
Contracts, Types & Functions
Document #: P3583R0
Date: 2025-01-12
Project: Programming Language C++
Audience: SG21 Contracts Working Group
Reply-to: Jonas Persson

<jonas.persson@iar.com>

Contents
1 Introduction 1

2 Proposal 2
2.1 Overview . 2
2.2 Contracts on function types . 2
2.3 Defining function from a type . 3
2.4 Function pointers . 3
2.5 Implementation contracts . 3
2.6 Old style functions . 4
2.7 Declaring a function type . 4
2.8 Templated function types . 4
2.9 Function declarations . 5
2.10 Instantiating a lambda from a type . 5
2.11 Member functions . 5
2.12 Virtual functions . 6

3 Conclusion 6

4 References 6

1 Introduction
Missing contracts for function pointers is a major hole in contracts proposal. This paper explore a solution to
allow putting contracts in the type.

[P3327R0] discuss the solution space of contracts on function pointers, but is far to quick in dismissing putting
them on the function type. It list a number of problem but don’t go too deep into thinking about how they can
be avoided.

[P2900R12] do not allow contracts on function pointers. Function with contracts implicitly converts to function
pointers without contracts. This is motivated by backward compatibility with old code that should not break
when contracts are added.

Even in the light of this, contracts in the types are desirable. It ensures contracts through pointer assignment
chains. It has no extra runtime or size overhead. It can be used in templates.

This paper will try to explore what contracts on function types looks like and how they add the to the functionality
of contracts and to the usability of functions in general.

1

mailto:jonas.persson@iar.com
https://wg21.link/p3327r0
https://wg21.link/p2900r12

2 Proposal
2.1 Overview
The major problems with contracts on types that we want to solve here is:

• Decide if the contracts are the same.
• How to do the name mangling.
• Avoid viral changes when improving code.

Function types today is a structural type. Functions defined in different places resolve to the same type if each
of their subparts resolves to identical types. They have no names and a unique identifier must be created by
name mangling.

When adding a contract to a type the compiler must be able to decide if two objects have the same type or not.
To do this the expressions must be normalizable in a predictable way. Mangling the name has the same problem
when trying to incorporate the contract predicate expressions into the name. It must be normalizable and it
may also create exceptionally long names.

Both of these problems can be solved by letting function types with contracts not be structural types. Class
types would have this very same problem if they where structural types, but they solve this by having a single
definition with a name that other can refer to. The same can be done for function types. Function types without
contracts are still considered structural types that are defined by its signature, but as soon a contract is added
a nominal type is created.

Contract annotations on the type do not contribute to overload resolution. There are no implicit conversions
between pointers of different types.

To support the [P2900R12] case with non-propagation, functions may still have implementation contracts that
are not part of the type. This allows adding contracts incrementally without the viral property of types. The
contracts described in [P2900R12] are then the implementation contracts.

This could be all of the proposal. But there is a hole in the current type system for functions in that there is
no way to define functions from a predefined function type. This hole needs to be filled so that type safety can
uphold when taking the address of a functions. Valid syntax need to be specified for free, member and lambda
functions.

This will also open up new use cases outside contracts. There are many reasons it would be nice to create functions
from function types. Sometimes there are several functions that needs to have the exact same signature. Other
times it could be useful to be able to overload on callbacks with the same signature but different purpose. And
a real problem today is the sheer size some type declarations have. Being able to separate out the type would
enhance readability enormously.

2.2 Contracts on function types
Ordinary function types depends only on it signature.
using Fa = int(int,int);
using Fb = int(int,int);
static_assert(is_same_v<Fa,Fb>);

When adding contracts, the type declaration becomes unique, much like the type of a lambda.
using Fc = int(int a,int) pre(a < 4);
using Fd = int(int a,int) pre(a < 4);
static_assert(not is_same_v<Fc,Fd>);

Functions with contracts that want to be of the of the same type need to refer to the same type declaration.

2

https://wg21.link/p2900r12
https://wg21.link/p2900r12

2.3 Defining function from a type
Requiring that functions and pointer who want to have the same type refer to the same declaration has a problem.
There are no syntax in C or C++ that allows defining a function from a predefined type.

This proposal will attempt to change that.

The syntax suggested will be that of captureless lambdas. Similar syntax has already been proposed by [P2826R2].
It can be interpreted as lambdas implicitly converts to a compatible function type, but for now it is only allowed
for lambdas defined in-place.

Defining
using Fa = int(int a,int) pre(a < 4);
Fa fa = [](auto a,auto b) { return a+b; }

a and b are already typed to int by Fa so any typing in the argument list must match or be auto. Since the
types are already know it may also be possible to allow skipping the type altogether and only give a name.
Fa fa = [](auto a,auto b) { return a+b; } // Ok
Fa fa = [](int a,int b) { return a+b; } // Ok
Fa fa = [](auto... a) { return a+...; } // Ok
Fa fa = [](a,b) { return a+b; } // Ok?
Fa fa = [](float a,float b) { return a+b; } // Error

2.4 Function pointers
Function pointers can now be created with a type containing contracts. Also, in functions, only the contracts
belong to the type will contribute when taking the address of a function.
using Fa = int(int a,int) pre(a < 4);
Fa fa = [](a,b) { return a+b; }
// Function pointer
Fa* pa = &fa;

Trying to assign the address to a pointer without contracts in the type will fail.
using Fb = int(int a,int);
Fb* pb = &fa; // Error, not the same function type

Assigning pointers of different types is not allowed but can be done using captureless lambdas.

2.5 Implementation contracts
Contracts on the type are safe and nice, but it requires rewriting code using this type whenever contracts change.
And there are other reasons to have contracts only on the specific function. These contracts is written on the
implementation part.
using Fa = int(int a,int) pre(a < 4);
Fa fa = [](auto a,auto b) post(b<13) { return a+b; }

fa now has two contracts, a precondition from the type and a postcondition from the function instance. For a
caller that calls fa directly both of these are visible.

Taking the address of a function creates a function pointer with the same type, pointing to a thunk where the
implementation contracts are checked.

Contract will be checked in order Type preconditions, implementation preconditions, function body, implemen-
tation postconditions, type postconditions.

3

https://wg21.link/p2826r2

The possibility to choose if contracts are typed or not let users decide how strict they want their contracts to
be applied.

2.6 Old style functions
If a contract on a regular function is on the type or its instance can be either way as we now have a way to
specify where we want it. Letting it be on the type by default would be safer, but keeping it on the instance
part is more like it works today and will not break code. So this is probably the way to go.
int fc(int a,int b) pre(b<13) { return a+b; }

Will be equal to:
using __FC = auto (int,int) -> int;
__FC fc = [](a,b) pre(b<13) { return a+b; }

and can be assigned to a pointer without contracts
int (pc*)(int,int) = fc;

2.7 Declaring a function type
So far the examples has declared anonymous types referenced by a using or a function declaration. These cannot
be used to forward declare a name since they are not unique or may alias.

To have named declaration we need a new keyword identifying function types. Naming such keyword is hard
since the names related to function are quite common in code. For now my best suggestion is the composite
name function class
function class F = int(float,int) pre(b==4);

When create this way, it will always create unique function types, even without contracts
function class Fc = int(int a,int);
function class Fd = int(int a,int);
static_assert(not is_same_v<Fc,Fd>);

These can now be safely forward declared as
function class F;
function class Fc;
function class Fd;

Common practice today is to name function types with a using or a using statement. This can still be allowed,
and will create an anonymous type if needed in the same way lambdas do. The only thing the named function
types do that this cannot, is the forward declaration of types. For function types without contracts this is still
the preferred was as it will still be a non-unique structural type.
using Fa = int(int a,int);
using Fb = int(int a,int);
static_assert(is_same_v<Fa,Fb>);

2.8 Templated function types
A template can result in a type with contracts either by using a templated function type or by being used to
initiate a typed function
template<typename E>
using Fe = int (int,E e) pre(e < 4.14);

4

template<typename E>
Fe<E> fb = [](a,b) { return a+b; };

fb(A{},3.14); // Has type Fe<double>

Fe<int> fi = fb; // Instantiate for int under name fi

// Used in a generic lambda
auto fg = []<typename T>Fe<T>(a,b) { return a+b; };

2.9 Function declarations
Forward declarations will have a new form that do not match forward declaration of variables not old style
functions. This is because functions may have instance properties that refer to the arguments, so these must be
named.
using Fa = int(float,int);

Fa fa;
int fa(float,int);
int fa(float,int b) pre(b==4);
Fa fa = [](float a,int b) pre(b==4);
Fa fa = [](auto a,auto b) pre(b==4);

When having a contracted type the named typed must be used in the forward declaration
using Fc = int (int a,int) pre(a < 4);

Fc fc = [](a,b) pre(b ==4);
Fc fc;

using Fd = decltype(fd)

Fd fd = [](a,b) pre(b ==3);

2.10 Instantiating a lambda from a type

auto fb = []Fb(a,b) { return a+b; }; // New syntax

This is needed to get the correct type when decaying this to a function pointer
Fb* fp = fb; // Ok

2.11 Member functions
Member function types are messy.
struct X {

using Xf = int (int);
using Zf = int (this X, int, int);
using Xg = int (int) pre (x==3); // Error, no member access
using Xg = int (this X,int) pre (x==3); // Ok

int x;
static Xf my_static_function;

5

Xf my_member_function;
};

X::Zf X::* pc;
pc = &X::my_member_function;
X::Xf * ps;
ps = &X::my_static_function;

The Xf type can be both a free function and a member depending on context. This is problematic when adding
contracts since it is not clear where to do the lookup for non argument contracts. Therefore it is proposed that
only function types with a explicit this argument may refer to members in its contracts Non-static member
functions should use the explicit this or trailing const versions.

The function type syntax need to be extended to allow a this parameters to be used in function types to denote
a member function type, as this strangely seems to not have been introduced together with deducing this.

Since a free function and a member function can be created from the same function type, a wrapper class can
be defined
template<typename F>
struct Func {

F* f;
F operator() = [](auto... a) { return f(std::forward<decltype(a)>(a)...); }

};

where the call operator will have the same contracts as the type F.

2.12 Virtual functions
Virtual functions with contracts on their types works the same way as virtual functions specified in [P2900R12].
Ideally the type contracts should be considered the interface contracts, and the check procedure be:

1. Base type precondition
2. Derived implementation precondition
3. Derived implementation postcondition
4. Base type postcondition

But a version compatible with the existing [P2900R12] would be

1. Base type precondition
2. Base implementation precondition
3. Derived implementation precondition
4. Derived implementation postcondition
5. Base implementation postcondition
6. Base type postcondition

3 Conclusion
As has been seen, contracts on function types be used for adding contracts to function pointers. It requires
a generalization of some of the established C++ type system to function types, but without to much novel
innovation. The fears previously aired about the effects of contracts in types are not there.

4 References
[P2826R2] Gašper Ažman. 2024-03-18. Replacement functions. https://wg21.link/p2826r2

6

https://wg21.link/p2900r12
https://wg21.link/p2900r12
https://wg21.link/p2826r2

[P2900R12] Joshua Berne, Timur Doumler, Andrzej Krzemieński. 2024-12-17. Contracts for C++.
https://wg21.link/p2900r12

[P3327R0] Timur Doumler. 2024-10-16. Contract assertions on function pointers. https://wg21.link/p3327r0

7

https://wg21.link/p2900r12
https://wg21.link/p3327r0

	Introduction
	Proposal
	Overview
	Contracts on function types
	Defining function from a type
	Function pointers
	Implementation contracts
	Old style functions
	Declaring a function type
	Templated function types
	Function declarations
	Instantiating a lambda from a type
	Member functions
	Virtual functions

	Conclusion
	References

