
P3589R0 2025-01-13 Reply-To: gdr@microsoft.com
Audience: EWG

1

C++ Profiles: The Framework
Gabriel Dos Reis

Microsoft

This document offers an overview of the design and rationale for the “C++ Profiles” framework
(Stroustrup, 2024) as discussed in previous papers and presentations (Stroustrup, 2024) (Stroustrup
& Dos Reis, 2023) (Stroustrup, 2023) (Stroustrup & Dos Reis, 2022) (Stroustrup, 2024). The
framework is independent of any specific “profile” (e.g. memory safety profile, type safety profile,
style profiles, etc.). This is not a competing proposal with respect to Herb Sutter’s proposal (Sutter,
2025). Rather, the aim here is to “factor out” the profile framework protocol from considerations
and discussions of any specific profile in order to help the community focus attention on the right
sets of concerns in the appropriate contexts. Questions regarding the Profiles framework should, in
general, be considered independently of a given specific profile. Conversely, questions regarding a
given profile should be considered independently of the framework. Of course, there will arise
questions regarding interactions between profiles or how a given profile should work given the
general framework. The aim here is to help structure conversations around profiles in order to make
forward progress.

1 DESIGN
At its core, the idea of “profiles” is to allow a programmer to state that they desire their program to
abide by the conventional ISO C++ rules and additional rules. A set of such additional rules, called
profile, are not to change the meaning (i.e. set of permitted behaviors) of a well-formed program
with no undefined behavior. To address the contemporary challenge of memory safety concern,
we need some standard profiles related to memory safety, guaranteed to be available in all C++
implementations. Herb Sutter’s proposal (Sutter, 2025) is focused on such profiles, to plug into the
general C++ profiles framework.

This document is not to rehash past conversations; it is not a new proposal; rather, it is to provide an
overview and rationale for the profiles framework. As stated in (Stroustrup, 2024), without a
common framework, the options from different suppliers addressing common problems (e.g., range
errors) will be significantly different, and code relying on one cannot be relied on to work on another
or to offer the same guarantees. This serious problem can be addressed by the options implementing
specific Profiles, just as if they had been specified in-code.

A companion paper looks into the practical matters of implementation strategies.

1.1 AIMS
The Profiles framework aims to

1. Provide syntactic support for a program (fragment) to express the set of guarantees it
enjoys, i.e. set of profiles enforced by the C++ translator. Each profile is formulated to

mailto:gdr@microsoft.com

P3589R0 2025-01-13 Reply-To: gdr@microsoft.com
Audience: EWG

2

ensure the program is free of a certain class of problems (e.g. memory safety, resource-
leak free) (Stroustrup & Dos Reis, 2022)

2. Support an open-ended set of profiles, some standard, some implementation-defined,
some provided by third parties, etc

3. Provide a mechanism for a library to express an interface along with guarantees that it
offers

4. Provide a mechanism for a program to take dependencies on other components (modules,
libraries, etc) and to request specific guarantees from those components

A profile may have an effect on the runtime behavior of a program such as enabling runtime
instrumentation (e.g. bound checking in array indexing). However, its static semantic effects are
as-if applied only at translation phase 8. In particular, it is not possible for a program to change the
outcome of overload resolution or template instantiation, nor is it possible to “SFINAE out” failure
of a program to satisfy a profile constraint.

2 PROPOSED WORDING
Part of the proposed wording in this section is directly borrowed from Sutter’s paper (Sutter, 2025).

2.1 DIAGNOSABLE RULE
Failure to satisfy a constraint dictated by a profile is a diagnosable rule. Accordingly, modify
paragraph [intro.compliance.general]/1 as follows:

The set of diagnosable rules consists of all syntactic, and semantic, and profile rules in this
document except for those rules containing an explicit notation that “no diagnostic is
required” or which are described as resulting in “undefined behavior”. An implementation is
permitted to provide additional profile rules provided they are active only under the
appropriate implementation-defined profile.

2.2 PROFILE ENABLEMENT
A profile is enabled at the beginning of a translation as the first declaration. A profile is designated
by a profile-designator defined as follows. Add these new productions to the list or productions in
paragraph [decl.attr.grammar]/1

profile-designator:
 profile-name
 profile-name (profile-argument-list_opt)
profile-name:
 attribute-token
profile-argument-list:
 profile-argument
 profile-argument-list , profile-argument
profile-argument:
 identifier

mailto:gdr@microsoft.com
https://eel.is/c++draft/intro#def:diagnosable_rules
https://eel.is/c++draft/intro#compliance.general-1.sentence-1

P3589R0 2025-01-13 Reply-To: gdr@microsoft.com
Audience: EWG

3

 identifier : expression
The identifier preceding the colon in a profile-argument is not looked up ([basic.lookup])

2.2.1 Syntax
Modify paragraph [decl.pre]/1 as follows:

empty-declaration:
 attribute-specifier-seq_opt ;

Modify paragraph [decl.pre]/15 as follows

An empty-declaration has no effect. The optional attribute-specifier-seq appertains to the
empty-declaration.

2.2.2 Static Semantics
A profile may have a dynamic semantics (e.g. requesting array bound checking) in addition to static
semantics. The static semantics is conceptually applied after translation phase 7.

Add a new subsection titled “Profile attributes [decl.attr.profile]”

A profile attribute is an attribute where the attribute-token is profiles::enforce or
profiles::suppress. A profile attribute whose attribute-token is profiles::enforce
shall be applied only to empty-declaration and that empty-declaration shall be the first
declaration, if any, in the translation-unit.

The profile-name in a profile-designator identifies a profile, which is a set of additional
language restrictions applied after translation phase 7.

The dominion of a profile P is the sequence of tokens starting after a profile attribute whose
profile-name designates P and extending to the end of the translation unit. The additional
language restrictions enabled by the profile P apply only to its dominion, except to the entire
region of a declaration or statement with a profile attribute whose attribute-token is
profiles::suppress and profile-name designates P.

If a declaration D appears in the dominion of a profile P1, all other redeclarations of D, if any,
shall appear in the dominion a profile P2 and any such P2 shall be compatible with P1. All
standard profiles are compatible with each other.

2.2.3 Linking Expectations to Guarantees
A module can explicitly advertise the profiles (guarantees) its interface provides.

Add a new paragraph to subsection [module.interface]

mailto:gdr@microsoft.com

P3589R0 2025-01-13 Reply-To: gdr@microsoft.com
Audience: EWG

4

If an enforcement profile attribute appears in the attribute-specifier-seq, if any, of a primary
module interface unit ([module.unit]), then all module units of that module are in the
dominion of the nominated profile.

Add a new paragraph to subsection [module.import]

If an application profile attribute appears in the optional attribute-specifier-seq of a
module-import-declaration then the module-import-declaration shall designate a named
module, and the nominated profile P shall be designated in the declaration of the module
interface unit. The dominion of P is extended to the end of the translation unit containing
the module-import-declaration.

3 REFERENCES
Stroustrup, B., 2023. Concrete suggestions for initial Profiles. [Online]
Available at: https://open-std.org/JTC1/SC22/WG21/docs/papers/2023/p3038r0.pdf

Stroustrup, B., 2024. A framework for Profiles development. [Online]
Available at: https://open-std.org/JTC1/SC22/WG21/docs/papers/2024/p3274r0.pdf

Stroustrup, B., 2024. Profile invalidation - eliminating dangling pointers. [Online]
Available at: https://open-std.org/JTC1/SC22/WG21/docs/papers/2024/p3446r0.pdf

Stroustrup, B., 2024. Profiles syntax. [Online]
Available at: https://open-std.org/JTC1/SC22/WG21/docs/papers/2024/p3447r0.pdf

Stroustrup, B. & Dos Reis, G., 2022. Design Alternatives for Type-and-Resource Safe C++. [Online]
Available at: https://open-std.org/JTC1/SC22/WG21/docs/papers/2022/p2687r0.pdf

Stroustrup, B. & Dos Reis, G., 2023. Safety Profiles: Type-and-resource Safe Programming in ISO
Standard C++. [Online]
Available at: https://open-std.org/JTC1/SC22/WG21/docs/papers/2023/p2816r0.pdf

Sutter, H., 2025. Core safety Profiles: Specification, adoptability, and impact. [Online]
Available at: https://open-std.org/JTC1/SC22/WG21/docs/papers/2025/p3081r1.pdf

mailto:gdr@microsoft.com

