Remove Deprecated Atomic Initialization API from C++26

Document #: P3366R1

Date: 2025-03-16

Project: Programming Language C++
Audience: LWG

Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>

Contents

1 Abstract

2 Revision History
3 Introduction

4 Analysis

5 Design Principles
6 Proposed Solution

7 C++26 Reviews
7.1 SGI1 Review: Hagenberg, 2025/02/12
7.2 LEWG Review: Telecon, 2025/03/04

8 Wording
9 Acknowledgements

10 References

1 Abstract

This paper proposes removing the deprecated atomic initialization facility from the next C++ Standard.

mailto:ameredith1@bloomberg.net

2 Revision History

R1 March 2025 (post-Hagenberg mailing)

— Recorded SGI1 review at Hagenberg
— Recorded LEWG telecon review following Hagenberg
— Forwarded to LWG for C++29 or, time and resource permitting, for C++26
— Rebased wording onto latest working draft, N5008
— cleaned up presentation of adding entries to tables and lists
— added Annex C wording
— incorporated additions to Annex D from Hagenberg

RO August 2024 (midterm mailing)
Initial draft of this paper, based on content in [P2863]

3 Introduction

The topic of this paper has been extracted from the general deprecation review paper, [P2863], into its own
paper so as to better track its progress, since this topic has had a couple of reviews but is not reaching a real
conclusion while embedded in the broader paper.

The original API to initialize atomic variables for C+411 was deprecated for C++20 when the atomic template
was given a default constructor to correctly perform the necessary initialization — see [PO883R2] for details.
This paper proposes that now is the right time to remove that API from the C++ Standard.

4 Analysis

This legacy API continues to function but is more cumbersome than necessary. No compelling case appears to
be made that the API is a risk through misuse. However, if updating the C++ Standard’s reference to the C
Library up to C23 removes the ATOMIC_VAR_INT macro, we might want to consider its removal for C++26 as
well.

While the ATOMIC_VAR_INT macro does no active harm, maintaining text in the Standard always comes with a
cost; for example, [P2866] required LWG time to review and update D.22.3 [depr.atomics.nonmembers].

The deprecation and removal of this feature is reflected in the C Standard that initially deprecated the
ATOMIC_VAR_INT macro (marked it as obsolescent) in C17 and actively removed it from the C23 Standard, per
[WG14:N2390]. WG21 should strongly consider removing this macro but perhaps as part of a broader paper to
update our reference to the C23 Standard Library.

Note that the C standard retains a generic atomic_init function that is not part of C++; i.e., we do not support
that generic function in <stdatomic.h>.

5 Design Principles

Remove deprecated features from the Standard specification at the earliest practical opportunity to minimize
the burden of accumulating obsolete specifications to maintain, reference, distract, and teach (to avoid).

https://wg21.link/depr.atomics.nonmembers

6 Proposed Solution

Remove the deprecated Standard Library API from C++26 while granting vendors permission to continue
supplying it as a conforming extension, for as long as they desire, through the use of zombie names.

Note that, assuming [P2866] lands, which is ahead of this paper in the pipeline to plenary, then this paper will
remove the remaining parts of D.22 [depr.atomics], so we will present wording assuming that paper will have
landed. If that paper fails to proceed, then the only change to the wording would be that the parent clause D.22
[depr.atomics] is not removed.

7 C+-+26 Reviews
7.1 SG1 Review: Hagenberg, 2025/02/12

Concerns about removal breaking code were addressed by the Zombie Names clause.

Concerns were raised about whether this removal breaks our compatibility with C <stdatomic.h>, but the group
seemed satisfied that the compatible symbols are marked as obsolescent (deprecated in C) in the C23 Standard.

There was a question of whether this deprecated API is even a concurrency feature for SG1 to opine on, but
agreement was reached that, since the proposed changes touch <atomic>, SG1 is the appropriate group for initial
review.

Poll: Forward P3366R0 to LEWG for C+-+26.
SEFF N A SA
2 2 1 0 1

Consensus

SA :it’s always a burden to programmers if they have to change code that worked before.

7.2 LEWG Review: Telecon, 2025/03/04

Review for this paper was deferred from review in Hagenberg to the first following telecon, along with other
deprecation-removal papers. The review intent is to poll forwarding these papers to LWG for C++29 and, if
that poll succeeds by a follow-up poll, if time and LWG resources permit, for C++26.

The same concerns that were raised by SG1 were independently raises by LEWG and addressed in the same
manner.

The review noted a number of formatting issues and the lack of Annex C wording. The author noted that he
usually defers the effort of writing Annex C wording until the design is approved. However, Annex C wording
is produced ahead of time if the examples are thought to be helpful in evaluating a given removal.

Two polls were taken.

POLL: Fix P3366R0 formatting as needed (and other minor fixes needed) and forward to LWG for C++29.

SF F N A SA
10 8 0 0 O

Unanimous approval.

POLL: Fix P3366R0 formatting as needed (and other minor fixes needed) and forward to LWG with recommen-
dation to apply for C++26 (if possible).

SEF N ASA
8 7 2 0 O

Strong consensus.

https://wg21.link/depr.atomics
https://wg21.link/depr.atomics

8 Wording

Make the following changes to the C++ Working Draft. All wording is relative to [N5008], the latest draft at
the time of writing, and, for purposes of parallel merges, assumes that the latest update of [P2866] has been
applied allowing the removal of the whole of D.22.1 [depr.atomics.general]. Note that the addition of D.22.5
[depr.atomics.order] did not add any entries to this header as its addition is entirely to an enum that is already
declared in the header synopsis of the primary clause.

16.4.5.3.2 [zombie.names] Zombie names

Add new identifiers to table 38 [tab:zombie.names.std]

— ATOMIC_VAR_INIT
— atomic_init

C.1.8 [diff.cpp23.depr] Annex D: compatibility features
Change: Remove the deprecated function atomic_init and the macro ATOMIC_VAR_INIT.

Rationale: The feature was initially intended to improve compatibility between C and C++. It did not serve
well and is deprecated or obsolescent in both languages. Ongoing support remains at the implementers’ discretion,
exercising freedoms granted by 16.4.5.3.2 [zombie.names].

Effect on original feature: A valid C++ 2023 program using this function or macro may fail to compile.

D.22 [depr.atomics] Deprecated atomic operations
D.22.1 [depr.atomics.general] General

The header <atomic> (32.5.2 [atomics.syn]) has the following additions.

namespace std {
template<class T>
void atomic_init(volatile atomic<T>*, typename atomic<T>::value_type) noexcept;
template<class T>
void atomic_init(atomic<T>*, typename atomic<T>::value_type) noexcept;

#define ATOMIC_VAR_INIT(value) see below
}

D.22.3 [depr.atomics.nonmembers] Non-member functions

template<class T>

void atomic_init(volatile atomic<T>* object, typename atomic<T>::value_type desired) noexcept;
template<class T>

void atomic_init(atomic<T>* object, typename atomic<T>::value_type desired) noexcept;

Constraints: For the volatile overload of this function, atomic<T>::is_always_lock_free is true.

Effects: Equivalent to: atomic_store_explicit(object, desired, memory_order::relaxed);
D.22.4 [depr.atomics.types.operations] Operations on atomic types

#define ATOMIC_VAR_INIT(value) see below

The macro expands to a token sequence suitable for constant initialization of an atomic variable of static storage
duration of a type that is initialization-compatible with value.

[Note 1: This operation possibly needs to initialize locks. —end note]

https://wg21.link/depr.atomics.general
https://wg21.link/zombie.names
https://wg21.link/tab:zombie.names.std
https://wg21.link/diff.cpp23.depr
https://wg21.link/zombie.names
https://wg21.link/depr.atomics
https://wg21.link/depr.atomics.general
https://wg21.link/atomics.syn
https://wg21.link/depr.atomics.nonmembers
https://wg21.link/depr.atomics.types.operations

Concurrent access to the variable being initialized, even via an atomic operation, constitutes a data race.
[Example 1:
atomic<int> v = ATOMIC_VAR_INIT(5);

—end ezample]
Update cross-reference for stable labels for C++23

Add the following entries to the list of cross-references for stable labels in previous standards.

depr.atomics.general removed

depr.atomics.nonmembers removed
depr.atomics.operations removed

9 Acknowledgements

Thanks to Michael Park for the pandoc-based framework used to transform this document’s source from
Markdown.

Thanks to Lori Hughes for reviewing this paper.

10 References

[N5008] Thomas Koéppe. Working Draft, Programming Languages — C++.
https://wg21.link /n5008

[PO883R2] Nicolai Josuttis. 2019-11-08. Fixing Atomic Initialization.
https://wg21.link /p0883r2

[P2863] Alisdair Meredith. Review Annex D for C++26.
https://wg21.link/p2863

[P2866] Remove Deprecated Volatile Features from C++26. Review Annex D for C++26.
https://wg21.link /p2866

[WG14:N2390] Jens Gustedt. 2019-06-07. Remove ATOMIC VAR INIT.
https://www.open-std.org/jtcl/sc22/wgld/www/docs/n2390.pdf

https://wg21.link/n5008
https://wg21.link/p0883r2
https://wg21.link/p2863
https://wg21.link/p2866
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2390.pdf

	Abstract
	Revision History
	Introduction
	Analysis
	Design Principles
	Proposed Solution
	C++26 Reviews
	SG1 Review: Hagenberg, 2025/02/12
	LEWG Review: Telecon, 2025/03/04

	Wording
	Acknowledgements
	References

