
Make predicate exceptions propagate by default

Timur Doumler (papers@timur.audio)

Document #: P3626R0
Date: 2025-02-11
Project: Programming Language C++
Audience: EWG

Abstract

One of the concerns over the Contracts for C++ proposal [P2900R13] raised in [P3573R0] is that
if a checked contract predicate exits via an exception, that exception is caught and forwarded to
the contract-violation handler, which leads to overhead. The suggestion was made that such
an exception should instead unconditionally propagate up the stack. This paper provides the
necessary wording changes for such a modification.

The proposed wording is relative to D2900R14, the draft version that is in CWG and LWG wording
review at the time of writing.
Modify [basic.contract.eval] as follows:

A contract violation occurs when

— B is false,
— the evaluation of the predicate exits via an exception, or
— the evaluation of the predicate is performed in a context that is manifestly constant-

evaluated ([expr.const]) and the predicate is not a core constant expression.

[Note: If B is true, no contract violation occurs and control flow continues normally after
the point of evaluation of the contract assertion. The evaluation of the predicate can fail
to produce a value without causing a contract violation, for example, by calling longjmp
([csetjmp.syn]) or terminating the program. — end note]
If the evaluation of the predicate of a function contract assertion ([dcl.contract.func]) exits
via an exception, the behavior is as if the function body exits via that same exception.
[Note: A function-try-block ([except.pre]) is the function body when present and thus does
not have an opportunity to catch the exception. If the function has a non-throwing exception
specification, the function std::terminate is invoked ([except.terminate]). — end note] If
the evaluation of the predicate of an assertion-statement ([stmt.contract.assert]) exits via an
exception, the search for a handler continues from the execution of that statement.
[Note: There are other circumstances in which the evaluation of the predicate can fail
to produce a value without causing a contract violation, for example, by calling longjmp
([csetjmp.syn]) or terminating the program. — end note]

1

mailto:papers@timur.audio

[...]

If the contract violation occurred because the evaluation of the predicate exited via an
exception, the contract-violation handler is invoked from within an active implicit handler
for that exception ([except.handle]). If the contract-violation handler returns normally and
the evaluation semantic is observe, that implicit handler is no longer considered active.
[Note: The exception can be inspected or rethrown within the contract-violation handler. —
end note]
If the contract-violation handler returns normally and the evaluation semantic is enforce, the
program is contract-terminated; if violation occurred as the result of an uncaught exception
from the evaluation of the predicate, the implicit handler remains active when contract
termination occurs.

Modify [except.terminate] as follows:

Some errors in a program cannot be recovered from, such as when an exception is not handled
or a std::thread object is destroyed while its thread function is still executing. In such cases,
the function std::terminate ([exception.terminate]) is invoked. [Note: These situations are:

— ...
— when evaluating the predicate of a function contract assertion ([dcl.contract.func]) or a

contract-violation handler ([basic.contract.handler]) invoked from evaluating a function
contract assertion on a function with a non-throwing exception specification exits via an
exception, or

— ...

— end note]

Modify [contracts.syn] as follows:

enum class detection_mode : unspecified {
predicate_false = 1,
evaluation_exception = 2

};

[...]

class contract_violation {
// no user-accessible constructor

public:
contract_violation(const contract_violation&) = delete;
contract_violation& operator=(const contract_violation&) = delete;

/* see below */ contract_violation();

const char* comment() const noexcept;
detection_mode detection_mode() const noexcept;
exception_ptr evaluation_exception() const noexcept;
bool is_terminating() const noexcept;
assertion_kind kind() const noexcept;
source_location location() const noexcept;

2

evaluation_semantic semantic() const noexcept;
};

Remove [support.contract.enum.detection] entirely.
Modify [support.contract.violation] as follows:

contracts::detection_mode detection_mode() const noexcept;

Returns: The enumerator value corresponding to the manner in which the contract violation
was identified.

[...]

exception_ptr evaluation_exception() const noexcept;

Returns: If the contract violation occurred because the evaluation of the predicate exited
via an exception, an exception_ptr object that refers to that exception or a copy of that
exception; otherwise, a null exception_ptr object.

Bibliography

[P2900R13] Joshua Berne, Timur Doumler, and Andrzej Krzemieński. Contracts for C++. https:
//wg21.link/p2900r13, 2025-01-13.

[P3573R0] Michael Hava, J. Daniel García Sanchez, Ran Regev, Gabriel Dos Reis, John Spicer,
Bjarne Stroustrup, J.C. van Winkel, and Daveed Vandevoorde. Contract concerns.
https://wg21.link/p3573r0, 2025-01-12.

3

https://wg21.link/p2900r13
https://wg21.link/p2900r13
https://wg21.link/p3573r0

