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1. Abstract

This paper proposes to add an isqrt function (template) to calculate the integer square root of a nonnegative integer. Mathematically defined
as:

isqrt( 𝑛 ) = ⌊√𝑛⌋ = max { 𝑘 ∈ 𝑁: 𝑘2 ≤ 𝑛 } , for 𝑛 ∈ 𝑁, where 𝑁 = { 0, 1, 2, 3, … } .

isqrt of a nonnegative integer n is the greatest integer whose square is less than or equal to n.

2. Motivation
We will use the following notation:

Standard is the N5001 Working Draft;
uintmax_t is the type std::uintmax_t from header <cstdint>;
sqrt is the function std::sqrt from header <cmath>; and
double type is assumed to be the binary64 type defined in the ISO/IEC 60559:2020 (IEEE 754-2019) standard.

2.1. A common number-theoretic algorithm

The integer square root[1] is a useful number-theoretic primitive. For example, it is commonly applied in:

Primality test and Integer factorization algorithms, such as Trial division and Fermat's method[2];
Cryptography algorithms, such as block entanglement (non-linear transformation)[3];
Sqrt-decomposition method[2]; and
Block Merge Sort algorithm[4].

This algorithm is also pedagogically important. For example, it is published as the “Sqrt(x)”[5] problem on LeetCode.

2.2. Expressions uintmax_t(sqrt(n)) and isqrt(n) give different results

There are numerous popular questions about integer square root in C++ on StackOverflow. For example:
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“Fastest way to get the integer part of sqrt(n)?”[6]

“Looking for an efficient integer square root algorithm for ARM Thumb2”[7]

“How can you easily calculate the square root of an unsigned long long in C?”[8]

“Determining if square root is an integer”[9]

Answers to the above questions often recommend a naive solution such as uintmax_t(sqrt(n)) (or equivalent). At first glance, this may seem
correct, because for “small” numbers, that expression actually gives the same result as the isqrt(n) function defined above. But for “large”
numbers, these two expressions could give different results, even when the value of n is exactly representable in the floating-point type used
for sqrt calculation. Here we define a number to be “large” when it is greater than 2digits, where digits is the number of mantissa bits of the
type. Therefore, how “large” the number must be to cause a different result depends on the type used for calculation.

Consider, for example, the double type. Per section §29.7.1 [cmath.syn] of the Standard, this type is used for calculation whenever the
argument of sqrt has an integer type. For the double type, the number of mantissa bits is 52, so the value of n from the example is greater than
252. Let us take the number:

𝑛 = 671088652 - 1 = 4503599761588224 = 252 + 227,

which is exactly representable as a double. The square root of this number is:

√𝑛 = √4503599761588224 = 67108864.9999999925494195…

According to the definition given above, the isqrt(n) call must discard the fractional part of the square root:

isqrt( 𝑛 ) = ⌊√𝑛⌋ = ⌊√4503599761588224⌋ = ⌊67108864.9999999925494195…⌋ = 67108864.

As an irrational number, √𝑛 cannot be represented exactly as a double. Therefore, the call sqrt(n) returns the nearest (to the “correct”)
double-representable value. The two adjacent values of double type between which √𝑛 is enclosed are:

67108865 - 2-26 = 67108864.99999998509883880615234375 < √𝑛 < 67108865.

These two values are shown in the table below, along with their representation in the double type. The rightmost column shows the absolute
error of the double approximations to √𝑛:

Value
Representation in double type

|value - √𝑛|
sign exponent mantissa

67108864.99999998509883880615234375 0 10000011001 0000000000000000000000000011111111111111111111111111 7.4505807079461285×10-9

67108865.0 0 10000011001 0000000000000000000000000100000000000000000000000000 7.4505804859015277×10-9

Since the absolute error is smaller for the value 67108865.0, this number is closer to the exact value of the square root, so:

sqrt ( 𝑛 ) = sqrt ( 4503599761588224 ) = 67108865.

Therefore:

uintmax_t ( sqrt ( 𝑛 ) ) = uintmax_t ( sqrt ( 4503599761588224 ) ) = uintmax_t ( 67108865 ) = 67108865.

Thus:

∃𝑛 = 𝑖2 - 1 for some 𝑖 ∈ 𝑁: uintmax_t( sqrt( 𝑛 ) ) ≠ isqrt( 𝑛 ) .

The following table shows the least four values of the integer n for which the expressions uintmax_t(sqrt(n)) and isqrt(n) give different
results:

i n = i2 - 1 uintmax_t(sqrt(n)) = i isqrt(n) = i - 1

67108865 4503599761588224 67108865 67108864

67108866 4503599895805955 67108866 67108865

67108867 4503600030023688 67108867 67108866

67108868 4503600164241423 67108868 67108867

Finally, if the long double type were implemented as an 80-bit floating-point type, then using it would solve the problem for 64-bit integers.
However, if the int128_t type were added to the Standard, then the problem would arise again even for such an 80-bit long double.
Therefore, the problem cannot be solved simply by using a wider floating-point type.

2.3. Prior Art

Several programming languages have a function (or class method) for calculating the integer square root:

In Java, the BigInteger class has the sqrt() method[10];
In Python, the math module has the isqrt() function[11];
In Ruby, the Integer class has the sqrt() method[12]; and
In Rust, primitive integer types have the isqrt() method[13].
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3. Design Considerations

3.1 A new overload of sqrt cannot be added

Section §29.7.1 [cmath.syn] of the Standard defines overloads of the sqrt for an argument of integer type. Therefore, an overload of the sqrt
function with an argument and a return value of integer type cannot be added.

3.2 The new function should be named isqrt

The ISO/IEC 10967-2:2001 standard defines an integer square root function named isqrt, and we follow this standard's guidance.

3.3 isqrt function template can be instantiated for both signed and unsigned integer types

Mathematically, the integer square root function is defined for only non-negative integers. However, if the function template could not be
instantiated for signed integers, it would be necessary to cast the argument to an unsigned type, even where it is known (e.g., by construction)
that the signed integer is non-negative. Therefore, the function template should be able to be instantiated for each integer type except bool.

3.4 The header to which the function should be added

The header <cmath> provides the standard mathematical function sqrt. It seems most reasonable (and least surprising to users) to provide the
isqrt function in the same header.

4. Questions for WG21

WG21 is asked to consider (and preferably affirm) the following questions:

1. Should isqrt become part of header <cmath> so as to mirror sqrt's location?
2. Should isqrt's algorithmic complexity be specified?

5. Proposed Wording

Based on N5001, assuming that WG21 affirms each of the above questions:

5.1 Header <version> synopsis

Add to section §17.3.2 Header <version> synopsis [version.syn] the following:

#define __cpp_lib_isqrt yyyymmL // also in <cmath>

5.2 Header <cmath> synopsis

Add to section §29.7.1 Header <cmath> synopsis [cmath.syn] the following:

// 29.7.7, integer square root
template<class T>
  constexpr T isqrt(T n) noexcept;

5.3 Integer square root

Add section §29.7.7 Integer square root [c.math.isqrt] consisting of the following:

template<class T>
  constexpr T isqrt(T n) noexcept;
1    Mandates: T is a integer type other than cv bool.
2    Preconditions: n is non-negative.
3    Returns: ⌊√𝑛⌋, which is the largest integer whose square is less than or equal to n.
4    Complexity: log( log( 𝑛) ).

6. Implementation Experience

Heron's method (a special case of Newton's method) for integers is discussed, for example, in the book “Hacker's Delight”[1]. For the initial

estimate, the value 2
⌈

log2 ( 𝑛 )

2 ⌉

 is used, which is the least integer power of two that is greater than or equal to √𝑛. Reference implementation:
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template<class T>
constexpr T isqrt(const T n) noexcept {
    if (n <= T{1})
        return n;

    T i_current{0}, i_next{T(T{1} << ((std::bit_width(T(n - 1)) + 1) >> 1))};
    do {
        i_current = i_next;
        i_next = T((i_current + n / i_current) >> 1);
    } while (i_next < i_current);

    return i_current;
}
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