ISO/EC JTC1/sceawait N 8!

LANGUAGE—~INDEPENDENT DATA TYPES

David A. Joslin

Teesside Polytechnic
Middlesbrough TS1 3BA, England

JANET/EARN: DAJ @ UK. AC. TP. PA
Tel: +44-642-218121 ext. 4118

February 9, 1988

1. Introduction

An IS0 working group (ISO/IEC JTC1/SC22/WG11) has been charged
with the production of international standards for
language—independent data types and language—independent
procedure-calling mechanisms, to facilitate interactions between
routines (or programs, or processes) which may be written in
different languages and which may be Tunning on different
machines. The procedure-calling mechanism effort has not yet
progressed very far, but a considerable amount of work on the
data types standard has been performed, and a reasonable idea of
its contents can be given.

2. The Concept of Data Type

A data type may be regarded as a set of dats values, together
with the properties o#, relationships between, and operations
allowed on, these values. It should be emphasised that the
standard here will specify abstract dzta types, not related to
any particular hardware or software; it will not prescribe
representations of data wvalues. The mapping onto the standard
abstract types must be defined by each implementation of
programming languages etc.

2.1 Properties of Data Values

The important properties are countability (i.e whether or not the

set of data values can be mapped onto the integers ..., -1, O, 1,
2, 3 ... or not) and ordering.

2.1.1 Countability

A countable type has either a finite or a denumerably infinite
set of values; in the latter case it can be made finite by
imposition of lower and/or upper bounds. The values of any
finite type can be represented exactly in an implementation (e. g
N distinct values can be mapped onto the subrange O.. (N-1) o#f
integer). However, in a non-countable (i.e non—denumerably

infinite) type, whatever finite subset is selected, any
neighborhood (however small) of a selected value will contain an
infinite number of values not so selected (and which can hence be
represented only approximately). Non~countable types are often
regarded as "approximate", the best-known example being REAL.

(Of course the "approximate" refers to the representation, not to
the type itsel#f; the abstract real data type is as exact as any
other abstract type.)

2.1.2 Ordering

A type may be unordered (e.g there is no conventional ordering of
the Boolean values TRUE & FALSE, although particular languages or
implementations may define one); partially ordered (not wvery
useful — though partial orderings occur in e.g SET types); or
({fully) ordered.

2.2 Relationships between Data Values

In any data type, a data value is either equal or unequal to
another data value of the same type. In an ordered type, a data
value is either less than, equal to, or greater than, another
data value of the same type — though the meaning of "less" and
"greater" may be a matter of definition. (Some types, e.g
character strings, can be ordered in many different ways!')

2.3 O0Operations on Data Values

Operations on data values may be classified as: Monadic {(Unary)
— one operand - e. g NOT and "unary minus®; Dyadic (Binary) - two
operands - e. g AND and OR; Polyadic - many operands - e. g MAX
and MIN; and even "Niladic" - no operands - e.g RANDOM.

The dyadic operators = and <> (not equal), with Boolean results,
are allowed for most data types; ordered types also have < 2,
<= and >=.

All ordered finite types T, and INTEGER, have the following
operations:

SUCC(x) : The least value y in T such that y>x.
Result - T (Error if x is the maximum value in T.)
PRED(x) The greatest value y in T such that y<x.
Result - T (Error if x is the minimum value in T.)
ORD(x) : The integer corresponding to the "ordinal value"”
RESULT - of x. If T is INTEGER, ORD(x) = x;

INTEGER otherwise conventionally

ORD(minimum wvalue in T) = 0,

ORD(SUCC(x)) = ORD(x)+1.
ORD(PRED(x)) = ORD(x)-1.

RELVALUE (x, 1) The value y in T such that ORD(y) =
ORD(x)+i, where i is any integer.

RELVALUE is an inverse of ORD; if we know any one value t

in T, and ORD(x) = i, then x = RELVALUE(t, i—-ORD(t)).

RELVALUE provides "addition"/"subtraction” for "metric types";

e.g if T is "calendar year", then x+i doesn’t make sense but

RELVALUE(x, i) certainly does: "1288" = RELVALUE("1888", 100)

Other operations, e.g arithmetic, are specific to certain data
types and may be defined differently for different data types

3. Types very likely to be included in the Standard

The following types are felt to be well enough understood for
inclusion in the standard (though definition of each by the
working group may not yet be complete). For each type, the set
of values and their properties are specified, as well as
operations allowed (in addition to those specified in 2.3 above).

3 1 Unordered, finite

3.1.1 BOOLEAN

Values: TRUE and FALSE

Properties: finite, unordered

Operations: NOT, AND., OR
All Boolean operations can be defined from any two
of NOT, AND. OR; some of the more useful are:

XOR: (a AND NOT b) DR (NOT a AND b)
implies (a -> b): b OR NOT a
equivalence: (a AND b) OR (NOT a AND NOT b).

3.1.2 "MARK" (temporary name)

Values: N distinct user~defined values

— +thus there can be many such types
Properties: finite, unordered
Operations: (only those specified in 2. 3).

3.2 O0Ordered, finite

3.2.1 CHARACTER

Values: characters from some set (e.g ISO 646)
Properties: finite, ordered
Operations: (only those specified in 2. 3).

3.2. 2 ENUMERATED

Values: N distinct user—defined values, with order also
user—defined - again there can be many such types

Properties: finite, ordered '

Operations: (only those specified in 2. 3).

3.3 0Ordered; denumerably infinite

3.3.1 INTEGER

Values: all positive, zero and negative integers
Properties: denumerably infinite, ordered
Operations: addition, subtraction, multiplication,
division: truncated towards zero, so that
9 DIV 3 = 1 -3 DIV 3 = -1
3 DIV -3 = -1 -3 DIV -3 = 1,
remainder: x REM y = x — (x DIV y) # y , so that
5 REM 3 = 2 -5 REM 3 = -2
5 ReEM -3 = 2 -5 REM -3 = -2,
modulo: defined only if divisor positive, result
always non—-negative, so that
SMOD 3 = 2 -3 MOD 3 = 1,
exponentiation: equal to repeated multiplication -
x POW y = Error if (x=0 and y<=0),
i if IJ=0;

(1 DIV x) POW -y 1if y<o,
x ¥ (x POW y—-1) if y>0.

3.4 Ordered, non-denumerably infinite

3.4.1 REAL

Values: all real numbers
Properties: non-denumerably infinite, ordered
Operations: addition, subtraction, multiplication, division.,
exponentiation: to integer power -
x POW y = Error if (x=0 and y<=0),
1 i+ y=0,

(1/x) POW -y if y<o0,
x # (x POW y—-1) if y>0;
to real power -
x##y = Error if x<0 or (x=0 and y<=0),
1 if y=0,
else exp(y#ln(x)),
mathematical functions: SGRT, EXP, LN, SIN, CO0OS,
ARCTAN etc (all definable as power—series).

3.5 Unordered, non-denumerably infinite

3. 5.1 COMPLEX

Values: all complex numbers
Properties: non—denumerably infinite, unordered
Operations: addition. subtraction, multiplication, division,
exponentiation: to integer power -
x POW y = Error 1if (x=0 and y<=0},
1 if y=0,

(1/x) POW -y i y<O,

x # (x POW y—-1) i¢# y>0;
to real power -
x#¥y = Error if (x=0 and y<I=0),

1 if y=0,
else exply#lnix)),
real part: RE(z),
imaginary part: IM(z),
modulus: ABS(z2),
argument: ARG(z) - principal value,
i.e value in (-PI,+PI1,
constructors: if ¥ and y are real,
CHMPLX (x, y) = x + iy &
POLAR(x,y) = «x # exp(iy),
mathematical functions: as for REAL - SGRT, LN,

ARCTAN to be defined as principal valvue.

3.6 Character Strings

Values: all strings of zero or more CHARACTERs (see 3.2.1),
including the null string ‘°

Properties: denumerably infinite, ordered

Operations: Two sets of relational -

(a) shorter string padded at right with spaces,
(b) true lexicographic ordering,

trim: TRIM(’ABC /) = ‘ABC’,
concatenation: ‘ABC’ + 'XYZ’ = ‘ABCXYZ’,
substring: SUBSTR(“ABCXYZ2’,2,3) = ’‘BCX‘,
selection: if s = ‘pqrst’,

sl2]1 = ’q’ & <[2..4]1 = ‘qrs”,
length: LENGTH(“XYZ ‘) = 3,
matching: INDEX(’pqrst’, ‘rs’) = 3, etc.

3.7 "Structuring Methodc"

The types in 3.1-3.5 above are "simple" types, i.e not structures
of any simpler types. (Yes, type COMPLEX is indeed a simple
type, even though one of its representations may look like a pair
cf REALs.) Various "structuring methods" allow restriction of
the range of another type, or construction of aggregate tupes
from other types.

3.7.1 Subranges (of 3.2 & 3.3)

Subranges of any ordered type may be formed by specifying lower
and upper bounds; they possess the properties, relationships and
operations of the base type (although certain operations may
produce an error if the bounds are exceeded). Subranges of
countable types (3.2 & 3.3) are the most useful; subranges of
REAL may also be included in the standard.

3.7.2 SET OF base-type

Values: all collections of zero or more distinct values from
the base type (which must be countable)

Properties: denumerably infinite, partially ordered

Operations: union (+), intersection (#), difference (-),
symmetric difference (x>y = (x—-yl+(y—-x)),
member of (IN), subzet (x<=y if every member of x

is also & member of y; but the ’‘strict inequality’
x{y is not useful, as it is possible for x<y and y<x
to both be false - this is a partial ordering).

3.7.3 LIST

Values: all collections of zero or more values from the base
type (which can be almost anything) or (recursively)
LISTs of such wvalues

Properties: denumerably infinite (if base type is countable),
unordered
Operations: head, tail, construct (add new head), attach (one

list to another), appears in.
3.7.4 ARRAY [index—typel OF base—type

Values: in any value of the type, there is one element from
the base type (which can be almost anything) for
each value of the index type (which must be ordered
and countable)

Properties: denumerably infinite (if base type is countable),
vnordered

Operations: element selection (subscripting)

Note: one—dimensional array; higher dimensionality

achieved by ARRAY [...] OF ARRAY [... 1 OF

3.7.5 RECORD

Similar to ARRAY, except that the elements may be of different
types and are referred to by name ("field name") rather than
subscript. Elements may themselves be of RECORD, ARRAY etc
types.

3.7.6 "CHOICE"™ (variants)

In some contexts alternative types may be acceptable, and this is
specified by setting out the allowable choices. Some sort of
"tag field" may be necessary so that the actual type of a value
can be determined.

3.8 References to external entities

A method of reference to external data, routines, files etc is

Trequired; but standardisation work has yet to start in this
area.
. Tupes rTequiring further study

The following types require further study to determine whether
there is sufficient benefit from their inclusion in the standard
They are described in the same format as the types in section 3
above, though generally in less detail.

4.1 Unordered, finite

4.1.1 BIT

VYalues: O and 1 (or other pairs of opposites, e.g + and -,
North and South, #£1ip and flop)

Properties: finite, unordered

dperations: -+ (DOR), # (AND), "invert" (NOT)

Note: Similar to BOOLEAN, without the specific connotation

of "truth" or otherwise.

4.2 Ordered,; finite

4.2.1 Generic ordinal

Values: (zeroth,) first, second.,
Froperties: denumerably infinite, ordered
Jperations: "addition" and "subtraction" (via RELVALUE).

4.2.2 INTEGER modulo N

Yalues: all integers in the subrange O.. (N-1)
Properties: finite, ordered
OJperations: +, —» %, DIV, REM/MOD, POW (all performed modulo NJ.

4.3 Ordered; denumerably infinite

4.3.1 RATIONAL

Values: all pairs of integers (i,) with J4<>0; the
arithmetic value of (i,) is the fraction i/
Properties: denumerably infinite, ordered

Operations: +, -, %, DIV, REM, MOD, FOW.

4.3.2 SCALED

Equivalent to RATIONAL with a specified value of Jj, the scale
factor. Operations #, DIV, REM, MOD, POW require investigation.

4.4 Bit Strings

Values: all strings of zero or more BITs (see 4.1.1)
Properties: denumerably infinite, unordered
Operations: arithmetic & Boolean cperations could be defined by

Tregarding the string as a binary number; the type
would then become ordered.

4.5 "Structuring Methods"

4. 5.1 Subranges (of 4.2 & 4.3)

As in 3.7.1, subranges of countable types (4.2 & 4.3) could be
included.

4.5.2 "Multiset™

Similar to SET, but with duplication of memberc permitted.
4.5.3 TABLE r[index—typel OF base—type

Similar to ARRAY, but with no requirement for the ihdex type to

be ordered. Subscripting (e.g ALil) permitted, but operations on
subscripts (e.g ALi+2]) not generally defined.

4.5.4 MATRIX [index—type—1, index—type—2] OF base—type

Values: in any value of the type, there is one element from
the base type (INTEGER, REAL or COMPLEX) for each
pair of values of the index types (which must be

ordered and countable) - a mathematical matrix
Properties: denumerably infinite (if base type is countable),
vnordered
Operations: subscripting, slicing., transposition.

addition & subtraction (if same shape).
multiplication (if conformable),
multiplication by a valuve of the base type,
inversion (if not singular), etc

Note: NOT the same thing as a two—-dimensional array
(different mathematical properties % operations);
generalisation to higher—order tensors possible.

3. Acknowledcement

ISO/IEC JTC1/SC22/WG11 is indebted for many of the above ideas to
Brian Meek, of Kings College London, who is chairman of the BSI
programming languages committee IST/S.

