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Concurrent Queues are not Containers

• Concurrent queues are concurrent data structures

• A communication mechanism

• A synchronization mechanism

– consumers wait for producers
– producers wait for consumers

• (Temporary) storage is a possible implementation detail

– queues of size 0 sometimes make perfect sense
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Design Space

• The design space for concurrent queues is pretty big

– partly in interface design
– more in semantics

• Single or multiple connections on producer and/or consumer side

• Lock-free vs. locking

– separate for both ends

• Memory allocation

– up-front, per push/pop, external

• Ordering guarantee

– FIFO vs. priorities

• Non-blocking only vs. synchronous interface

• Single push/pop vs. two-phase

• Strongly typed vs. (dynamically sized) byte chunks
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Design Space

• More interface

– timed waits
– asynchronous
– debugging
– single ended interfaces

• Efficiency vs. robust/portable interface

• Error handling (exceptions)

• Concurrency vs. parallelism vs. asynchronicity
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Concepts for Concurrent Queues

• No single queue implementation can cover all design aspects

• Provided concepts are expected to cover most design aspects

• Implementing both async and non-blocking interfaces has
performance costs

– and real challenges

• Concept is split into one base concept and two separate concepts for
async and non-blocking

• Many different implementations for these concepts are expected

– some of them may be standardized

• Possible single-ended adapter can use these concepts

• bounded_queue models all concepts
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Basic Concept

enum class conqueue errc { success, empty, full, closed, busy, busy async };

void close() noexcept;
bool is closed() const noexcept;

bool push(const T& x);
bool push(T&& x);
template <typename... Args> bool emplace(Args &&... as);

optional<T> pop();
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Closing Queues

• The only queues that don’t need close are

– queues that are never closed
– single producer, single consumer with inline close token

• For all other cases synchronization needs access to queue internals

– as detailed in the paper

• So the basic concept provides close
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Synchronous push

• Push interface
bool push(const T& x);
bool push(T&& x);
template <typename... Args> bool emplace(Args &&... as);

• Returns true on success and false on close
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Synchronous pop

• Pop interface
optional<T> pop();

• Returns optional with value on success and empty optional on
close

• This is what LEWG voted for in Wroclaw
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Example

• ”Find files with string”

• One task/thread collects all the file paths in a directory and pushes
them into a queue and then closes the queue

• Other tasks/threads (one or more) pop file paths from the queue and
search them for a string

• Synchronous version with multiple threads

• Single-threaded Asynchronous version with coroutines

• Single-threaded Asynchronous version with native S/R

• Code available at
https://gitlab.com/cppzs/bounded-queue/-/tree/master/demo
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”Error” Handling

• ”One person’s exception is another person’s expected result.”

• The current proposal is to have no queue based errors.

• LEWG decided in Wroclaw to have optional<T> pop()

– i.e. closed is not an error

• This leads to bool push(T&& x)

• For non-blocking functions (try_*) empty and full (and arguably
busy and busy_async) are similar
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Concurrent Queue Concept

conqueue errc try push(const T& x);
conqueue errc try push(T&& x);
template <typename... Args> conqueue errc try emplace(Args &&... as);

optional<T> try pop(conqueue errc &ec);
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Non-Blocking push

• Push interface
conqueue errc try push(const T& x);
conqueue errc try push(T&& x);
template <typename... Args> conqueue errc try emplace(Args &&... as);

• This is the logical extension to blocking push
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Non-Blocking pop

• Pop interface
optional<T> try pop(conqueue errc &ec);
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Logging Example

• Embedded system

• No blocking anywhere

• Debug messages are raised anywhere

– pushed into queue

• Background task takes messages from the queue and sends them to a
UART

– no blocking either
– try_pop
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Async Queue Concept

sender auto async push(const T&);
sender auto async push(T&&);
template <typename... Args> sender auto async emplace(Args &&... as);

sender auto async pop();
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Asynchronous Interface

sender auto async pop();

• Current proposal for async_pop calls set_value(T) on success and
set_error(conqueue_errc) when closed.

sender auto async push(const T&);
sender auto async push(T&&);
template <typename... Args> sender auto async emplace(Args &&... as);

• Analogously async_push calls set_value(void) on success and
set_error(conqueue_errc) when closed.

WG21 Concurrent Queues API Hagenberg, February 2025 Copyright ©1995-2024, Detlef Vollmann 18



Example Using Coroutines

• ”Find files with string”

• Single-threaded Asynchronous version with coroutines
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Example Sender/Receiver

• ”Find files with string”

• Single-threaded Asynchronous version with native S/R
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Discussion

Discussion
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Non-Blocking pop

• Pop interface
optional<T> try pop(conqueue errc &ec);

• Alternative versions would be
expected<T, conqueue errc> queue::try pop();

• or even
expected<optional<T>, conqueue errc> queue::try pop();
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Non-Blocking pop

• Example from P2921R0:
conqueue errc ec;
while (auto val = q.try pop(ec))
println(”got {}”, *val);

if (ec == conqueue errc::closed)
return;

// do something else.

• With expected<T, conqueue_errc>
auto val = q.try pop();
while (val) {
println(”got {}”, *val);
val = q.try pop();

}
if (val.error() == conqueue errc::closed)
return;

// do something else
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Non-Blocking pop

• With expected<optional<T>, conqueue_errc>
auto val = q.try pop();
while (val && *val) {
println(”got {}”, **val);
val = q.try pop();

}
if (val.error() == conqueue errc::closed)
return;

// do something else

• LEWG poll in St. Louis: ”LEWG would like to add a std::expected

interface for concurrent queues”:
|SF|F|N|A|SA| |0|2|5|3|2"
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Obsolete Error Facilities

• Now conqueue_error and conqueue_category are not needed
anymore and conqueue_errc should possibly renamed (was
queue_op_status before R5).
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Async ”Error” Handling

• In many cases calling push or pop operations on a closed queue is
common and you either expect a value or a ”closed” signal.

• For async operations calling set_error for closed queues feels
intuitively wrong.

• Considering the closed signal as special value delivered through the
set_value channel seems plausible.

• But if async_pop doesn’t produce a value, calling set_value seems
wrong either.

– it clobbers the value channel

• The current proposal proposes to call set_error(conqueue_errc)

– even if I still don’t consider it an error

• For symmetry, async_push uses set_error as well
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Async ”Error” Handling

• LEWG voted strongly in favour in Wroclaw for the sender to call
set_value(optional<T>)

• Sender/receiver are used via coroutines or native
• For coroutines, set_value(optional<T>) is probaly the perfect
choice

• For native sender/receiver separating value and error channels is
probably a much better choice

• Different interfaces for coroutines and native are akward
– but wait for P3570

• With set_value/ set_error coroutines get an exception on closed
queues
– or use something like error_as_optional

• async_pop calls set_value(T) on success and set_error() when
closed.

• async_push could call set_value(bool)
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Continuation Scheduling

• Concurrent queues are used to separate different execution contexts
or different execution agents

• pop continues on the execution agent it was called

• async_pop continues on the scheduler it was called

• Same for async_push

• A push operation never runs the the ”continuation” of the pop

– and vice versa
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Implementability

• Consider the logging example

– try_push from everywhere
– using async_pop from the background task

• This should work

– It doesn’t

• async_push might need to schedule the continuation

– this requires to enqueue the continuation to the execution context
– this requires (possibly blocking) synchronization

• This isn’t an implementation issue.

– if you control the queue and execution context implementation

• The continuation might be on a user provided scheduler

• No existing facilities to co-ordinate with execution context

• SG1 decided to return conqueue_errc::busy_async in this case
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SG1 Decision in Hagenberg

• Poll: in review of P0260R14:
– In the sequential consistency specification, pop1 and pop2 should not

be related by strongly happens-before, but merely be related ”in
that order”.

– We will do more work between meetings on whether ”that order” is per
queue, or it is the unique sequentially-consistent order itself.

– It is correct for set_value/set_error to be called on the scheduler
of r. Concurrent data structures aren’t merely data structures, they are
also control constructs.

– Introduce busy_async and return that in the two specific cases when
try functions would have process an async operation
(try_push/try_pop → async_pop/try_push, respectively)

– We still want this in C++26, because it is an important vocabulary
type to use with S&R

• No objections to unanimous consent
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