
Concurrent Queues API
P0260R15 / P3537R1

WG21
Hagenberg, February 2025

Detlef Vollmann
vollmann engineering gmbh

Overview

Presentation
Queues
Example
Error Handling
Concurrent Concept
Async Concept

Discussion
expected

Obsolete Error Facilities
Async Interface
Implementability

SG1

WG21 Concurrent Queues API Hagenberg, February 2025 Copyright ©1995-2024, Detlef Vollmann 2

Concurrent Queues are not Containers

• Concurrent queues are concurrent data structures

• A communication mechanism

• A synchronization mechanism

– consumers wait for producers
– producers wait for consumers

• (Temporary) storage is a possible implementation detail

– queues of size 0 sometimes make perfect sense

WG21 Concurrent Queues API Hagenberg, February 2025 Copyright ©1995-2024, Detlef Vollmann 3

Design Space

• The design space for concurrent queues is pretty big

– partly in interface design
– more in semantics

• Single or multiple connections on producer and/or consumer side

• Lock-free vs. locking

– separate for both ends

• Memory allocation

– up-front, per push/pop, external

• Ordering guarantee

– FIFO vs. priorities

• Non-blocking only vs. synchronous interface

• Single push/pop vs. two-phase

• Strongly typed vs. (dynamically sized) byte chunks

WG21 Concurrent Queues API Hagenberg, February 2025 Copyright ©1995-2024, Detlef Vollmann 4

Design Space

• More interface

– timed waits
– asynchronous
– debugging
– single ended interfaces

• Efficiency vs. robust/portable interface

• Error handling (exceptions)

• Concurrency vs. parallelism vs. asynchronicity

WG21 Concurrent Queues API Hagenberg, February 2025 Copyright ©1995-2024, Detlef Vollmann 5

Concepts for Concurrent Queues

• No single queue implementation can cover all design aspects

• Provided concepts are expected to cover most design aspects

• Implementing both async and non-blocking interfaces has
performance costs

– and real challenges

• Concept is split into one base concept and two separate concepts for
async and non-blocking

• Many different implementations for these concepts are expected

– some of them may be standardized

• Possible single-ended adapter can use these concepts

• bounded_queue models all concepts

WG21 Concurrent Queues API Hagenberg, February 2025 Copyright ©1995-2024, Detlef Vollmann 6

Basic Concept

enum class conqueue errc { success, empty, full, closed, busy, busy async };

void close() noexcept;
bool is closed() const noexcept;

bool push(const T& x);
bool push(T&& x);
template <typename... Args> bool emplace(Args &&... as);

optional<T> pop();

WG21 Concurrent Queues API Hagenberg, February 2025 Copyright ©1995-2024, Detlef Vollmann 7

Closing Queues

• The only queues that don’t need close are

– queues that are never closed
– single producer, single consumer with inline close token

• For all other cases synchronization needs access to queue internals

– as detailed in the paper

• So the basic concept provides close

WG21 Concurrent Queues API Hagenberg, February 2025 Copyright ©1995-2024, Detlef Vollmann 8

Synchronous push

• Push interface
bool push(const T& x);
bool push(T&& x);
template <typename... Args> bool emplace(Args &&... as);

• Returns true on success and false on close

WG21 Concurrent Queues API Hagenberg, February 2025 Copyright ©1995-2024, Detlef Vollmann 9

Synchronous pop

• Pop interface
optional<T> pop();

• Returns optional with value on success and empty optional on
close

• This is what LEWG voted for in Wroclaw

WG21 Concurrent Queues API Hagenberg, February 2025 Copyright ©1995-2024, Detlef Vollmann 10

Example

• ”Find files with string”

• One task/thread collects all the file paths in a directory and pushes
them into a queue and then closes the queue

• Other tasks/threads (one or more) pop file paths from the queue and
search them for a string

• Synchronous version with multiple threads

• Single-threaded Asynchronous version with coroutines

• Single-threaded Asynchronous version with native S/R

• Code available at
https://gitlab.com/cppzs/bounded-queue/-/tree/master/demo

WG21 Concurrent Queues API Hagenberg, February 2025 Copyright ©1995-2024, Detlef Vollmann 11

”Error” Handling

• ”One person’s exception is another person’s expected result.”

• The current proposal is to have no queue based errors.

• LEWG decided in Wroclaw to have optional<T> pop()

– i.e. closed is not an error

• This leads to bool push(T&& x)

• For non-blocking functions (try_*) empty and full (and arguably
busy and busy_async) are similar

WG21 Concurrent Queues API Hagenberg, February 2025 Copyright ©1995-2024, Detlef Vollmann 12

Concurrent Queue Concept

conqueue errc try push(const T& x);
conqueue errc try push(T&& x);
template <typename... Args> conqueue errc try emplace(Args &&... as);

optional<T> try pop(conqueue errc &ec);

WG21 Concurrent Queues API Hagenberg, February 2025 Copyright ©1995-2024, Detlef Vollmann 13

Non-Blocking push

• Push interface
conqueue errc try push(const T& x);
conqueue errc try push(T&& x);
template <typename... Args> conqueue errc try emplace(Args &&... as);

• This is the logical extension to blocking push

WG21 Concurrent Queues API Hagenberg, February 2025 Copyright ©1995-2024, Detlef Vollmann 14

Non-Blocking pop

• Pop interface
optional<T> try pop(conqueue errc &ec);

WG21 Concurrent Queues API Hagenberg, February 2025 Copyright ©1995-2024, Detlef Vollmann 15

Logging Example

• Embedded system

• No blocking anywhere

• Debug messages are raised anywhere

– pushed into queue

• Background task takes messages from the queue and sends them to a
UART

– no blocking either
– try_pop

WG21 Concurrent Queues API Hagenberg, February 2025 Copyright ©1995-2024, Detlef Vollmann 16

Async Queue Concept

sender auto async push(const T&);
sender auto async push(T&&);
template <typename... Args> sender auto async emplace(Args &&... as);

sender auto async pop();

WG21 Concurrent Queues API Hagenberg, February 2025 Copyright ©1995-2024, Detlef Vollmann 17

Asynchronous Interface

sender auto async pop();

• Current proposal for async_pop calls set_value(T) on success and
set_error(conqueue_errc) when closed.

sender auto async push(const T&);
sender auto async push(T&&);
template <typename... Args> sender auto async emplace(Args &&... as);

• Analogously async_push calls set_value(void) on success and
set_error(conqueue_errc) when closed.

WG21 Concurrent Queues API Hagenberg, February 2025 Copyright ©1995-2024, Detlef Vollmann 18

Example Using Coroutines

• ”Find files with string”

• Single-threaded Asynchronous version with coroutines

WG21 Concurrent Queues API Hagenberg, February 2025 Copyright ©1995-2024, Detlef Vollmann 19

Example Sender/Receiver

• ”Find files with string”

• Single-threaded Asynchronous version with native S/R

WG21 Concurrent Queues API Hagenberg, February 2025 Copyright ©1995-2024, Detlef Vollmann 20

Discussion

Discussion

WG21 Concurrent Queues API Hagenberg, February 2025 Copyright ©1995-2024, Detlef Vollmann 21

Non-Blocking pop

• Pop interface
optional<T> try pop(conqueue errc &ec);

• Alternative versions would be
expected<T, conqueue errc> queue::try pop();

• or even
expected<optional<T>, conqueue errc> queue::try pop();

WG21 Concurrent Queues API Hagenberg, February 2025 Copyright ©1995-2024, Detlef Vollmann 22

Non-Blocking pop

• Example from P2921R0:
conqueue errc ec;
while (auto val = q.try pop(ec))
println(”got {}”, *val);

if (ec == conqueue errc::closed)
return;

// do something else.

• With expected<T, conqueue_errc>
auto val = q.try pop();
while (val) {
println(”got {}”, *val);
val = q.try pop();

}
if (val.error() == conqueue errc::closed)
return;

// do something else

WG21 Concurrent Queues API Hagenberg, February 2025 Copyright ©1995-2024, Detlef Vollmann 23

Non-Blocking pop

• With expected<optional<T>, conqueue_errc>
auto val = q.try pop();
while (val && *val) {
println(”got {}”, **val);
val = q.try pop();

}
if (val.error() == conqueue errc::closed)
return;

// do something else

• LEWG poll in St. Louis: ”LEWG would like to add a std::expected

interface for concurrent queues”:
|SF|F|N|A|SA| |0|2|5|3|2"

WG21 Concurrent Queues API Hagenberg, February 2025 Copyright ©1995-2024, Detlef Vollmann 24

Obsolete Error Facilities

• Now conqueue_error and conqueue_category are not needed
anymore and conqueue_errc should possibly renamed (was
queue_op_status before R5).

WG21 Concurrent Queues API Hagenberg, February 2025 Copyright ©1995-2024, Detlef Vollmann 25

Async ”Error” Handling

• In many cases calling push or pop operations on a closed queue is
common and you either expect a value or a ”closed” signal.

• For async operations calling set_error for closed queues feels
intuitively wrong.

• Considering the closed signal as special value delivered through the
set_value channel seems plausible.

• But if async_pop doesn’t produce a value, calling set_value seems
wrong either.

– it clobbers the value channel

• The current proposal proposes to call set_error(conqueue_errc)

– even if I still don’t consider it an error

• For symmetry, async_push uses set_error as well

WG21 Concurrent Queues API Hagenberg, February 2025 Copyright ©1995-2024, Detlef Vollmann 26

Async ”Error” Handling

• LEWG voted strongly in favour in Wroclaw for the sender to call
set_value(optional<T>)

• Sender/receiver are used via coroutines or native
• For coroutines, set_value(optional<T>) is probaly the perfect
choice

• For native sender/receiver separating value and error channels is
probably a much better choice

• Different interfaces for coroutines and native are akward
– but wait for P3570

• With set_value/ set_error coroutines get an exception on closed
queues
– or use something like error_as_optional

• async_pop calls set_value(T) on success and set_error() when
closed.

• async_push could call set_value(bool)
WG21 Concurrent Queues API Hagenberg, February 2025 Copyright ©1995-2024, Detlef Vollmann 27

Continuation Scheduling

• Concurrent queues are used to separate different execution contexts
or different execution agents

• pop continues on the execution agent it was called

• async_pop continues on the scheduler it was called

• Same for async_push

• A push operation never runs the the ”continuation” of the pop

– and vice versa

WG21 Concurrent Queues API Hagenberg, February 2025 Copyright ©1995-2024, Detlef Vollmann 28

Implementability

• Consider the logging example

– try_push from everywhere
– using async_pop from the background task

• This should work

– It doesn’t

• async_push might need to schedule the continuation

– this requires to enqueue the continuation to the execution context
– this requires (possibly blocking) synchronization

• This isn’t an implementation issue.

– if you control the queue and execution context implementation

• The continuation might be on a user provided scheduler

• No existing facilities to co-ordinate with execution context

• SG1 decided to return conqueue_errc::busy_async in this case

WG21 Concurrent Queues API Hagenberg, February 2025 Copyright ©1995-2024, Detlef Vollmann 29

SG1 Decision in Hagenberg

• Poll: in review of P0260R14:
– In the sequential consistency specification, pop1 and pop2 should not

be related by strongly happens-before, but merely be related ”in
that order”.

– We will do more work between meetings on whether ”that order” is per
queue, or it is the unique sequentially-consistent order itself.

– It is correct for set_value/set_error to be called on the scheduler
of r. Concurrent data structures aren’t merely data structures, they are
also control constructs.

– Introduce busy_async and return that in the two specific cases when
try functions would have process an async operation
(try_push/try_pop → async_pop/try_push, respectively)

– We still want this in C++26, because it is an important vocabulary
type to use with S&R

• No objections to unanimous consent

WG21 Concurrent Queues API Hagenberg, February 2025 Copyright ©1995-2024, Detlef Vollmann 30

	Presentation
	Queues
	Example
	Error Handling
	Concurrent Concept
	Async Concept

	Discussion
	expected
	Obsolete Error Facilities
	Async Interface
	Implementability

	SG1

