
P3589R1 2025-02-02 Reply-To: gdr@microsoft.com
Audience: EWG

1

C++ Profiles: The Framework
Gabriel Dos Reis

Microsoft

This document offers an overview of the design and rationale for the “C++ Profiles” framework
(Stroustrup, 2024) as discussed in previous papers and presentations (Stroustrup, 2024) (Stroustrup
& Dos Reis, 2023) (Stroustrup, 2023) (Stroustrup & Dos Reis, 2022) (Stroustrup, 2024) and approved
by SG23. The framework is independent of any specific “profile” such as memory safety profile, type
safety profile, style profiles, arithmetic safety profile, hardened standard library profile, etc. This is
not a competing proposal with respect to Herb Sutter’s proposal (Sutter, 2025). Rather, the aim here
is to “factor out” the mechanisms of the profile framework protocol from considerations and
discussions of any specific profile in order to help the community focus attention on the right sets of
concerns in the appropriate contexts. Questions regarding the Profiles framework should, in
general, be considered independently of a given specific profile. Conversely, questions regarding a
given profile should be considered independently of the framework. Of course, there will arise
questions regarding interactions between profiles or how a given profile should work given the
general framework. The aim here is to help structure conversations around profiles in order to make
forward progress.

1 DESIGN
At its core, the idea of “profiles” is to allow a programmer to state that they desire their program to
abide by the conventional ISO C++ rules and additional rules. A set of such additional rules, called
profile, are not to change the meaning (i.e. set of permitted behaviors) of a well-formed program
with no undefined behavior. To address the contemporary challenge of memory safety concerns,
we need some standard profiles related to type and memory safety, guaranteed to be available in all
C++ implementations. Herb Sutter’s proposal (Sutter, 2025) is focused on such profiles, to plug into
the general C++ profiles framework. The Profiles framework is independent of any specific profile.

As explained in (Stroustrup, 2024), a framework is essential to enable gradual adoption of safety
measures, to support incremental improvements to guarantees and support tools, to become a tool
for fighting the problems of technical debts affecting safety, and to ensure portability of guarantees
across toolchains. This document is not to rehash past conversations; it is not a new proposal;
rather, it is to provide a crisp overview, rationale, and specification for the Profiles framework,
unencumbered by considerations of any specific profile details. Without a common framework, the
options from different suppliers addressing common problems (e.g., range errors) will be
significantly different, and code relying on one cannot be relied on to work on another or to offer the
same guarantees. Without a framework, we will get an incompatible mess of checks and
improvements that will be impossible to unify in a future standard. This serious problem can be
addressed by the options implementing specific Profiles, just as if they had been specified in-code.

A companion paper investigates the practical matters of implementation strategies.

mailto:gdr@microsoft.com

P3589R1 2025-02-02 Reply-To: gdr@microsoft.com
Audience: EWG

2

1.1 AIMS
The Profiles framework aims to

1. Provide syntactic support for a program (fragment) to express the set of guarantees it enjoys,
i.e. set of profiles enforced by the C++ translator. Each profile is formulated to ensure the
program is free of a certain class of problems (e.g. memory safety, resource-leak free, etc.)
(Stroustrup & Dos Reis, 2022)

2. Provie ability for a program to selectively and locally suppress the application of a profile (or
a rule thereof) to a construct, possibly with a justification message string. The granularity of
such suppression is limited to a declaration or a statement

3. Support an open-ended set of profiles, some standard, some implementation-defined, some
provided by third parties, etc.

4. Provide a mechanism for a library to express an interface along with guarantees that it offers
such as through a module interface, etc.

5. Provide a mechanism for a program to take dependencies on other components (modules,
libraries, etc.) and to request specific guarantees from those components

A profile may have an effect on the runtime behavior of a program such as enabling runtime
instrumentation (e.g. bound checking in array indexing). However, its static semantic effects are as-
if applied only after translation phase 7. It is not possible for a profile to change the outcome of
overload resolution or template instantiation, nor is it possible to “SFINAE out” failure of a program
to satisfy a profile requirement.

The description in the following sections is based on the paper (Stroustrup, 2024) which was
approved by SG23 at the Wrocław meeting. Of the four proposed syntactic constructs in section 3
of that paper, only three are retained, namely:

• [[profiles::enforce]] (see sections 1.1.1 and 2.2)
• [[profiles::require]] (see sections 1.1.5 and 2.3)
• [[profiles::suppress] (see sections 1.1.2 and 2.4)

The fourth, [[profiles::enable]], is deemed redundant with [[profiles::require]] in
its semantic effects at this point.

1.1.1 Request for profile enforcement
The simplest way for a program to request a profile enforcement is to state something like

[[profiles::enforce(profile-designator-list)]];

as the first thing in a source file (translation unit) before any declaration is seen. We call that a
profile-enforcement attribute. Here, profile-designator-list is comma-separated list of profile-

designators A profile-designator is something as simple as a profile name (e.g. std::type,
std::lib::hardened, etc.) or a profile name followed by a parenthesized comma-separated
profile-argument list such as acme::hardened(fortify: 3, sanitize: thread). Any
identifier used in a profile-argument is not subject to name lookup rule. The profile-argument list is
interpreted by the implementation in an implementation-defined way.

mailto:gdr@microsoft.com

P3589R1 2025-02-02 Reply-To: gdr@microsoft.com
Audience: EWG

3

The rules in a profile designated in a profile-enforcement attribute are enforced in the dominion of
that attribute, which is defined as the set of tokens starting from the end of that attribute till the end
of the translation unit containing the attribute.

A profile-enforcement attribute is not to appear anywhere other than at global scope before any
declaration. For example, the following program fragment is accepted

module;
[[profiles::enforce(std::lib::hardened)]];
export module My.Module;
import Kai.Utils [[profile::require(std::ranges)]];
export enum class ID : int { };

but the program fragment

int my_abs(int);
[[profiles::enforce(std::lib::hardened)]]; // error: profile enforcement after
my_abs decl
import Kai.Utils [[profiles::require(std::type)]]; // OK.

is rejected because the profile-enforcement attribute appears after the declaration of the function
my_abs.

Normally, a source file will state the set of profiles it desires to see enforced as a comma-separated
profile-designators as a request at one place. The constraint that a profile-enforcement attribute is
to appear before any declaration allows for a row of profile-enforcement attributes before any
declarations, as in:

[[profiles::enforce(std::lib::hardened)]];
[[profiles::enforce(acme::hardened(fortify: 3, sanitize: thread))]];
#include <my/lib.h>
String greet(const Neighbor& n) { /* … */ }

It is allowed to repeat a profile enforcement attribute as long as the repetitions are exactly the same
token sequences.

[[profiles::enforce(std::lib::hardened)]];
[[profiles::enforce(std::type)]];
[[profiles::enforce(std::lib::hardened)]]; // OK.
[[profiles::enforce(acme::hardened(fortify: 3, sanitize: thread))]];
[[profiles::enforce(acme::hardened(fortify: 3))]]; // error.
[[profiles::enforce(acme::hardened(sanitize: thread))]]; // error.

When valid, the subsequent repetitions have no effect.

1.1.2 Local suppression of enforcement
Occasionally, there is a need to locally suppress the enforcement of a profile or a rule thereof. The
simplest way to achieve that is to use a profile-suppression attribute on a statement or on a
declaration; such a profile-suppression attribute has the form

mailto:gdr@microsoft.com

P3589R1 2025-02-02 Reply-To: gdr@microsoft.com
Audience: EWG

4

[[profiles::suppress(profile-name)]]

The dominion of a profile-suppression attribute is the sequence of tokens making up the declaration
or the statement to which the attribute appertains. A profile-suppression attribute exempts the
dominion of the nominated profiles from enforcement of that profile. For example, in

[[profiles::enforce(std::type)]];
extern int read(char* buf, int n);
int main()
{
 [[profiles::suppress(std::type)]] char buffer[1024]; // OK.
 int len = read(buffer, 1014);
}

The declaration of the local variable buffer suppresses the std::type profile requirement that
all variables must be initialized at definition point.

Often, from software engineering perspective (code evolution, maintenance, validation processes,
etc.) it is necessary to state a reason for why a suppression is in effect. The profile-suppression
attribute supports that with a “justification:” argument as in

[[profiles::suppress(std::type,
 justification: “buffer is filled in by read()”)]]
char buff[1024]; // OK.

Although this form of profile-suppression was not explicitly shown in the examples from profiles
papers published earlier, it wasn’t the intent to exclude it. This form is based on experience with
[[gsl::suppress]] which itself evolved based on years of in-field deployments and feedback
from users. The “justification:” argument is required to be a string.

Finally, frequently, when locally suppressing a profile, it is not the totality of all rules in the profile
that are desired to be non-enforced. Rather, it is often just one specific rule from that profile that
one wishes to suppress. This is especially the case when one wants to avoid unintended
consequences with relatively large suppression dominion. The profile-suppression attribute
supports that scenario with a “rule:” argument when a profile has named rules. Here is an
example

[[profiles::suppress(acme::type,
 rule: “acme.cast.reinterpret”)]]
int* ptr = reinterpret_cast<int*>(0xdeadbeef);

for suppressing a ban of reinterpret_cast use as dictated by the acme::type profile. Although
this form of profile-suppression was not explicitly shown in profile papers published earlier, it is
based on a decade old experience with [[gsl::suppress]] (Editors, 2025). The argument for the
“rule:” can be any non-comma balanced-token – a string literal is typical.

Of course, it is possible to suppress a particular rule from a profile while also supplying a justification
for that suppression:

[[profiles::suppress(acme::type,
 rule: “acme.cast.reinterpret”,

mailto:gdr@microsoft.com

P3589R1 2025-02-02 Reply-To: gdr@microsoft.com
Audience: EWG

5

 justification: “thumbstone pointer value”)]]
int* ptr = reinterpret_cast<int*>(0xdeadbeef);

In that example, the code manufactures a pointer value to be used as a singularity, presumably to
catch uses of an invalid pointer.
The relative order of the “justification:” argument and the “rule:” argument is not important;
but the profile name must appear first. While those are the additional arguments to
profiles::suppress that are explicitly needed in this proposal, we suggest to allow a slightly
more generalized form of profile-suppression attribute syntax to accommodate for implementation-
defined arguments. In summary, a profile suppression can also be expressed in the general form

[[profiles::suppress(profile-name , profile-argument-list)]]

1.1.3 Open-ended set of profiles
The profiles framework is designed to accommodate not just standard profiles (e.g. std::type,
std::lib::hardened, etc.) but also implementation defined profiles as well as third-party
profiles. For instance, an implementation may “package” existing compiler options into a single
coherent profile designed for a specific purpose for programs to use in their source files:

[[profiles::enforce(Vendor::Ruleset(“CoreCheck”, fortify: 3))]];

More generally, implementations may use this notation to provide “code analysis plugin” hooks for
third-party tools providers, and to allow for more experimentations in the design of specific profiles.
For instance, since profiles effects notionally take effects after translation phase 7, an
implementation can present a profile plugin with the complete abstract semantic graph of a
translation unit for profile enforcement before proceeding to “machine code generation”. The
profiles framework presents a tooling opportunity with a minimal common notation for
programmers to express desire of guarantees.

1.1.4 Interface guarantees
A program usually has dependencies on libraries or other components the interfaces of which can
be expressed as module interfaces. A library may express guarantees offered by its primary module
interfaces or module partition interfaces through a profile-enforcement as an attribute in its module-

declaration. For example:

module;
#include <unistd.h>
export module Kai.Utils [[profiles::enforce(std::type)]]; // OK.
export using ::getpid;
// …

The meaning of a profile-enforcement attribute in a module-declaration is that the nominated profile
is enforced in its dominion in that module unit, and if the module-declaration is that of a primary
module interface unit then the dominion extends to all module implementation units of that module,
and only to those. Furthermore, the profile names (or rather the profile-designators) are checked in
module-import-declarations that request a particular profile in a translation units that import the

mailto:gdr@microsoft.com

P3589R1 2025-02-02 Reply-To: gdr@microsoft.com
Audience: EWG

6

module. A profile-enforcement attribute that appears before a module-declaration only affects that
particular module unit.

1.1.5 Request of guarantees provided by an interface
When a program takes dependencies on another component (expressed as a module), it may
request that the component’s interface is indeed advertised as obeying the rules of specific profiles.
For instance,

import Kai.Utils[[profiles::require(std::type)]];

is OK if the module Kai.Utils was declared with the profile-designator std::type in a profile-
enforcement attribute in the attribute-specific-seq of its module-declaration. Otherwise, that module-

import-declaration is an error.

The same behavior is expected if, instead of a named module, a header unit was imported. In that
case, the expectation is that the requested profile-designator was used in the profile-enforcement in
the header (file) corresponding to the header unit.

2 PROPOSED WORDING

2.1 DIAGNOSABLE RULE
Failure to satisfy a constraint dictated by a profile is a diagnosable rule. Accordingly, modify
paragraph [intro.compliance.general]/1 as follows:

The set of diagnosable rules consists of all syntactic, and semantic, and profile rules in this
document except for those rules containing an explicit notation that “no diagnostic is
required” or which are described as resulting in “undefined behavior”. An implementation is
permitted to provide additional profile rules if they are active only under the appropriate
implementation-defined profile.

2.2 PROFILE ENFORCEMENT
The enforcement of a profile is requested via a profile-designator defined as follows. Add these new
productions to the list or productions in paragraph [decl.attr.grammar]/1

profile-designator:
 profile-name

 profile-name (profile-argument-list)
profile-name:
 identifier

 profile-name :: identifier
profile-argument-list:
 profile-argument

 profile-argument-list , profile-argument
profile-argument:
 non-operator-non-punctuator-token

mailto:gdr@microsoft.com
https://eel.is/c++draft/intro#def:diagnosable_rules
https://eel.is/c++draft/intro#compliance.general-1.sentence-1

P3589R1 2025-02-02 Reply-To: gdr@microsoft.com
Audience: EWG

7

 identifier : non-comma-balanced-token
non-operator-non-punctuator-token:
 Any token other than an operator-or-punctuator
non-comma-balanced-token:
 Any balanced-token other than comma

2.2.1 Syntax
Modify paragraph [decl.pre]/1 as follows:

empty-declaration:
 attribute-specifier-seqopt ;

Modify paragraph [decl.pre]/15 as follows

An empty-declaration has no effect. The optional attribute-specifier-seq appertains to the
empty-declaration.

2.2.2 Static Semantics
A profile may have a dynamic semantics (e.g. requesting array bound checking) in addition to static
semantics. The static semantics is conceptually applied after translation phase 7.

Add a new subsection titled “Profile enforcement [decl.attr.enforce]”

1. A profile-enforcement attribute is an attribute where the attribute-token is profiles::enforce.
It shall appear only in the attribute-specifier-seq (if any) of a module-declaration, or in an empty-

declaration and that empty-declaration shall precede any non-empty-declaration, if any, in the
translation-unit.

2. A profile-enforcement attribute shall have an attribute-argument-clause, and that attribute-

argument-clause shall have the syntactic structure (profile-designator). The profile-name in a
profile-designator specifies a profile, which is a set of additional language restrictions applied
after translation phase 7. [Example:

module;
[[profiles::enforce(lib::hardened)]];
export module My.Module;
import Kai.Utils [[profile::require(acme::ranges)]];
export enum class ID : int { };

--end example]
[Example:

int my_abs(int);
[[profiles::enforce(acme)]]; // error: profile enforcement after my_abs decl
import Kai.Utils [[profiles::require(acme::type)]]; // OK.

--end example]
[Example:

[[profiles::enforce(lib::hardened)]];
[[profiles::enforce(acme(fortify: 3, sanitize: thread))]];

mailto:gdr@microsoft.com

P3589R1 2025-02-02 Reply-To: gdr@microsoft.com
Audience: EWG

8

[[profiles::enforce(acme::ruleset(“CoreCheck”))]];
#include <my/lib.h>
String greet(const Neighbor& n) { /* … */ }

--end example]

3. It is permitted to repeat a profile-enforcement attribute naming the same profile as long as the
repetitions are exactly the same token sequences. When valid, the subsequent repetitions have
no effect. [Example:

[[profiles::enforce(lib::hardened)]];
[[profiles::enforce(acme::type)]];
[[profiles::enforce(lib::hardened)]]; // OK.
[[profiles::enforce(acme(fortify: 3, sanitize: thread))]];
[[profiles::enforce(acme(fortify: 3))]]; // error.
[[profiles::enforce(acme(sanitize: thread))]]; // error.

--end example]

4. In a given translation unit, the dominion of a profile P is the sequence of tokens starting after a
profile-enforcement attribute whose profile-designator nominates P, and extending to the end of
that translation unit. The additional language restrictions enabled by the profile P apply only to
its dominion, possibly except the dominion of a profile-suppression ([decl.attr.suppress]) that
specifies P. If the profile-enforcement attribute appears in the export-declaration of the primary
interface unit of a module M, then the dominion of P includes all module implementation units
of M.

5. If a declaration D appears in the dominion of a profile P1, all other redeclarations of D, if any, shall

appear in the dominion a profile P2 and any such P2 shall be compatible with P1. Two profiles are
compatible if they are the same or proclaimed as such by the implementation. All standard
profiles are compatible with each other.

2.3 PROFILE REQUIREMENT
Add a new section titled “Profile requirement [decl.attr.require]”:

1. A profile-requirement attribute is an attribute where attribute-token is profiles::require.
That attribute shall have an attribute-argument-clause the syntactic structure of which shall be (
profile-designator).

2. A profile-requirement attribute shall appear only in a module-import-declaration. If that module-

import-declaration specifies a named module or a module partition M, then the profile-designator
shall appear in a profile-enforcement attribute contained in the export-declaration of the module
interface unit of M. If the module-import-declaration specifies a header-name H, then the profile-

designator shall appear in a profile-enforcement attribute ([decl.attr.enforce]) of an empty-

declaration in the header unit corresponding to H. [Example:
Translation unit #1:
export module Kai.Utils [[profiles::enforce(lib::hardened, acme::type)]];
// …
Translation unit #2:

mailto:gdr@microsoft.com

P3589R1 2025-02-02 Reply-To: gdr@microsoft.com
Audience: EWG

9

import Kai.Utils [[profiles::require(acme::type)]]; // OK.
// …
Translation unit #3:
import Kai.Utils [[profiles::require(acme::sanitize)]]; //error.
// …

--end example]

[Example:

Translation unit #1:
export module Kai.Utils [[profiles::enforce(lib::hardened, acme:type)]];
// …
Translation unit #2:
import Kai.Utils [[profiles::require(lib::hardened)]];
import Kai.Utils [[profiles::require(lib::hardened)]]; // OK.
import Kai.Utils [[profiles::require(acme::type)]]; // OK.

--end example]

2.4 LOCAL PROFILE SUPPRESSION
Add a new section titled “Local profile suppression [decl.attr.suppress]”:

1. A profile-suppression attribute is an attribute where the attribute-token is
profiles::suppress. That attribute shall have an attribute-argument-clause of the form (
profile-name) or (profile-name , profile-argument-list).

2. If a profile-argument in a profile-suppression attribute is of the form
justification : non-comma-balanced-token

then that non-comma-balanced shall be a string-literal.

3. The dominion of a profile-suppression attribute is the sequence of tokens starting after the
attribute extending till the last token of the declaration or statement to which the attribute
appertains. If a profile-suppression attribute designates a profile P, none of the rules of P is
enforced in the dominion of that attribute.

4. A profile P may support an implementation-defined way to specify, via non-comma-balanced-

token, a specific rule in P. If a profile-argument in a profile-suppression attribute is of the form
rule : non-comma-balanced-token

then only the rule of P designated by that non-comma-balanced-token is not enforced in the
dominion of that attribute; all other rules of P are in effect. [Example

[[profiles::enforce(acme::type)]];
extern int read(char* buf, int n);
int main()
{
 [[profiles::suppress(acme::type)]] char buffer[1024]; // OK.
 int len = read(buffer, 1014);
}

--end example]
5. [Example:

mailto:gdr@microsoft.com

P3589R1 2025-02-02 Reply-To: gdr@microsoft.com
Audience: EWG

10

[[profiles::suppress(acme::type,
 rule: “acme.cast.reinterpret”,
 justification: “thumbstone pointer value”)]]
int* ptr = reinterpret_cast<int*>(0xdeadbeef);

--end example]

3 CHANGELOG

3.1 REVISION R0 -> R1
• Add examples of usage of profiles.
• Add more contexts and references to previous papers presented to SG23 and EWG.
• Clarify that a request to a profile can have arguments; add examples.
• Add examples of suppressions with justification message and named rule.
• Add examples of guaranteed profiles and requested profiles
• Completely rework the proposed formal wording section.

4 ACKNOWLEDGMENT
Thanks to all of you who provided feedback on earlier feedback drafts of this paper, in particular
Bjarne Stroustrup, and Ville Voutilainen.

5 REFERENCES
Editors, C. C. G., 2025. C++ Core Guidelines. [Online]
Available at: https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

Stroustrup, B., 2023. Concrete suggestions for initial Profiles. [Online]
Available at: https://open-std.org/JTC1/SC22/WG21/docs/papers/2023/p3038r0.pdf

Stroustrup, B., 2024. A framework for Profiles development. [Online]
Available at: https://open-std.org/JTC1/SC22/WG21/docs/papers/2024/p3274r0.pdf

Stroustrup, B., 2024. Profile invalidation - eliminating dangling pointers. [Online]
Available at: https://open-std.org/JTC1/SC22/WG21/docs/papers/2024/p3446r0.pdf

Stroustrup, B., 2024. Profiles syntax. [Online]
Available at: https://open-std.org/JTC1/SC22/WG21/docs/papers/2024/p3447r0.pdf

Stroustrup, B., 2024. Profiles syntax. [Online]
Available at: https://open-std.org/JTC1/SC22/WG21/docs/papers/2024/p3447r0.pdf

Stroustrup, B. & Dos Reis, G., 2022. Design Alternatives for Type-and-Resource Safe C++. [Online]
Available at: https://open-std.org/JTC1/SC22/WG21/docs/papers/2022/p2687r0.pdf

mailto:gdr@microsoft.com

P3589R1 2025-02-02 Reply-To: gdr@microsoft.com
Audience: EWG

11

Stroustrup, B. & Dos Reis, G., 2023. Safety Profiles: Type-and-resource Safe Programming in ISO
Standard C++. [Online]
Available at: https://open-std.org/JTC1/SC22/WG21/docs/papers/2023/p2816r0.pdf

Sutter, H., 2025. Core safety Profiles: Specification, adoptability, and impact. [Online]
Available at: https://open-std.org/JTC1/SC22/WG21/docs/papers/2025/p3081r1.pdf

mailto:gdr@microsoft.com

