
Handling exceptions thrown from
contract predicates

Gašper Ažman (gasper.azman@gmail.com)​

Timur Doumler (papers@timur.audio)

Document #:​ P3417R1
Date:​ ​ 2025-02-27
Project: ​ Programming Language C++
Audience: ​ SG21, EWG

Abstract
In this paper, we explore a modification to how exceptions thrown from the evaluation of a
contract predicate are handled. In particular, we consider handling such an exception
separately from an exception that was being handled at the time when the contract violation
occurred. In this model, throw; would only rethrow the latter, never the former;
std::current_exception() would return a pointer only to the latter, never to the former;
and std::contracts::contract_violation::evaluation_exception() would return a
pointer to the former, never to the latter. Such a change would simplify the API and remove a
potential footgun. However, after considering the three known specification and
implementation strategies for this change, we conclude that their tradeoffs are ultimately
unfavourable, and therefore do not propose any change to the status quo.

Revision history
R0 (October 2024 mailing):

●​ Original version of the paper

R1 (March 2025 mailing):

●​ No longer proposing a change. The paper is now purely informational; this revision is
being published to preserve the history of the discussion

●​ Incorporated feedback from R0
●​ Various editorial edits

1

1 The problem
Contracts for C++, as adopted into the C++26 working paper via [P2900R14], specify that
when the evaluation of a contract predicate exits via an exception, the contract-violation
handler is called and acts as an exception handler for that exception. Therefore, the
exception can be retrieved with the following incantation:

void handle_contract_violation (contract_violation& violation) {

 if (violation.detection_mode() == detection_mode::evaluation_exception)

 my::handle(std::current_exception());

}

where my::handle is a user-defined handler that takes a std::exception_ptr.1 This
incantation is rather unwieldy, so we adopted [P3227R1], which adds a member function
evaluation_exception() to the class contract_violation, simplifying the above code
to the much more user-friendly:

void handle_contract_violation (contract_violation& violation) {

 if (auto ex = violation.evaluation_exception())

 my::handle(ex);

}

This member function evaluation_exception() behaves as follows:

●​ If the contract violation occurred because the contract predicate evaluation exited via
an exception, evaluation_exception() will return a pointer to that exception;

●​ Otherwise, evaluation_exception() will return null.

However, this addition to the Contracts library API does not alter the pre-existing behaviour
of std::current_exception(). As a result, std::current_exception() may return a
pointer to two very different flavours of exception, depending on the program state:

●​ If the contract violation occurred because the contract predicate evaluation exited via
an exception, std::current_exception() will return a pointer to that exception,
regardless of whether the contract violation occurred while some other exception was
being handled;

●​ If the contract violation occurred because the contract predicate evaluated to false
while some exception was being handled, i.e., inside a catch clause (which could be
multiple stack frames further up), std::current_exception() will instead return a
pointer to that exception;

●​ Otherwise, std::current_exception will return null.

In other words, evaluation_exception() and std::current_exception() may or may
not point to the same exception. This somewhat surprising behaviour is the consequence of
treating the predicate evaluation exception as just another exception on the exception stack,
in the same way as if it had originated from any other part of the program.

1 In order to actually get to the exception object itself, such an std::exception_ptr would have to be
rethrown and then caught with a catch-clause appropriate for the exception's type.

2

https://wg21.link/p2900r14
https://wg21.link/p3227r1

Further, consider what happens when we rethrow the current exception from the
contract-violation handler:

void handle_contract_violation (contract_violation& violation) {

 if (auto ex = std::current_exception())

 std::rethrow_exception(ex); // or just throw; – what happens now?

}

With the current specification, this may either rethrow the predicate evaluation exception or,
if the contract check did not throw an exception but occurred inside a catch clause in user
code, rethrow the entirely unrelated exception that was being handled there.

In many cases, the user might want to handle those different flavours of exceptions
differently. For example, when installing a throwing contract-violation handler, the user might
want to rethrow the exception that was thrown by the predicate and have code further up the
stack that can handle it; the archetypical example is a predicate evaluation that throws
std::bad_alloc. At the same time, it might not make sense to rethrow an exception from
the contract-violation handler that is entirely unrelated to the contract check. It is possible to
distinguish the two flavours via evaluation_exception(), but the fact that the user can
also get to the exception via the more familiar std::current_exception() API, which does
not distinguish the two flavours at all, is a potential footgun.

2 Possible solution
In order to remove the footgun described above, we would have to change the semantics as
follows. Both throw; and std::current_exception() should never refer to the predicate
evaluation exception, but always to the exception that was being handled at the time when
the contract violation occurred (if any). Independently from those facilities, the predicate
evaluation exception would still be accessible in the contract-violation handler via the
std::contracts::contract_violation member function evaluation_exception(), but ​
that would now be the only way to access that exception:

C++26 Working Paper This paper

bool pred() { throw 666; }
void f() pre (pred());

int main() {
 try { throw 777; }
 catch (...) { f(); }
}

void handle_contract_violation​
(const contract_violation& v) {
 auto p1 = v.evaluation_exception();
 // p1 points to 666

 auto p2 = std::current_exception();
 // p2 points to 666
}

bool pred() { throw 666; }
void f() pre (pred());

int main() {
 try { throw 777; }
 catch (...) { f(); }
}

void handle_contract_violation​
(const contract_violation& v) {
 auto p1 = v.evaluation_exception();
 // p1 points to 666

 auto p2 = std::current_exception();
 // p2 points to 777
}

3

Such semantics have the property that the C++ language would treat exceptions thrown
during contract checks as entirely separate from the remainder of the program, and any
other exceptions being handled in that program, consistent with the design principles in
[P2900R14] stipulating that contract assertions are "ghost code".

3 Specification and implementation strategies

3.1 Separate exception stacks
The first and most radical strategy is to literally use a separate exception stack for
exceptions thrown during contract checks, and to specify evaluation_exception() to refer
to the top exception on that separate stack. While this would provide the cleanest and
conceptually simplest separation between the different flavours of exception, it would also be
a substantial change to the exception-handling machinery in current compilers – and
possibly unfeasible on at least some of them – as well as an ABI break.

3.2 Handle exception before the contract-violation handler
Unlike the first strategy, the second strategy does not require any changes to the underlying
exception-handling machinery in C++. We can express this strategy as a modification of the
pseudocode in [P2900R14], Section 3.5.10 that illustrates the compiler-generated
contract-violation handling process (simplified to show only the parts relevant for the observe
and enforce evaluation semantics that may result in a call to the contract-violation handler):

P2900R14 This paper

bool _violation;
bool _handled = _mode;
detection_mode _dm;

try {
 _violation = !predicate;
}
catch (...) {
 _violation = true;
 _mode = evaluation_exception;
 handle_contract_violation(...);
 _handled = true;
}

if (_violation && !_handled) {
 _mode = predicate_false;
 handle_contract_violation(...);
}

bool _violation;
detection_mode _mode;
std::exception_ptr _evaluation_exptr;

try {
 _violation = !predicate;
 _mode = predicate_false;
}
catch (...) {
 _violation = true;
 _mode = evaluation_exception;
 _evaluation_exptr =
 std::current_exception();
}

if (violation) {
 handle_contract_violation(...);
}

Instead of specifying that the contract-violation handler is called within an implicit handler for
the exception thrown during predicate evaluation, we consider such an exception to be
handled before the contract-violation handler is called. As a result, the exception is no longer
on the exception stack when the contract-violation handler is called, and can be accessed
only via evaluation_exception() but not via throw; or std::current_exception().

4

https://wg21.link/p2900r14
https://wg21.link/p2900r14

However, the tradeoff is that the implementation now needs to somehow save an exception
thrown during predicate evaluation past its handling lifetime, as the exception needs to
survive the closing brace of its catch handler without being the active exception so it can be
made accessible in the contract-violation handler via evaluation_exception(). This would
typically happen as if by creating a std::exception_ptr to that exception, as reflected in
the pseudocode above. If this copy itself throws an exception, evaluation_exception()
will instead contain that exception, or std::bad_exception, consistent with how
std::make_exception_ptr works in C++ today.

On platforms implementing the Itanium ABI (GCC, Clang), this strategy is straightforward as
exceptions are allocated on the heap; creating a std::exception_ptr pointing to an active
exception as above involves little more than incrementing a refcount, and the required
lifetime extension happens automatically. However, on MSVC, exceptions are kept on the
stack; creating a std::exception_ptr to an active exception requires allocating dynamic
memory and copying the exception object into that memory. The consequence is that the
copy constructor of the thrown exception – i.e., user-defined code – will be called after the
contract violation has occurred but before its associated contract-violation handler is called.
This runs afoul of an important design principle in the current specification of Contracts for
C++ to never run user-defined code within that gap.

The current specification carefully avoids doing so: after a contract violation was detected,
the implementation will create a contract_violation object, which just loads some static
data into a small struct on the stack, and then immediately calls the contract-violation
handler. That handler is user-defined code, but it is user-defined code that is expected to be
run when the program is in an invalid state, for example a corrupted stack, and can be
written to be robust against such circumstances.

On the other hand, the copy constructor of an arbitrary exception type will typically not be
written with such robustness in mind; it could walk the stack (for example, one might want to
save the stack trace at the time when the exception object was created or copied), which in
the face of a corrupted stack might create a security risk (an attacker could corrupt the stack
and then use the exception copy constructor to jump to an arbitrary place and execute
arbitrary code). This security risk is the reason why, when the current contract-violation
handling mechanism was adopted into Contracts for C++ via [P2811R7], executing
user-defined code or mandating any operations that might be overly non-trivial before the
call to the contract-violation handler was consciously avoided.

3.3 Tweak the exception handling mechanism
Unfortunately, any solution that portably avoids copying the exception before calling the
contract-violation handler invariably requires some changes to the existing C++ exception
handling mechanism. To keep these changes minimal compared to the first strategy, we
could contemplate a third strategy: keep the exception thrown from a contract predicate
evaluation on the normal exception stack, but modify the user-facing facilities providing
access to that exception stack, in particular throw; and std::current_exception(), such
that they refer to the second exception on the stack in case the top exception on the stack is
the one thrown from a contract predicate evaluation.

5

https://wg21.link/p2811r7

However, it is currently unclear whether such a strategy is logically sound and/or actually
avoids copying the predicate exception in all cases. The exception stack can contain multiple
exceptions thrown from a contract predicate evaluation, and moreover, such exceptions can
be interspersed with exceptions unrelated to contract checking.

For example, consider the case where, either during predicate evaluation or during
execution of the contract-violation handler, some function (unaware that it is called in that
context) throws an exception unrelated to contract checking, and that exception is handled in
an intermediate catch clause before continuing. Within such a catch clause, the usual
exception-handling facilities such as throw; and std::current_exception() all need to
have the same semantics as usual in order for such handling to succeed. It is currently
unclear how to achieve the required semantics with the third strategy.

4 Summary
In the current specification of Contracts for C++, evaluation_exception() provides a way
to access an exception thrown during evaluation of a contract predicate from within the
associated contract-violation handler. At the same time, pre-existing C++ exception-handling
facilities such as throw; and std::current_exception() may also refer to that same
exception, or may instead refer to an unrelated exception that was being handled when the
contract violation occurred.

From a language design perspective, it seems desirable to remove this ambiguity of the
latter facilities and to treat exceptions thrown during contract checking entirely separate from
exceptions thrown elsewhere. However, after considering all three known specification
strategies for proposing such a change to the C++26 working paper, we found that none of
them are viable: they are either incompatible with current C++ toolchains, add security risks
that may prove unacceptable, or do not seem logically consistent. We therefore conclude
that leaving the current specification of Contracts for C++ as-is is the lesser evil.

Acknowledgements
Many thanks to Eric Fiselier, Ville Voutilainen, Joshua Berne, and Iain Sandoe for their
valuable feedback on the material discussed in this paper.

References
[P2811R7] Joshua Berne: "Contract-Violation Handlers". 2023-06-27

[P2900R14] Joshua Berne, Timur Doumler, and Andrzej Krzemieński: "Contracts for C++".
2025-02-13

[P3227R1] Gašper Ažman and Timur Doumler: "Fixing the library API for contract violation
handling". 2024-10-24

6

https://wg21.link/p2811r7
https://wg21.link/p2900r14
https://wg21.link/p3227r1

	Handling exceptions thrown from contract predicates
	Abstract
	Revision history
	1 The problem
	2 Possible solution
	3 Specification and implementation strategies
	3.1 Separate exception stacks
	3.2 Handle exception before the contract-violation handler
	3.3 Tweak the exception handling mechanism

	4 Summary
	Acknowledgements
	References

