lies between fmin or fmaz inclusive, or is an integer between
minint and mazint inclusive).

The LCAS places no restrictions on the in range values that can be used, or on the violations
after which execution may continue. '

In Example 1, the result is the notification overflow. Post-notification execution is not con-
strained, but the in range value is not the “result” of the operation causing the notification.
In particular, the LCAS does not prevent a poor choice for continuation value.

In Example 2, overflow is not an in range value.

The LCAS recommends but does not require that the different exceptional values be distin-
guishable from one another. An implementation is free to produce the same effect from all
the notifications. For instance, an Ada implementation may well raise the NUMERIC_ERROR or
CONSTRAINT_ERROR exception for all the LCAS notifications. In Example 3, the exceptional
values may be indistinguishable.

We have clarified the text of the “Notifications” clause in the standard, and added more
explanation in the Rationale.

3.2 Modulo arithmetic and the C language

As noted, LCAS does not support modulo arithmetic in the style of “C” unsigned integers.
The reason for this is that such modulo arithmetic is clearly machine-dependent rather than
being an approximation to the mathematical concept of integers. We have clarified our
discussion of unsigned integers in the annex for the C programming language to emphasize
that they are not a conforming integer type.

4 Response to Comments from Czechoslovakia

1. It is important to clarify basic properties that are common to all programming
languages. The draft could help to create standard languages.

We agree. However, any action to modify a language standard must be carried out
within the committee responsible for that standard. Annex B gives detailed suggestions
for particular language bindings.

2. Arithmetic operations are relatively unambiguous. Similar documents dealing
with topics such as assignment, indezing and parameter passing would be

useful.

These topics are not within the scope of the LCAS. New work items could be created
to cover them.



a3 8 Page 28 is missing.
Sorry. We will send a copy of version 3.0.

4, The definition of the parameter “denorm” is contradictory in its use.

Although the IBM 370 format permits unnormalized numbers, the IBM supplied soft-
ware provides no support for their use. Consequently, the observable behavior is de-
norm = false. Section 7.4 of IEEE standard 754 contains a definition of denormalized
numbers equivalent to that in the LCAS.

5. Why are conversion operations between floating point types of different radices
omitted?

Such conversion operations will be included in a later standard [4].

5 Response to Comments from the United Kingdom

5] The operations shown as “optional” on pages 10 and 18 should be mandatory.

This has been done in version 3.0.

References

[1] Summary of Voting and Comments Received on a proposal to register document
N796 as a Committee Draft on: Language Compatible Arithmetic Standard. ISO/IEC
JTC1/SC22 N851. October 1990.

[2] Additional comments received on document N796 — Language Compatible Arithmetic
Standard. ISO/IEC JTC1/SC22 N868. November 1990.

[3] UK Member Body comment on N796 ~Working Draft on Language Compatible Arith-
metic Standard. ISO/IEC JTC1/SC22 N887. December 1990.

(4] Proposal to Develop a Language Compatible Mathematical Procedure Standard.
ISO/IEC JTC1 N1115. December 1990.

[5] Information technology — Guidelines for the preparation of programming language stan-
dards. ISO/IEC TR 10176. 1990.

[6] W S Brown. A Simple but Realistic Model of Floating-Point Computation. ACM Trans.
Math. Software Vol 7. 1981. pp445-480.






