Contextualizing Contracts Concerns

Document #: P3591R0

Date: 2025-02-03

Project: Programming Language C++

Audience: SG21 (Contracts)

Reply-to: Joshua Berne <jberne4@bloomberg.net>

Timur Doumler <papers@timur.audio>
Abstract

Recent papers, [P3573R0] and [P3506R0], have listed several concerns related to the Contracts
MVP, [P2900R13]. Readers of those papers might mistakenly conclude that these concerns are
new and profound flaws in the proposed Contracts facility and have not been previously discussed
and addressed. In this paper, we present the missing background and facts related to each of
the concerns raised; we describe how all the concerns have been discussed, how consensus was
reached on their solutions, and why [P2900R13] is more than ready to be included in the C++

Standard.
Contents
1 Introduction 2
2 Concerns 2
3 Conclusion 15

mailto:jberne4@bloomberg.net
mailto:papers@timur.audio

Revision History

Revision 0

o Original version of the paper in response to [P3573R0] and [P3506R0)]

1 Introduction

As chronicled in [P2899R0], the Contracts proposal in [P2900R13] is the culmination of a huge
collective investment of time and consensus building by many participants in WG21.

The authors of [P3573R0] and [P3506R0], while undoubtedly being sincere and passionate stewards
of the language, have resurrected concerns that have already been repeatedly discussed. Those
discussions led to decisions, made with strong consensus, that are incorporated into the Contracts
MVP, [P2900R13]. Our standard procedure within WG21 is, of course, to respond to all concerns
with thought and care, yet that process must begin by first reviewing the history of the discussion of
that concern, deciding if the earlier discussion was sufficient, and determining if any new information
about a concern warrants re-evaluating the earlier decisions of the Committee.

In this paper, we will present a starting point for the history of the detailed discussions that led to
the design in [P2900R13] and explain — largely for those who have not been involved in discussions
and might believe that the concerns in [P3573R0] and [P3506R0] have not been considered — that
none of the raised issues are reasons to be opposed to adopting [P2900R13] for C++26. Along the
way, readers will clearly see that the presented concerns are self-contradictory and that the strongly
held consensus for [P2900R13] is the result of diligent effort to find the right balance between the
technical solutions available for the very concerns raised in [P3573R0] and [P3506R0].

2 Concerns

We first address the concerns that were presented in [P3573R0]. We list [P3573R0)’s concerns in the
same order it did (which it describes as random), and we provide information, for each concern in
that paper, to help readers understand the context for the concern and its related discussion and
decisions in the Committee.

e const-ification — We wish to discourage, within the predicate of a contract assertion,
modifications to variables from outside the contract assertion. To do so, expressions that
denote such variables are made const, a feature that has come to be called const-ification.
Since its introduction into the Contracts MVP, this feature of [P2900R13] has been discussed
thoroughly in both SG21 and EWG. As described in Section 3.4.2 of [P2899R0], the history
of this aspect of the design is fairly long and goes back many years.

[P3071R1] introduced const-ification into the Contracts MVP in December 2023. This initial
proposal, when reviewed in SG21, was met with overwhelming support.

For the Contracts MVP, adopt [P3071R1] “Protection against modifications in contracts”
as presented.

SF|F |N|A|SA
6 |10]/3]0] 0

Result: Consensus

\

When [P2900R7] was forwarded to EWG, the question came up again as to whether const-
ification should be retained. The wider group did not have strong consensus to either keep
or remove const-ification, so efforts to analyze the impact of the feature were undertaken.
In particular, [P3261R2] was produced to thoroughly explore alternative approaches. With
each discussion of [P3261R2], twice in SG21 and then EWG, consensus to keep const-ification
increased; learning about the feature and its ramifications clarifies its real upsides and lack of
meaningful downsides. The most recent discussion in Wroctaw resulted in clear consensus to
keep const-ification in the Contracts MVP.

[P3261R1] / [P3478R0]: [P2900R8] shall not have const-ification by default.
SF|F|N|A|SA
10]4]9]19] 12

Result: Consensus against

The repeated and extensive discussion of const-ification has shown that opposition to it
has reduced over time; the right solution in the eyes of the majority of those involved in
standardizing the core language and Contracts is to keep const-ification.

[P3573R0] attempts to resurrect a few more specific issues related to const-ification that the
discussions have already addressed.

— Both implementations of Contracts currently in progress have expressed that the imple-
mentation of const-ification, including quality error messages, was a minuscule effort.

— As described in [P3261R2], the feature, when applied to large codebases using contract
assertions, catches errors and finds real bugs and flaws in existing production code. The
flowchart described in Section 2.3.1 clarifies that the situations in which const-ification
does actual harm are exceedingly rare, and the case studies summarized with pie charts
in Section 2.3.2 show how this takes effect in practice.

More importantly, based on the opinions of those with experience supporting real contract-
checking facilities today, const-ification would prevent a significant portion of the problems
that confound users. Problems that arise when a contract assertion’s predicate makes
destructive changes to program state can be exceedingly hard to diagnose since not one
program but two (the build with assertions checked and the one with them unchecked)
must be analyzed to identify and fix the culprit. In addition, cataloging this form of
problem is challenging because the problems themselves often extend the development

time significantly but do not escape code review and testing and thus do not appear in a
publicly available repository.

— Understanding const-ification is shockingly trivial, so teachability is not a concern. A
novice need only know that variables declared outside a contract predicate will be treated
as const within the predicate, in the same manner that member variables are treated as
const when accessed within a const member function.

More to the point, having this knowledge is unnecessary when first learning to write
contract assertions since most programmers following the simple (and vital) guideline of
not writing contract predicates that modify state will rarely notice that const-ification
is happening. When such users do notice, the reason their attempt to modify state is
misguided will be obvious, and they will redirect their efforts appropriately.

— As described in [P3261R2] and contrary to the false claim in [P3573R0], an equivalent
warning to const-ification has been shown to be unimplementable,! and those cases that
can be implemented as a warning will simply not catch many categories of errors that
const-ification will catch. In particular, attempts to correct a violation within a predicate
by correcting the state of data structures are much less likely to be caught by a warning.
Consider, for example, a function that expects a sorted vector as input:

void f(std::vector<int> v)
pre(std::is_sorted(v.begin(), v.end()));

Here, const-ification is being applied to v, resulting in the const overloads of begin and
end being invoked. Notably, the author of £ simply does not care since the const and non-
const overloads of these member functions of std: :vector have the same behavior; the
only difference between the overloads is whether their return values enable modification
of the contents of the container.

A programmer who does care comes along later and decides that this defensive check should
try to fiz the problem by sorting the vector when an unsorted vector is encountered:

void f(std::vector<int> v)
pre((std::sort(v.begin(), v.end()), true)); // Predicate is always true.

Such a program will work great with no violations detected in a checked build and then
proceed to fail horribly in a released build that turns off (ignores) expensive contract
assertions. From experience, this form of bug that disappears when contract checking is
turned on is among the most difficult to diagnose and results in significant reduction in
the efficacy of the Contracts feature as a whole. None of the alternative proposals for
const-ification explored in Section 3.1 of [P3261R2] will accept the valid precondition
that the vector is sorted and reject the precondition that attempts to sort the vector.

Discouraging such misguided uses of Contracts is thus a primary benefit of const-ification.

!'Doing speculative analysis of an expression to determine if it would be valid with const-ification can easily double
the cost of compiling such expressions. In addition, if restricted to being a warning, any side effects of such an analysis,
such as template instantiation, would need to be unwound lest they impact the semantics of the rest of the program,
which a warning never has leeway to do.

— [P3573R0] claims that const-ification does a poor job of identifying modifications, in
particular when making modifications that involve dereferencing a provided pointer.
Having any form of const-ification apply to the result of dereferencing operations — and,
in particular, to apply correctly to the results with user-defined types as well as built-in
ones — would inevitably introduce a new flavor of const-ness that applies deeply in a
user-defined manner. Without a new, wide-reaching, highly invasive language feature to
define deep const, the distinctions between functions that create new objects that can be
modified within a contract assertion and those that return references to external objects
simply cannot be made.

Neither SG21 nor any other group has shown interest in pursuing any form of deep const,
which would be needed to specify such restrictions, although [P3261R2] does explore
many aspects of such a potential feature. SG21 discussed deep const extensively and
agreed with the conclusions of [P3261R2] that deep const should not be pursued for
Contracts.

e Exception capture — Not allowing exceptions to escape from the evaluation of contract
predicates, since they always terminated, was a feature of C++2a Contracts. Discussing this
aspect of the evaluation of contract assertions revealed that some have a real need for the full
spectrum of alternatives when exceptions escape from the evaluation of a predicate.

— Not allowing exceptions to escape from a contract assertion’s predicate is necessary to
prevent major misuses of any contract-checking facility, namely to allow client code to
learn pragmatically whether contract checking is currently enabled. For example, consider
a contract assertion whose sole purpose is to throw an exception whenever it is actively
checking, thereby enabling a user to detect that it (and likely surrounding assertions)
are currently being actively checked, and take some distinct action accordingly. By not
allowing an exception to escape a contract assertion’s predicate directly, we prevent the
evaluation of contract assertions from influencing local control flow when no contract
violation has occurred.

— Certain classes of exception, such as bad_alloc, indicate a general issue with execution,
not a problem with a particular contract. Some systems attempt to recover from these
exceptions by allowing them to propagate up the stack, and in such systems, outright
preventing throwing would be detrimental.

— The default mode for the language to prevent unwanted exceptions in certain contexts is
to terminate when exceptions do escape, a choice of unconditional terminate that violates
the concerns raised earlier, in [P2698R0], by one of the authors of [P3573R0].

To allow both sets of users to see their needs met, the contract-violation handler, as proposed
in [P2811R7], is invoked when an exception escapes the predicate. This violation handler is
given the full range of options, including terminating (as the C++2a Contracts facility would
have done) or rethrowing the exception, which enables the behavior that [P3573R0] requests.

[P3506R0] raises a concern with the cost of introducing exception handling in these circum-
stances. Such a cost is potentially non-negligible and must be considered in the context of
how contract assertions will actually be used and written.

— The vast majority of contract-assertion predicates are simple expressions, e.g., tests against
nullptr, numeric ranges, and so on. Each of these — and, in general, any expression that
the compiler is going to inline — can easily be identified as to whether it is potentially
throwing. If it isn’t potentially throwing, then all exception-handling scaffolding will
simply go away.

— When a predicate does involve calling into an opaque non-noexcept function, making
that function call already has significant overhead. The extra cost of handling exceptions
that such a call might emit should not be overwhelming; exceptions on most platforms
are already highly optimized for the happy path where they are not thrown, and any
extra generated code is cold code with almost no overhead.

— We expect compiler vendors to provide mechanisms to explicitly say that a TU (translation
unit) is being built such that exceptions will not escape the contract-violation handler.
In such cases, the majority of the exception-related overhead associated with contract-
assertion code generation is expected to disappear.

No other options for handling predicates that throw exceptions will successfully avoid disen-
franchising large portions of C++’s user base.

Overly complex hierarchy contract model — The approach to handling contracts on
virtual functions is described in detail in [P3097R0]. This design was originally conceived
years ago, but pursuing it for the Standard was intentionally delayed until after the Contracts
MVP due to many misconceptions about how contract checking and virtual functions should
interact. In Tokyo, a compiler vendor pressured this Committee (in [P3173R0]) into growing
the Contracts MVP to include virtual functions (among other things), so the design was
pursued to completion.

SG21 discussed this proposal in depth in multiple telecons and at the in-person meeting in St.
Louis. After significant discussion on the topic, SG21 reached strong consensus on the design
in [P3097RO].

Forward pre/post on virtual functions, without additional qualifiers, as proposed in the
“Base Proposal” of D3097R1, to EWG, as an extension of P2900, with C++26 as the
recommended ship vehicle.

SF|F|N|A|[SA

10 ‘ 3 ‘ 0 ‘ 2 ‘ 0

Result: Consensus

\

On the back of this confident approval of the design for virtual functions, a presentation
([P3344R0]) was made to EWG that resulted in strong consensus in that subgroup for this
design.

[P3097R0] — Contracts for C++: Support for Virtual Functions, we are interested
in the proposed solution and encourage further work, independent of whether it is in
P2900 or not.

SF|F|N|A[SA

23 |11]3 |5 | 2

Result: Consensus
[P3097R0] — Contracts for C++: Support for Virtual Functions, we would like to see
this paper merged into P2900 and progress contracts with virtual function support.
SF|F |N|A|SA
1815 |5 [1] 2

Result: Consensus

\

Anyone experienced with polls in EWG can recognize these results as being well above the
normal bar for strong consensus for a feature. As was clear in the discussion, the core idea of
[P3097R0], when presented simply, is easy to understand and reason about. When presented
with a virtual function invocation, a novice need only learn to check both sets of function
contract assertions — those visible to the caller and those visible to the callee. This approach to
the issue provides a way to satisfy all forms of inheritance relationships described in [P3097R0].

[P3506R0] claims that the solution proposed by [P3097R0] must somehow be simplified and
ignores the real-world use cases described by [P3097R0], such as multiple inheritance, that are
simply broken by any other model.

Instability of overall design — SG21 is filled with passionate, opinionated people, discussing
in incredible detail a seemingly simple yet incredible subtle and deep topic. This culture leads
to extensive discussions and papers on every aspect of the feature.

Since adopting the plan for a Contracts MVP, [P2695R1], SG21 has made changes to the
Contracts MVP only when a potential update garners strong consensus; SG21 has a paper
trail backing those decisions. This process has spawned many papers and discussions, all with
the intent of ensuring a clear, documented history behind the reasoning in the proposal we
put forth. The lack of such documentation was a major deficit and a cause for problems in
C++2a Contracts.

Since February 2024, when SG21 finalized their desired feature set for the Contracts MVP in
[P2900R6] and forwarded it to EWG, fairly few changes have been made to the proposal.

— In [P2900R7], the quick-enforce semantic was added after having been proposed by
[P3191R0].

— In [P2900RS8], support for virtual functions as proposed by [P3097R0] was added.

— In [P2900R10], support for contract assertions on coroutines was added.?

— In [P2900R11], minor additions were made to the library API, is_terminating and

evaluation_exception.

All the major changes were in response to requests from EWG, and the minor changes were
mainly corrections to issues discovered during wording review.

For an ongoing proposal being actively discussed and with a page count as significant as that
of [P2900R13], [P3573R0]’s implication that the churn of the Contracts MVP is overwhelming
seems unrealistic. The desire expressed in [P3573R0] to see less churn is also completely at
odds with the expectation for more features (such as grouping contracts or contracts on
function pointers) to be forced into the same proposal; this contradiction is evident in many
of [P3573R0]’s concerns.

e Far too much is implementation defined — The Contracts MVP includes several aspects
that are implementation defined, but all are along boundaries where specific behaviors must
be implementation defined by necessity.

Let us consider the full list of items that are implementation defined in [P2900R13].
1. The specific mode of termination used by the enforce and quick-enforce semantics
2. The exact behavior of the default contract-violation handler
3. Whether the contract-violation handler is replaceable
4. The evaluation semantics chosen for each contract assertion evaluation
5. The maximum number of repeated evaluations of a contract assertion

The first two items are behaviors of processes that simply do not have a consistent definition
that is best for all potential C++ platforms. In particular, program termination can happen
in widely different ways, each with distinct tradeoffs; restricting all platforms to a single
common option would benefit neither the proposal nor users. Similarly, methods — and specific
formatting — for emitting diagnostics from a default contract-violation handler differ for various
platforms. The various options are discussed in [P3520R0], along with details of how all the
available choices are best for different scenarios at different times. By allowing implementations
the freedom to do what is best in their environments, no users are disenfranchised or unduly
restricted.

The replaceability of the contract-violation handler, item 3, is viewed by some platforms as
a security risk (where implementors in the past have insisted that they not be required to
support such options), yet other users see it as a necessary feature for even the most basic
viability of the proposal. To provide a specification viable for both groups, we must give
implementations freedom to decline to support replaceability.

Finally, the evaluation semantics used for contract assertions, item 4, and the maximum
number of repetitions of evaluations, item 5, are both properties controlled by compiler build

2This addition could be argued as actually being remarkably small since the change was mostly in the form of
wording clarifications in the specification for coroutines itself; no changes were made to the specification of Contracts
other than removing the restriction against applying pre or post to a coroutine that had previously been in place.

flags. The C++ Standard has never — and likely will never — mandate specific build flags
because each platform delivers them in unique ways and introduces new options based on user
needs.

[P3321R0] offers a more detailed examination of what is expected of implementations for each
of these items. That paper was presented to the tooling study group, SG15, at the Wroctaw
meeting; the group clearly indicated that the MVP’s intent was understood, and no new
concerns were raised that were not addressed during the discussion.

Importantly, the situations in which behavior has been made implementation defined are
not cases for which we have been unable to find the correct solution, but well-known cases
for which no single answer is a viable solution for every C++ program and platform. These
situations are also not cases where the particulars of an implementation alter the contract
assertions we will actually write. Implementation-defined properties of a proposal are not a
source or indication of confusion; they are an opportunity for compilers and toolchains to
provide the abilities that their specific users actually need.

No grouping of contracts — The lack of syntactic control for contract assertions is certainly
a concern, but the ability to introduce such things is a layer of complexity that has been
explicitly left to future proposals that build on top of [P2900R13].

Grouping of contracts with some form of syntactic labeling is far from a trivial design and
comes with many competing needs. From the various use cases (as gathered in [P1995R1])
that would leverage such groupings to the ways in which semantics would need to be defined
for such groupings (as described in [P2755R1]), the design space for this aspect of the feature
is broad.

From the start, a deliberate decision was made to delay such features until after an MVP is
decided upon because those who have thought most about such features believe that consensus
on a complete design will be achievable only after gaining more user experience with a Standard
Contracts feature.

[P3400R0], however, proposes a method that can, among other things, enable such groupings
arbitrarily. Importantly, note the complexity needed for such a feature (albeit with a simple
user interface) and recognize that the right design will take time and experience to gain
consensus in WG21 and does not belong in an MVP.

Defaults — For every aspect of the design where alternative options might be considered, the
default behaviors in [P2900R13] have been selected based on a clear set of design principles
and software engineering considerations.

Untried — Large-scale use of [P2900R13] itself has not happened and cannot happen until
it has shipped in production compilers, which requires first adding the feature to the C++
Standard. However, the basic aspects of the feature have been deployed in production contract-
checking facilities for decades.

— The model for preconditions and postconditions on virtual functions is compatible with
all existing object-oriented design approaches and allows for the real use cases that occur
in C++ code.

— No widespread experience exists with contract assertions that do not allow exceptions
to escape from their predicate, mainly because many large codebases simply avoid the
use of exceptions entirely, and even less frequently is a predicate used that might be
potentially throwing.

— Extensive usage experience exists with linking translation units that use different “build
modes” since this scenario is a primary case in which many enterprises accept a form of
benign ODR violation to mix builds with different control macros (such as NDEBUG is for
assert()).

e Runtime vs. static checking — The use of static analysis to check the correctness of a
program aided by assertions is already in widespread use to varying levels of effectiveness, as
explored in [P3386R0].

The ability to specify predicates that cannot be executed is not part of the Contracts MVP,
nor does it fit into the model where we are explicitly avoiding in-source control over contract-
assertion behavior until we first lay the foundation for the feature with the MVP. The design
for such things, however, has been shared for years — starting with [P2755R1] and now more
thoroughly specified in [P3400R0]. This kind of functionality has been one of SG21’s goals
from the start, has been thoroughly explored, and is on our road map of features to provide
over time.

e Pointers to functions — Expressing interest in features we might want is helpful to guide
future expansion, yet we must understand that solutions for some problems might involve
large efforts that will require extensive, careful design and consensus building. [P3327R0] offers
a detailed exploration of the potential mechanisms that could be used to add pre and post to
function pointers, and the paper was presented to EWG at Wroclaw meeting. EWG, at the
time, clearly understood that the scope and complexity of the problem indicate that no viable
solution is ready for inclusion in the Contracts MVP.

p3327r0: contracts should specify contracts on function pointers in its Minimal Viable
Proposal (P2900).

SF|F|N|A|[SA

1 [1]4]10] 20

Result: Consensus against

\. J

This result does not, however, mean that the topic of contracts on function pointers is
abandoned. An aggressive effort is ongoing to introduce mechanisms to manipulate function
contract assertions independently of an actual function, in the form of function usage types as
described in [P3271R0] or [P3583R0] and will require time (and implementation experience)
before all the details of a complete solution take shape. That said, this effort is one of the
highest-priority goals of SG21 and is likely to evolve early in the C++29 timeframe.

Note, very importantly, that functions invoked through function pointers in [P2900R13] still
have their preconditions and postconditions evaluated. The only missing feature here is
having a different set of contract assertions tied directly to a pointer, and significant work

10

and discussion indicates clearly that this topic should be addressed later. Similarly, when
a programmer truly has an immediate need in the short term to wrap a function in such
a way that different contract assertions are applied around its invocation, they can do so
with [P2900R13] by specifying a lambda that forwards to the desired function (requiring no
captures and thus being implicitly convertible to a function pointer) and instead specifies pre
and post on the lambda expression.

Safety — The only concrete proposal for Profiles that EWG is considering at this point is
Herb Sutter’s [P3081R1], which explicitly describes how it leverages [P2900R13] and requires
no changes to [P2900R13] to do so. By design, any such runtime checking built on top of
[P2900R13] is possible.

Even more relevant for safety, the design specified in [P3100R1] is significantly broader in
scope, is more widely applicable, and again builds on top of [P2900R13] without requiring any
changes to the MVP (other than an option for improved ergonomics by adding enumerators
to those enumerations provided by [P2900R13]). As described in [P3558R0], pursuing that
direction for the language will not only benefit clients of new Standards, but will help improve
the safety of C++ programs written against any Standard.

The general question of how Profiles will interact with Contracts must be answered by the
designers of Profiles. Given the ambiguity regarding what profiles should be able to do, what
their scope is, and how they should be specified (e.g., the conflicting definitions in [P3589R0)]
compared to [P3081R1] and the concerns about Profiles raised in [P3543R0] and [P3586R0]),
the only clarity at the moment is that the Profiles proposals have not yet addressed at all how
they will provide usable and deployable runtime checking of any sort and that utilizing the
work of SG21 (which can easily be leveraged) in that space is the only viable path forward.

Undefined behavior (UB) — Requiring that the predicates of contract assertions be written
in some UB-free dialect of C++ has been discussed many times over many years. SG21 has
failed, three times, to reach consensus to enforce such a requirement.

The primary proposals that attempt to address the perceived issues with undefined behavior
when evaluating contract-assertion predicates are those that introduce conveyor functions —
[P2680R1] and [P3285R0] — and do so to define some form of UB-free, side-effect—free subset
of the language for contract assertions. These papers were discussed multiple times, and at no
point was even a majority interested in pursuing these options or requiring that the Contracts
MVP depend on them.

— At the Kona meeting in November 2022, SG21 reviewed and polled [P3285R0] for the
first time with no consensus to pursue it further.

— After further clarifications on [P2680R1] to questions expressed in [P2700R0], a repeated
discussion and a poll in a telecon in December 2022 once again failed to have consensus
to pursue this design.

— At the Tokyo meeting in March 2024, this concern was raised again, after which a joint
in-person session of SG21 and SG23 once again discussed the issue and polled [P2680R1].
Strong consensus was again reached to avoid delaying the Contracts MVP until a “safe”
programming model is available to which to restrict them.

11

— In May 2024, after a new paper proposing conveyor functions, [P3285R0], was produced,
SG23 considered this proposal and attained strong consensus that conveyor functions
were not required for the Contracts feature.

The P2900 treatment of undefined behaviour inside contract predicates is adequate
for progress towards publication in an IS or TS.

SF|F|N|A|[SA

18|8|0]0] 3

\

— During the Wroctaw meeting in November 2024, another paper proposing the simplest
starting point for “strict” predicates that have no UB, [P3499R0], was put forward, this
time in EWG, and failed to achieve consensus for inclusion in the Contracts MVP.

Each discussion of a full specification concluded with a lack of certainty that such a specification
could ever be produced that would succeed both at keeping the promises made by [P3285R0]
while also being implementable and usable for nontrivial functions and contract assertions. In
Section 4 of [P3386R0], each of the fundamental ideas in this proposal is examined, and the
disappointing ramifications of each aspect of [P3285R0] are enumerated.

The overall question of undefined behavior — and of language safety in general — is much
bigger than simply contract-assertion predicates and applies to all C++ code. Discussions
within SG21 and SG23 have made eminently clear that solutions to bring language safety
to C++ should not be contract specific. They can, however, leverage the Contracts feature
to manage and mitigate undefined behavior in the same way that the Contracts feature can
manage and mitigate library undefined behavior, and that solution is to continue to pursue
[P3100R0]. Should we do so, the option to enforce implicit preconditions when evaluating
contract predicates will be available and, again, fits completely within the foundation provided
by [P2900R13]. This plan is explored more in [P3558R0], and in [?], we propose a concrete
initial design for some of the most common sources of undefined-behavior-related errors in
C++ programs.

Composition of TUs — The potential designs for composing translation units with different
configurations for contract assertions are explored thoroughly in [P3321R0]. These decisions
have been discussed in SG15, with a clear understanding and acceptance of the intent for how
the Contracts feature interacts with tooling in that paper.

Regarding the other concerns listed in [P3573R0], the specific semantic chosen for a contract
assertion are up to an implementation to explain, and valid reasons justify many different
possible results (enumerated in [P3321R0]).

For future users of C++, however, the defined aspect of implementation defined will be most
significant. Each implementation will be documenting how to configure contract assertions
when building a program, what factors effect the evaluation semantic that will be used, and
how mixing different TUs with different configurations will take effect. Far better than the
current situation (with macro-based solutions) of mixed modes leading to a program that

12

is IFNDR, mixed modes with [P2900R13] Contracts will instead reliably give us one of the
configurations with which we have built a function. With future extensions to the full toolchain,

these guarantees might even be extended, all within the space of conforming implementations
defined by [P2900R13].

Functions that are constexpr or consteval — and constant evaluation of contract assertions
in general — have been extensively discussed in the design of [P2900R13], and the model
has been carefully crafted to meet our design principles; a more thorough explanation for
that model can be found in [P2894R2]. The model primarily avoids giving different results in
different contexts and instead makes any contract violation an error that is not subject to
SFINAE.

The topic of Concepts has been discussed extensively as well, and the “Concepts Do Not
See Contracts” principle follows from the prime directive in [P2900R13]. Not allowing the
violation of a contract assertion to impact overload resolution or Concept satisfaction means
that we avoid having multiple TUs with different understandings of a concept based on either
the contract assertions that are present or the semantics with which they are evaluated.

Contracts and Modules — The Contracts implementations in Clang and GCC are both
part of compiler suites that also have basic support for Modules and, in some cases, are being
developed by implementers who have been central to the implementation of Modules on those
compilers.

Basic testing with Modules has been performed with Contracts, and in general, the design of
[P2900R 13| gives the freedom needed for compiler vendors to provide the right integration to
their users between selection of contract-assertion semantic and Modules. These alternatives
are also enumerated in [P3321R0].

Contracts and static reflection — Nothing in static reflection as proposed today ([P2996R9)])
will allow inspection or reification of contract assertions. Accessing function contract assertions,
or assertion statements, is not part of the proposal at this moment. Once both features are
in the language, we expect to see growth in this direction, but that growth must also be
carefully considered with respect to how it might be allowed without breaking the principles
of [P2900R13].

Compatibility of future improvements — Based on the nearly 200 use cases it has
carefully gathered, SG21 has discussed and planned extensively for future improvements, and
those plans have guided the design of [P2900R13] from the start. In particular, many of those
plans are mentioned in [P2755R1], which includes potential mechanisms to address most (if
not all) of the remaining concerns we are discussing here.

The proposal is far too large — This concern is especially surprising given the desire
expressed in [P3573R0] to support function pointers or grouping of contracts, both of which
would make any contract-checking proposal significantly larger.

More importantly, describing the basic facility — putting pre, post, and contract_assert into
source code to improve its correctness — requires little time, and then the average user is
prepared and ready to be productive. The rest of the proposal is highly detailed and thorough
in describing how it interacts with our beautiful and complex language, but that size and

13

complexity is in no way a burden to users of the facility. Learning the more detailed nuances
of interactions with the rest of the language will then happen over time as welcome error
messages (instead of pernicious runtime failures) guide the developer to using the feature
correctly. None of these rules places any sort of undue burden on the initial slope of the
learning curve.?

Finally, the idea that contract checking is somehow simple and must therefore have a simple
implementation is belied by the decades WG21 has invested in pursuing it to only now have
reached the cusp of having a result available to users of C++4, with both specifications and
implementations. The paper trail for Contracts in WG21 is quite lengthy (going back to as
early as [N1613] in March 2004), and a full documentation of that long path — and the many
discussions and decisions that occurred along the way — can be found in [P2899R0].

Recognizing the needed core principles of Contracts as put forth in [P2900R13] and then
integrating a design based on those principles into a vast and complex language such as C++
is not and could never be a simple task. On the other hand, the Contracts feature itself is
orders of magnitude less complex and impactful on the language, as a whole, than similar
features we have successfully standardized in the past, such as move semantics, constexpr,
Concepts, Coroutines, and Modules.

o Scalability — The requirements of [P2900R13] put absolutely no expectations on linkers or
generated ABIs related to contract assertions because [P2900R13] has been designed from the
start with scalability in mind.

We have actively designed against having tool-chain changes being forced, and [P3321R0]
clearly states why that is not an issue.

The second set of concerns currently raised to WG21 were expressed in [P3506R0]. Many of that
paper’s concerns regarding the inadequacies of the Contracts MVP are duplicates of those expressed
in [P3573R0] and are discussed above; only a few are distinct concerns.

e Lack of deployment experience on most recent changes — Lack of field experience
with the proposed solutions for virtual functions and coroutines is claimed. While experimental
compilers that support these features are available (and have been for quite a while), no
large-scale projects using them have been undertaken. That real projects do not get designed
from the ground up with the use of experimental features in mind is a simple, real-world fact.

o Lack of experience with pre and post — [P3506R0] states that the primary novelty of
the Contracts MVP is putting function contract assertions on declarations and thus any effort
to use an implementation of the Contracts MVP in existing code is irrelevant if its experiment
is performed solely through the use of contract_assert.

Many aspects of the feature — such as const-ification, the model for selecting evaluation seman-
tics, and the model for handling exceptions — are all equally applicable to contract_assert.
More importantly, the primary concern with the novelty of putting function contract assertions

3During the C++ London Meetup on January 20, 2025 ([londoncpp012025]), Timur Doumler was asked to describe
[P2900R13], and he gave a complete synopsis of the usage of Contracts in just over two minutes. Another concise
description has been published as a (small) blog post ([tdoumler2025]).

14

on declarations is that such assertions would then be exposed to client translation units. We
do have, however, decades of experience exposing assertions to client translation units through
the placement of assertions within inline functions in headers. The pros and cons of this
approach are well known, and the MVP tackles the majority of the disadvantages by dint of
not being based on the preprocessor.

3 Conclusion

When concerns are raised after a study group within WG21 has approved a paper to be forwarded
toward the next stage, we must ask, as participants in the ISO process, whether the groups responsible
for the decisions to forward the proposals to the next stage in the pipeline sufficiently discussed
the concerns being raised. For all the concerns raised in [P3573R0], this paper has provided a brief
summary showing that the concerns were indeed discussed thoroughly in all the relevant study
groups — SG21, SG23, EWG, and LEWG. If the detail presented here is insufficient, [P2899R0]
contains a much more thorough recording of the paper trail, discussion history, and polling that led
to the Contracts MVP.

More to the point, the collection of concerns presented in [P3573R0] and [P3506R0] are so self-
contradictory that the issues therein could never all be addressed. A Contracts proposal cannot be
as small as possible yet contain all features that each user or small group of users might want. A
proposal similarly cannot fully specify the behavior and avoid implementation-defined aspects while
also supporting the scalability and usability concerns of the full spectrum of real-world C++ users.

We hope that this paper shows that the issues raised by [P3573R0] and [P3506R0] have been
addressed and reassures those considering how to move forward with C++ that [P2900R13] is indeed
both the right solution for adding contract support to C++ and is ready to be adopted for C++26.

Acknowledgments

Thanks to everyone who has contributed to developing [P2900R13] for adoption into C++26.

Thanks to John Lakos for early feedback and to Lori Hughes for reviewing this paper and providing
editorial feedback.

Bibliography
[tdoumler2025] Timur Doumler, “Contracts for C++ Explained in 5 Minutes”. https://timur.
audio/contracts_explained_in_5_mins, 30 January 2025

[londoncpp012025] C++ London, “Contracts and Safety for C++26: An expert roundtable”. https:
//www .youtube.com/watch?v=NDyRiT3Z0OMY&t=764s, 20 January 2025

[N1613] Thorsten Ottosen, “Proposal to add Design by Contract to C++”, 2004
http://wg2l.1ink/N1613

[P1995R 1] Joshua Berne, Andrzej Krzemienski, Ryan McDougall, Timur Doumler, and Herb
Sutter, “Contracts — Use Cases”, 2020
http://wg21.1ink/P1995R1

15

https://timur.audio/contracts_explained_in_5_mins
https://timur.audio/contracts_explained_in_5_mins
https://www.youtube.com/watch?v=NDyRiT3ZOMY&t=764s
https://www.youtube.com/watch?v=NDyRiT3ZOMY&t=764s
http://wg21.link/N1613
http://wg21.link/P1995R1

[P2680R1]

[P2695R1]

[P2698R0)

[P2700R0)]

[P2755R1]

[P2811R7]

[P2894R2)]

[P2899R0)

[P2900R10]

[P2900R11]

[P2900R13]

[P2900R6]

[P2900R7)

[P2900RS]

[P2996R)

[P3071R1]

Gabriel Dos Reis, “Contracts for C++: Prioritizing Safety”, 2023
http://wg21.1ink/P2680R1

Timur Doumler and John Spicer, “A proposed plan for contracts in C++", 2023
http://wg21.1ink/P2695R1

Bjarne Stroustrup, “Unconditional termination is a serious problem”, 2022
http://wg21.1ink/P2698RO

Timur Doumler, Andrzej Krzemienski, John Lakos, Joshua Berne, Brian Bi, Peter
Brett, Oliver Rosten, and Herb Sutter, “Questions on P2680 "Contracts for C++:
Prioritizing Safety"”, 2022

http://wg21.1ink/P2700R0

Joshua Berne, Jake Fevold, and John Lakos, “A Bold Plan for a Complete Contracts
Facility”, 2024
http://wg21.1link/P2755R1

Joshua Berne, “Contract-Violation Handlers”, 2023
http://wg21.1ink/P2811R7

Timur Doumler, “Constant evaluation of Contracts”, 2024
http://wg21.1link/P2894R2

Timur Doumler, Joshua Berne, Andrzej Krzemienski, and Rostislav Khlebnikov,
“Contracts for C++ - Rationale”, 2025
http://ug2l.link/P2899R0

Joshua Berne, Timur Doumler, and Andrzej Krzemienski, “Contracts for C++", 2024
http://wg21.1link/P2900R10

Joshua Berne, Timur Doumler, and Andrzej Krzemienski, “Contracts for C++", 2024
http://wg21.1ink/P2900R11

Joshua Berne, Timur Doumler, and Andrzej Krzemienski, “Contracts for C++7, 2025
http://wg21.1ink/P2900R13

Joshua Berne, Timur Doumler, and Andrzej Krzemienski, “Contracts for C++", 2024
http://wg21.1link/P2900R6

Joshua Berne, Timur Doumler, and Andrzej Krzemienski, “Contracts for C++7, 2024
http://wg2l.1link/P2900R7

Joshua Berne, Timur Doumler, and Andrzej Krzemienski, “Contracts for C++7, 2024
http://wg2l.1ink/P2900RS

Barry Revzin, Wyatt Childers, Peter Dimov, Andrew Sutton, Faisal Vali, Daveed
Vandevoorde, and Dan Katz, “Reflection for C++426”, 2025
http://wg21.1ink/P2996R9

Jens Maurer, “Protection against modifications in contracts”, 2023
http://wg21.1ink/P3071R1

16

http://wg21.link/P2680R1
http://wg21.link/P2695R1
http://wg21.link/P2698R0
http://wg21.link/P2700R0
http://wg21.link/P2755R1
http://wg21.link/P2811R7
http://wg21.link/P2894R2
http://wg21.link/P2899R0
http://wg21.link/P2900R10
http://wg21.link/P2900R11
http://wg21.link/P2900R13
http://wg21.link/P2900R6
http://wg21.link/P2900R7
http://wg21.link/P2900R8
http://wg21.link/P2996R9
http://wg21.link/P3071R1

[P3081R1]

[P3097R0]

[P3100R0)]

[P3100R1]

[P3173R0)

[P3191R0)

[P3261R1]

[P3261R2)]

[P3271R0)

[P3285R0)

[P3321R0)

[P3327R0)

[P3344R0]

[P3386R0)

[P3400R0]

[P3478R0)

Herb Sutter, “Core safety profiles for C++26”, 2025
http://wg21.1ink/P3081R1

Timur Doumler, Joshua Berne, and Gasper Azman, “Contracts for C++: Support
for virtual functions”, 2024
http://wg2l.1link/P3097RO

Timur Doumler, Gasper AZzman, and Joshua Berne, “Undefined and erroneous
behaviour are contract violations”, 2024
http://wg21.1ink/P3100R0

Timur Doumler, Gasper Azman, and Joshua Berne, “Undefined and erroneous
behaviour are contract violations”, 2024
http://wg21.1link/P3100R1

Gabriel Dos Reis, “[P2900R6] May Be Minimal, but It Is Not Viable”, 2024
http://wg2l.1ink/P3173R0

Louis Dionne, Yeoul Na, and Konstantin Varlamov, “Feedback on the scalability of
contract violation handlers in P2900”, 2024
http://wg21.1link/P3191R0

Joshua Berne, “Revisiting const-ification in Contract Assertions”, 2024
http://wg21.1ink/P3261R1

Joshua Berne, “Revisiting const-ification in Contract Assertions”, 2024
http://wg21.1link/P3261R2

Lisa Lippincott, “Function Usage Types (Contracts for Function Pointers)”, 2024
http://wg21.1ink/P3271R0

Gabriel Dos Reis, “Contracts: Protecting The Protector”, 2024
http://wg21.1ink/P3285R0

Joshua Berne, “Contracts Interaction With Tooling”, 2024
http://wg21.1ink/P3321R0

Timur Doumler, “Contract assertions on function pointers”, 2024
http://wg21.1ink/P3327R0

Joshua Berne, Timur Doumler, and Lisa Lippincott, “Virtual Functions on Contracts

(EWG - Presentation for P3097)”, 2024
http://wg2l.1link/P3344R0

Joshua Berne, “Static Analysis of Contracts with P2900”, 2024
http://wg21.1ink/P3386RO

Joshua Berne, “Specifying Contract Assertion Properties with Labels”, 2025
http://wg21.1ink/P3400R0

John Spicer, “Constification should not be part of the MVP”, 2024
http://wg21.1ink/P3478RO

17

http://wg21.link/P3081R1
http://wg21.link/P3097R0
http://wg21.link/P3100R0
http://wg21.link/P3100R1
http://wg21.link/P3173R0
http://wg21.link/P3191R0
http://wg21.link/P3261R1
http://wg21.link/P3261R2
http://wg21.link/P3271R0
http://wg21.link/P3285R0
http://wg21.link/P3321R0
http://wg21.link/P3327R0
http://wg21.link/P3344R0
http://wg21.link/P3386R0
http://wg21.link/P3400R0
http://wg21.link/P3478R0

[P3499R0)

[P3506R0)

[P3520R0]

[P3543R0)

[P3558R0)

[P3573R0)

[P3583R0)

[P3586R0]

[P3589R0]

Lisa Lippincott, Timur Doumler, and Joshua Berne, “Exploring strict contract
predicates”, 2025
http://wg21.1link/P3499R0

Gabriel Dos Reis, “P2900 Is Still not Ready for C++26”, 2025
http://wg2l.1link/P3506R0

Timur Doumler, Joshua Berne, and Andrzej Krzemienski, “Wroclaw Technical Fixes
to Contracts”, 2024
http://wg21.1ink/P3520R0

Mungo Gill, Corentin Jabot, John Lakos, Joshua Berne, and Timur Doumler, “Re-
sponse to Core Safety Profiles (P3081)”, 2024
http://wg21.1link/P3543R0

Joshua Berne and John Lakos, “Core Language Contracts By Default”, 2025
http://ug2l.link/P3558R0

Bjarne Stroustrup, Michael Hava, J. Daniel Garcia Sanchez, Ran Regev, Gabriel
Dos Reis, John Spicer, J.C. van Winkel, David Vandevoorde, and Ville Voutilainen,
“Contract concerns”, 2025

http://ug2l.link/P3573R0

Jonas Persson, “Contracts, Types & Functions”, 2025
http://wg21.1ink/P3583R0

Corentin Jabot, “The Plethora of Problems With Profiles”, 2025
http://wg21.1ink/P3586R0

Gabriel Dos Reis, “C++ Profiles: The Framework”, 2025
http://wg21.1ink/P3589R0

18

http://wg21.link/P3499R0
http://wg21.link/P3506R0
http://wg21.link/P3520R0
http://wg21.link/P3543R0
http://wg21.link/P3558R0
http://wg21.link/P3573R0
http://wg21.link/P3583R0
http://wg21.link/P3586R0
http://wg21.link/P3589R0

	1 Introduction
	2 Concerns
	3 Conclusion

