Enrich Facade Creation Facilities for the
Pointer-Semantics-Based Polymorphism
Library - Proxy

Document number: P3584R0

Date: 2024-01-13

Project: Programming Language C++

Audience: LEWGI, LEWG

Authors: Mingxin Wang

Reply-to: Mingxin Wang <mingxwa@microsoft.com>

Table of Contents

1 INEEOAUCTION ...ttt ettt ettt e et e e st e st eesabeees 1
2 MOtIVALION ANA SCOPE ...vvvereeeniiiieeeiiiieeeeeiiieeeeeitteeeesiteeeeestbeeeeesabaeeeensnseeeeesnssaeesennsseeesenssees 1
3 Technical SPECTIICAtIONSccuuviiieeiiiiie ettt ettt e e e et e e e et e e e e e ebaeeeeennaeeeeennnes 2
3.1 Feature teSt MACTO.uiiiiiiiiiieeiii ettt e e et e e et e e e seneeeeas 2
3.2 Header <IMEMOTY™ SYNOPSIS. ...eeeerurireeeriurrieeeriirieeeeaierteeeessraeeeeansrseeeesassseeessssseeesssssseeens 2
3.3 Classtemplate basic facade builder ..., 3
4 SUMIMATY ...t e e e ettt e e e e e s sttt e e eeeeeesaansabbbeeeeeeeessaansnbbaeeeeeaessnnnnnes 6

1 Introduction

This paper introduces the facade builder class template to the standard, as an enhancement

to P3086R3: Proxy: A Pointer-Semantics-Based Polymorphism Library. facade builder

simplifies the creation and configuration of facades for polymorphic types, allowing for more
flexible and efficient design of facade-based runtime abstraction spec.

2 Motivation and scope

The primary motivation for this proposal is to provide a systematic and user-friendly way to create

1

https://wg21.link/p3086r3

and manage facades for runtime polymorphism in C++. The existing facilities in the Proxy library
are powerful but can be complex and cumbersome to use. The basic_ facade builder class
template abstracts the intricacies involved in configuring facades, making the process more intuitive

and less error prone.

The scope of this proposal includes the introduction of the basic_facade builder class
template and its associated member types and alias templates. It aims to standardize the process of
creating facades with customizable constraints, conventions and reflections, thus enhancing the

usability and flexibility of the Proxy library.

The proposed library is a minimal subset of our open-source implementation hosted on GitHub

without support for RTTI, proxy wview or std: :format. If the committee has a consensus in
the proposed part, those extensions can be proposed separately without requiring significant changes

to the core design.

3 Technical specifications

3.1 Feature test macro

In [version.syn], add:

#define _ cpp_ lib proxy YYYYMML // also in <memory>

The placeholder value shall be adjusted to denote this proposal's date of adoption.

3.2Header <memory> synopsis

// all freestanding
namespace std ({
template <class Cs, class Rs, proxiable ptr constraints C>
class basic_facade_builder;

using facade_ builder = basic_facade builder<tuple<>, tuple<>,
proxiable ptr constraints({
.max_size = default-size,
.max_align = default-size,
.copyability = default-cl,
.relocatability = default-cl,
.destructibility = default-cl}>;

2

https://github.com/microsoft/proxy

The definitions of basic_ facade builder and facade builder make use of the

following exposition-only constants:

constexpr std::size_t default-size = numeric_limits<size t>::max();
constexpr constraint level default-c/ = static_cast<constraint level>(
numeric_ limits<underlying type t<constraint level>>::min());

default-size and default-cl denote that a field in proxiable ptr constraints is not
specified in the template parameters of a basic facade_builder specialization. In an
instantiation of proxiable ptr constraints, any meaningful value of max size and
max align is less than default-size; any meaningful value of copyability,

relocatability, and destructibility is greater than default-cl.

3.3Class template basic_facade builder

template <class Cs, class Rs, proxiable ptr constraints C>
struct basic_facade builder ({
template <class D, class... Os> requires (see below)
using add_indirect convention = see below;
template <class D, class... Os> requires (see below)
using add direct convention = see below;
template <class D, class... Os> requires (see below)
using add _convention = see below;
template <class R>
using add_indirect reflection = see below;
template <class R>
using add direct reflection = see below;
template <class R>
using add _reflection = add_indirect_reflection<R>;
template <facade F, bool WithUpwardConversion = false>
using add facade = see below;
template <size_t PtrSize, size_t PtrAlign = see below> requires (see below)
using restrict layout = see below;
template <constraint_ level CL>
using support copy = see below;
template <constraint_ level CL>
using support relocation = see below;
template <constraint_ level CL>
using support destruction = see below;

using build = see below;

basic_facade builder () = delete;

};

template <class D, class... Os> requires (see below)
using add indirect convention = see below;
template <class D, class... Os> requires (see below)
using add direct convention = see below;
template <class D, class... Os> requires (see below)
using add convention = see below;
Adds a convention type to the template parameters. The expression inside requires is
equivalent to sizeof. .. (Os) > Ou and each type in Os meets the ProOverload requirements.
Let F be a facade type,
e add convention is equivalent to add indirect convention.
eadd indirect convention merges an implementation-defined convention type IC
into Cs, where:
IC::is_directis false.
typename IC::dispatch typeisD.
typename IC::overload types is a tuple-like type of distinct types in Os.
typename IC::template accessor<F> is typename D::template
accessor<F, false, D, Os...>ifapplicable.
eadd direct convention merges an implementation-defined convention type IC into
Cs, where:
IC::is_directis true.
typename IC::dispatch_ typeisD.
typename IC::overload types is a tuple-like type of distinct types in Os.
typename IC::template accessor<F> is typename D::template
accessor<F, true, D, Os...>ifapplicable.
When Cs already contains a convention type IC2 where IC2::is_direct ==
IC::is_direct && is_same v<typename IC2::dispatch type, typename
IC::dispatch_type> is true, Os merges with typename IC2::overload types
and removes duplicates, and tuple size v<Cs> shall not change.

o O O O

o O O O

template <class R>
using add indirect reflection = see below;
template <class R>
using add direct reflection = see below;
Adds a reflection type to the template parameters. Specifically,
e add indirect reflection merges an implementation-defined reflection type
Refl into Rs, where:
o Refl::is directis false.
o typename Refl::reflector typeisR.
o typename Refl: :template accessor<F> is typename
R::template accessor<F, false, R>ifapplicable.

4

e add direct reflection merges an implementation-defined reflection type Refl
into Rs, where:
o Refl::is _directis true.
o typename Refl::reflector typeisR.
o typename Refl: :template accessor<F> is typename
R::template accessor<F, true, R>ifapplicable.
When Rs already contains Ref1, the template parameters shall not change.

template <facade F, bool WithUpwardConversion = false>

using add facade = see below;
Adds a facade type into the template parameters. It merges typename
F::convention_types into Cs, typename F::reflection types into Rs, and
F: :constraints into C. Optionally, it adds a convention for implicit upward conversion into
Cs when WithUpwardConversion is true.

template <size t PtrSize, size_t PtrAlign = see below> requires (see below)

using restrict layout = see below;
Adds layout restrictions to the template parameters, specifically C::max size and
C::max align. The expression inside requires is equivalent to
has single bit(PtrAlign) && PtrSize % PtrAlign == Ou. The default value of
PtrAlign is the maximum possible alignment of an object of size PtrSize, not greater than
alignof (max align t). After applying the restriction, C::max size becomes
min(C: :max_size, PtrSize),and C::max align becomes min(C::max align,
PtrAlign).

template <constraint level CL>

using support_copy = see below;
Adds copyability support to the template parameters, specifically C: : copyability. After the
operation, C: : copyability becomes max (C: : copyability, CL).

template <constraint level CL>

using support relocation = see below;
Adds relocatability support to the template parameters, specifically C: : relocatability.
After the operation, C: : relocatability becomes max (C: : relocatability, CL).

template <constraint level CL>

using support destruction = see below;
Adds destruction support to the template parameters, specifically C: :destructibility.
After the operation, C::destructibility becomes max (C: :destructibility,
CL).

using build = see below;
Specifies a facade type deduced from the template parameters of

basic_facade builder<Cs, Rs, C>. Specifically,

typename build::convention_types is defined as Cs, and

typename build::reflection_types is defined as Rs, and

build: :constraints is a core constant expression of type
proxiable ptr constraints that defines constraints to the pointer types, and
build::constraints.max size is C::max size if defined by
restrict layout, otherwise sizeof (void*) * 2u when C::max size is
default-size, and

build::constraints.max align is C::max align if defined by
restrict layout, otherwise alignof (void*) when C::max align is
default-size, and

build: :constraints.copyability is C::copyability if defined by
support_copy, otherwise constraint level: :none when
C: :copyability is default-c/, and

build: :constraints.relocatability is C: :relocatability if defined
by support rellocation, otherwise constraint level::nothrow when
C: :relocatability is default-c/, and

build: :constraints.destructibility is C::destructibility if
defined by support destruction, otherwise constraint level: :nothrow
when C: :destructibility is default-cl.

4 Summary

By providing a more intuitive and structured way to create facades, we believe

the basic_facade builder class template will lower the barrier to entry for developers

looking to leverage the Proxy library.

	1 Introduction
	2 Motivation and scope
	3 Technical specifications
	3.1 Feature test macro
	3.2 Header <memory> synopsis
	3.3 Class template basic_facade_builder

	4 Summary

