
Nicolai Josuttis: P3779R0: reserve() and capacity() for Flat Containers

 1

Project: ISO JTC1/SC22/WG21: Programming Language C++
Doc No: WG21 P3779R0
Date: 2025-08-01
Reply to: Nicolai Josuttis (nico@josuttis.de)

Co-authors:

Audience: LEWG, LWG
Issues:

Previous:

reserve()	and	capacity()	for	Flat	Containers,	
Rev	0	
Usually, flat containers (flat_set, flat_map, etc.) internally use vectors for the keys and the values.

However, one key API for the underlying vectors is not provided: reserving enough memory so that
inserting new elements does not have to move all elements into reallocated memory.

Motivation	
Reallocating memory for flat containers is surprisingly hard:

One approach is to use a const_cast<>:

// reserve more memory (when vectors inside):
const_cast<std::vector<std::string>&>(fmap.keys()).reserve(100);

const_cast<std::vector<std::string>&>(fmap.values()).reserve(100);

However, this is not possible for flat sets because std::flat_set<> and std::flat_multiset<>
do not provide a member function to access the underlying container. This is probably an oversight, so
that this paper proposes to add it.

Another approach is to move the underlying container(s) out of the flat container, change capacity, and
move them back:

// cleaner but more moves:
auto tmp = std::move(fmap).extract();

tmp.keys.reserve(100);

tmp.values.reserve(100);

fmap.replace(std::move(tmp.keys), std::move(tmp.values));

Note that this code is risky and not trivial for ordinary applications programmers:

 The programmer has to convert fmap to an rvalue first to be able to call extract().
 The code requires that the replacement does not provide vectors that are no longer sorted.

Programmers have to be very careful that the extracted data is not modified.

Proposed	Changes	
This paper proposes to add a reserve() member function when inside for at least one of the underlying
containers reserve() can be called:

// proposed:
fmap.reserve(100);

The member function reserve() is only callable if at least one of the underlying containers support a
reserve() member function. The call is then passed to all underlying containers supporting it.

Nicolai Josuttis: P3779R0: reserve() and capacity() for Flat Containers

 2

The same way we propose a new member function capacity:

// proposed:
if (fmap.capacity() == fmap.size()) {
 fmap.reserve(100);
}

The member function capacity() is only callable if both of the underlying containers support a
capacity() member function. The call yields the minimum of all capacities of all underlying containers
supporting it.

Note that Boost flat containers also provide reserve() and capacity().

For reasons discussed above, we also propose to introduce two additional member functions for flat sets
and flat multisets: keys() and values():

// provide access to the underlying container (both calls are equivalent for sets):
auto data1 = fset.keys();
auto data2 = fset.values();

Please note that we propose to add both member functions although they have the same effect. The
reason is that the rest of the API also provides both members key_type as well as value_type and
both key_compare as well as value_compare.

Design	Decisions	
A few questions came up during the design of the proposed API.

Neither reserve() nor capacity() are member functions required for
containers. So, why should be propagate them?

Because they are key for the usability of flat containers, flat containers almost always use vectors (it is not
so easy to change that) and all workarounds are ugly and error prone.

Why don’t we add reserve() and capacity() as container requirements?

With the current design, reserve() and capacity() are not required. For example, std::deque<> can be
used as underlying container. So, a requirement would break backward compatibility.

We could require them and then state for std::deque<> that they do not fulfill this requirement although
they are sequence containers. I don’t really see the benefit of this.

In general, the requirements table do not really categorize perfectly anyway (especially for sequence
containers). For example, we have the requirement for size(), which is not met by forward lists.

But what happens if containers are use where reverse() and capacity()
means something different?

First, this is a very unlikely scenario. Usually both underlying containers are vectors.

However, if another container has reserve() and/or capacity() with different semantics, still calling these
functions here does not happen accidentally. So, application programmers then simply should not call
these new member functions.

How about reserve() if only one of two underlying containers supports
it?

First, this is a very unlikely scenario. Usually both underlying containers are vectors.

Second, then at least one of the underlying containers can benefit from this API so that this call improves
performance. Note again that calling reserve() for a flat container would not happen accidentally.

Nicolai Josuttis: P3779R0: reserve() and capacity() for Flat Containers

 3

How about capacity() if only one of two underlying containers supports
it?

Again, this is a very unlikely scenario. Usually both underlying containers are implicitly initialized as
vectors that are modified together.

However, for simplicity, we propose to provide capacity() only if both underlying containers support it. The
reason is that it is not clear what it means regarding the validity of pointers/references/iterators when
growing beyond the capacity of only one container.

How about capacity() if the underlying containers have different
capacities?

Again, this is a very unlikely scenario. The situation can occur if programmers set the underlying
containers having different number of elements or other significant differences.

The proposal is to yield the minimum of both capacities in this case, because going beyond that minimum
causes reallocation which is important to know to deal with performance and validity of the underlying
data.

Nicolai Josuttis: P3779R0: reserve() and capacity() for Flat Containers

 4

Proposed	Wording	
(All against N????)

Not available yet

Feature	Test	Macro	
…

Acknowledgements	
Thanks to a lot to everybody who helped and gave support to come to finally get this proposal done.

Rev0:		
First initial version.

References	

