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1 Abstract

This paper proposes removing the deprecated atomic initialization facility from the next C++ Standard.
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2 Revision History

R1 March 2025 (post-Hagenberg mailing)

— Recorded SGI1 review at Hagenberg
— Recorded LEWG telecon review following Hagenberg
— Forwarded to LWG for C++29 or, time and resource permitting, for C++26
— Rebased wording onto latest working draft, N5008
— cleaned up presentation of adding entries to tables and lists
— added Annex C wording
— incorporated additions to Annex D from Hagenberg

RO August 2024 (midterm mailing)
Initial draft of this paper, based on content in [P2863]

3 Introduction

The topic of this paper has been extracted from the general deprecation review paper, [P2863], into its own
paper so as to better track its progress, since this topic has had a couple of reviews but is not reaching a real
conclusion while embedded in the broader paper.

The original API to initialize atomic variables for C+411 was deprecated for C++20 when the atomic template
was given a default constructor to correctly perform the necessary initialization — see [PO883R2] for details.
This paper proposes that now is the right time to remove that API from the C++ Standard.

4 Analysis

This legacy API continues to function but is more cumbersome than necessary. No compelling case appears to
be made that the API is a risk through misuse. However, if updating the C++ Standard’s reference to the C
Library up to C23 removes the ATOMIC_VAR_INT macro, we might want to consider its removal for C++26 as
well.

While the ATOMIC_VAR_INT macro does no active harm, maintaining text in the Standard always comes with a
cost; for example, [P2866] required LWG time to review and update D.22.3 [depr.atomics.nonmembers].

The deprecation and removal of this feature is reflected in the C Standard that initially deprecated the
ATOMIC_VAR_INT macro (marked it as obsolescent) in C17 and actively removed it from the C23 Standard, per
[WG14:N2390]. WG21 should strongly consider removing this macro but perhaps as part of a broader paper to
update our reference to the C23 Standard Library.

Note that the C standard retains a generic atomic_init function that is not part of C++; i.e., we do not support
that generic function in <stdatomic.h>.

5 Design Principles

Remove deprecated features from the Standard specification at the earliest practical opportunity to minimize
the burden of accumulating obsolete specifications to maintain, reference, distract, and teach (to avoid).
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6 Proposed Solution

Remove the deprecated Standard Library API from C++26 while granting vendors permission to continue
supplying it as a conforming extension, for as long as they desire, through the use of zombie names.

Note that, assuming [P2866] lands, which is ahead of this paper in the pipeline to plenary, then this paper will
remove the remaining parts of D.22 [depr.atomics], so we will present wording assuming that paper will have
landed. If that paper fails to proceed, then the only change to the wording would be that the parent clause D.22
[depr.atomics] is not removed.

7 C+-+26 Reviews
7.1 SG1 Review: Hagenberg, 2025/02/12

Concerns about removal breaking code were addressed by the Zombie Names clause.

Concerns were raised about whether this removal breaks our compatibility with C <stdatomic.h>, but the group
seemed satisfied that the compatible symbols are marked as obsolescent (deprecated in C) in the C23 Standard.

There was a question of whether this deprecated API is even a concurrency feature for SG1 to opine on, but
agreement was reached that, since the proposed changes touch <atomic>, SG1 is the appropriate group for initial
review.

Poll: Forward P3366R0 to LEWG for C+-+26.
SEFF N A SA
2 2 1 0 1

Consensus

SA :it’s always a burden to programmers if they have to change code that worked before.

7.2 LEWG Review: Telecon, 2025/03/04

Review for this paper was deferred from review in Hagenberg to the first following telecon, along with other
deprecation-removal papers. The review intent is to poll forwarding these papers to LWG for C++29 and, if
that poll succeeds by a follow-up poll, if time and LWG resources permit, for C++26.

The same concerns that were raised by SG1 were independently raises by LEWG and addressed in the same
manner.

The review noted a number of formatting issues and the lack of Annex C wording. The author noted that he
usually defers the effort of writing Annex C wording until the design is approved. However, Annex C wording
is produced ahead of time if the examples are thought to be helpful in evaluating a given removal.

Two polls were taken.

POLL: Fix P3366R0 formatting as needed (and other minor fixes needed) and forward to LWG for C++29.

SF F N A SA
10 8 0 0 O

Unanimous approval.

POLL: Fix P3366R0 formatting as needed (and other minor fixes needed) and forward to LWG with recommen-
dation to apply for C++26 (if possible).

SEF N ASA
8 7 2 0 O

Strong consensus.
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8 Wording

Make the following changes to the C++ Working Draft. All wording is relative to [N5008], the latest draft at
the time of writing, and, for purposes of parallel merges, assumes that the latest update of [P2866] has been
applied allowing the removal of the whole of D.22.1 [depr.atomics.general]. Note that the addition of D.22.5
[depr.atomics.order] did not add any entries to this header as its addition is entirely to an enum that is already
declared in the header synopsis of the primary clause.

16.4.5.3.2 [zombie.names] Zombie names

Add new identifiers to table 38 [tab:zombie.names.std]

— ATOMIC_VAR_INIT
— atomic_init

C.1.8 [diff.cpp23.depr] Annex D: compatibility features
Change: Remove the deprecated function atomic_init and the macro ATOMIC_VAR_INIT.

Rationale: The feature was initially intended to improve compatibility between C and C++. It did not serve
well and is deprecated or obsolescent in both languages. Ongoing support remains at the implementers’ discretion,
exercising freedoms granted by 16.4.5.3.2 [zombie.names].

Effect on original feature: A valid C++ 2023 program using this function or macro may fail to compile.

D.22 [depr.atomics] Deprecated atomic operations
D.22.1 [depr.atomics.general] General

The header <atomic> (32.5.2 [atomics.syn]) has the following additions.

namespace std {
template<class T>
void atomic_init(volatile atomic<T>*, typename atomic<T>::value_type) noexcept;
template<class T>
void atomic_init(atomic<T>*, typename atomic<T>::value_type) noexcept;

#define ATOMIC_VAR_INIT(value) see below
}

D.22.3 [depr.atomics.nonmembers] Non-member functions

template<class T>

void atomic_init(volatile atomic<T>* object, typename atomic<T>::value_type desired) noexcept;
template<class T>

void atomic_init(atomic<T>* object, typename atomic<T>::value_type desired) noexcept;

Constraints: For the volatile overload of this function, atomic<T>::is_always_lock_free is true.

Effects: Equivalent to: atomic_store_explicit(object, desired, memory_order::relaxed);
D.22.4 [depr.atomics.types.operations] Operations on atomic types

#define ATOMIC_VAR_INIT(value) see below

The macro expands to a token sequence suitable for constant initialization of an atomic variable of static storage
duration of a type that is initialization-compatible with value.

[Note 1: This operation possibly needs to initialize locks. —end note]
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Concurrent access to the variable being initialized, even via an atomic operation, constitutes a data race.
[Example 1:
atomic<int> v = ATOMIC_VAR_INIT(5);

—end ezample]
Update cross-reference for stable labels for C++23

Add the following entries to the list of cross-references for stable labels in previous standards.

depr.atomics.general removed

depr.atomics.nonmembers removed
depr.atomics.operations removed
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