IsONEC Jtcirscaewait N 8C

Comments on version 1.1 of Draft Proposal
for a Language—Based Arithmetic Standard

B A Wichmann 87-11-06

Introduction

The proposal is an excellent starting point. However, being a
specific proposal, it lacks any rationale for the various decisions
that have been made. In particular, it is very specific in one issve
which I believe is of critical importance - the degree of abstraction
from an implementation.

Abstraction versus Concrete specification.

The IEEE standards are essentially the specification of an actual
implementation. Relatively few choices would have to be made to
provide a complete logical specification. In contrast, the Brown model
in very abstract and only just manages to specify enough to guarantee
that the properties of floating point are provided by a hardware unit
which satisfies the Brown axioms. In my view, both specifications are
inappropriate for an international standard.

The Teasons against a concrete standard such as IEEE is that an
implementation is too constrained - for instance, the majority of
floating point systems do not adhere to it, and hence compliance is
restricted in a way that is of little concern to most users. of
course, suppliers producing new systems can no doubt use IEEE (as they
do), but the very precise details may unduly constrain the hardware
This appears to be the case as the Weitek chips have a go—-fast or IEEE
mode. One must remember that standards tend to last much longer than
specific hardware and hence one must try to allow some flexibility for
future hardware (which may work in ways not yet envisaged).

The reasons against abstraction is that the model used may be too
weak to satisfy the user requirements. For instance. the Brown moadel
does not require that any specific action is taken on floating point
overflow. Since virtually no practical computation can be guaranteed
to be overflow free, the Brown model itself is not adequate to meet the

needs of users. (Since one needs to ensure that overflow has not
occurred if the results are to be meaningful). Similarly, the Brown
model does not specify any action on underflow. The variant of the

Brown model used in the Ada language definition ignores underflow so
that a machine may perform either graduval underflow or give zero (but
cannot give an exception). Hence this wversion of the Brown model
mirrors systems without an underflow trap set.

It is clear from the above that I advocate a version of the Brown
model which takes an intermediate position. One needs more flexibility
than can be obtained from a logical specification of a complete system,
and yet a strong enough set of requirements to meet the reasonable
aspirations of the user. Hence the remaining part of this paper
proposes an alternative approach based upon the version 1.1 proposal.

Page i



Characteristics of a Standard
Several aspects of the standard are non-controversial, but need to be

discussed:

a) The Radix :
The IEEE 854 standard Testricts this to 2 or 10 and thus ignores

the IBM architecture. Of course, Tadix 16 has a number of
undesirable characteristics, but the net effect is to lose 3 bits
from the last place compared with a binary equivalent. This is

quite acceptable in the sense that an approximation is obtained.

I do not see any real justification of restricting the radix at
all (to >= 2). Hardware already has 2, B, 10 and 16. A software
floating point system on a byte machine could easily use a radix
of 256 to avoid bit-level normalization. Similarly, I have
written radix 10000 routines myself mainly to avoid radix
conversion on output and yet avoid complex normalization. A large
Tadix gives a relatively efficient software implementation.

b) The number of places
Brown states this should be greater than or equal to 2. I believe
that a precision corresponding to 5 decimal places is a useful
minimum, but I see no point in specifying this (after all,
existing language standards do not give a lower limit for
integers).

c) Physical representation
No requirements should be given. For instance, with the byte
software floating point system, the size taken for a value could
depend upon the value itself (up to the maximum for the precision
provided).

d) Exponent range
Brown places some very weak rTestrictions on the range. The
Version 1.1 paper gives another restricticn required for
conversions to/from integers. I think thkat this last restriction
is inappropriate, but that could be rephrased to apply only i#f
there is an appropriate integer format. This is not a critical
issvue.

The controversial aspects

Version 1.1 is not a model (like Brown) but a specification which
does not specify rounding. Hence with 1.1, one can Tound either way,
but this must be deterministic and the precision is never greater than
that of the specified precision. In contrast, Brown allows machine
numbers in addition to model numbers (which have exactly the precision
specified). This means that with Brown a radix 2, 30 place system is
also a radix 2, 29 place system. Also, a radix 16, D place system is
also a radix 2, 4#D-3 place system. (In this discussion, I am ignoring
the exponent range which must be adjusted also.) I believe that this
property of the Brown model is very important for two major reasons:

Page 2



1)

2)

If a system has a small defect, then this may be masked by means
of a penalty (i.e, pretending that the machine is less accurate
that the representation). This property is very useful in
testing.

An implementation is always free the provide more accuracy than
that specified. This is essential on some machines where the
accumulator works to ‘double’ precision while values can be stored
to ‘single’ precision. On such a machine, the accuracy given to
be user of a high level language depends upon the register
optimization performed. I believe that this is a reasonable
implementation strategy which should not be excluded by a
standard. (It provides very hardware—cheap ‘single’ precision.)

Another controversial aspect (in my view'!') is that of underflouw
detection. I believe that an acceptable floating point system produces
gradual underflow or zero on underflow and that detection need not be
mandated. On the other hand, being able to determine the behaviour
without execution is convenient. (Hence the availablility of the
parameters of the standard to the program needs consideration.)

The small print

1.

I believe that there are problems in defining the accuracy of
exponentiate if non—-integer exponents are involved. Are there some
references to this?

The definition of ‘trap’ as a hardware transfer of control is
inappropriate since the entire system could be implemented in
software.

I would much prefer to define a single precision and then specify
how different precisions have to fit together. This would allow
DEC to claim conformance for four precisions on the Vax, and IBM
three on the 3&0s. This also avoids terms such as "short" and
"long"” which may not correspond to the terms used by the supplier.
The identities listed in section 4.1 are not satisfied in the Brown
Model. It is obvious to see how these can fail if one considers a
machine with an overlength accumulator.

A common source of problems can be the conversion of decimal to
internal format performed by the compiler or run—time system.
Although radix conversion is difficult, I do not think this issue
can be avoided.

The Brown Model permits subtraction (with overflow) to be used to
implement comparisons. This resuvlts in a penalty in the exponent
range (i. e, the claimed range smaller than the physical range).
This is not satisfactory, since a user cannot creditably avoid the
unsafe exponent range. Hence I believe that comparison should be
overflow free.

I am not sure if it is necessary to distinguish the exception of
division by zero from overflow.

The Pascal standard uses the terms ‘implementation defined’
(meaning that a conforming implementation must define it in the
compliance statement); and ‘implementation dependent’ meaning that
no definition or consistency is required. I believe that the
standard should specify the compliance statement in detail.

Page 3



Surveys
In order to make a more rational choice, two surveys should be
undertaken: of standard programming languages and computer

architectures. Companies like NAG and IMSL may be able to provide much
of the data.

Page 4



