
P3564R0: Make the concurrent 
forward progress guarantee 

usable in bulk
Mark Hoemmen, Bryce Adelstein Lelbach, and Michael Garland 

(NVIDIA)
SG1, WG21

Hagenberg, Austria, 2025-02

These slides were 
published as P3632R1.



“Make bulk make progress”

• Concurrent forward progress is currently useless for bulk
• Forward progress guarantee relates to distinct execution agents
• Nothing specifies when different f(k) invocations run on distinct agents
• ➔ Parallel is the strongest guarantee that generic code can assume

• Fix is mostly wording
• Specify that each of bulk’s f(k) run on distinct execution agents

• “Agent” is a legal fiction that need not correspond to “thread”
• Make it ill-formed to use default (sequential) bulk with scheduler that 

promises concurrent forward progress
• Let bulk report error via error channel if it can’t fulfill promise for given 

number of agents

Scheduler-generic std::execution code can never assume concurrent forward progress in bulk’s function invocations, even if the scheduler’s get_forward_progress_guarantee



Original intent: 1 execution agent per iteration

• SG1, Wrocław 2024 review of P3481R0, unanimous consent
• “We need a version of bulk that creates an execution agent per iteration”

• P2300R0
• Later relaxed bulk wording, only to permit default (sequential) bulk

• P2181R1 (“Correcting the design of bulk execution”)
• Clarifying P0443R14 bulk’s forward progress wording



Why expose concurrent forward progress?

• Concurrent is effortful to implement; don’t throw it away
• Bulk users more likely to write algorithms with explicit synchronization
• Concurrent makes e.g., sort more efficient (e.g., fewer bulk launches)

• Parallel programming models expose it as much as possible
• OpenMP: Concurrent across different “progress units”
• CUDA

• Threads in a block: can wait on each other
• Blocks: concurrent not default, but can ask for it

• HPX: Can ask for a “parallel section” that permits blocking sync



Run on N agents != parallel algorithm

• Parallel algorithm (e.g., for_each) has 2 parts
• Make available N distinct execution agents
• Distribute work items (loop iterations) to agents

• Programming models separate them
• OpenMP: “#pragma omp parallel” vs. loop & distribution directives
• CUDA kernel launch vs. parallel algorithms (Thrust, stdpar)
• ScaLAPACK, High Performance Fortran (HPF)

• Process grid / PROCESSORS directive, vs.
• Data distributions / DISTRIBUTE (et al.) directives

• Programming models let users know & control distribution



Current wording not useful for implementing 
performant generic parallel algorithms
• Run on ??? number of agents
• No control over number of agents

• Does large N oversubscribe hardware?
• Do I need to distribute work items?



Let bulk fail if concurrent + N too large

• Implementations may not be able to promise concurrent forward 
progress for all possible N

• Already true of popular programming models, e.g., OpenMP
• Implementations can handle this in 2 ways

• If recoverable: Error channel (CHANGE)
• If not: terminate() (already permitted)


	Slide 1: P3564R0: Make the concurrent forward progress guarantee usable in bulk
	Slide 2: “Make bulk make progress”
	Slide 3: Original intent: 1 execution agent per iteration
	Slide 4: Why expose concurrent forward progress?
	Slide 5: Run on N agents != parallel algorithm
	Slide 6: Current wording not useful for implementing performant generic parallel algorithms
	Slide 7: Let bulk fail if concurrent + N too large

