
Graph Library: Comparison
Document #: P3337r0
Date: 2025-07-30
Project: Programming Language C++
Audience: Library Evolution

SG19 Machine Learning
SG14 Game, Embedded, Low Latency

Revises: (none)

Reply-to: Phil Ratzloff (SAS Institute)
phil.ratzloff@sas.com
Andrew Lumsdaine
lumsdaine@gmail.com

Contributors: Kevin Deweese
Muhammad Osama (AMD, Inc)
Scott McMillan (Carnegie Mellon University)
Jesun Firoz
Michael Wong (Intel)
Jens Maurer
Richard Dosselmann (University of Regina)
Matthew Galati (Amazon)
Guy Davidson (Creative Assembly)
Oliver Rosten

1

mailto:phil.ratzloff@sas.com
mailto:lumsdaine@gmail.com

© ISO/IEC P3337r0

1 Getting Started
This paper is one of several interrelated papers for a proposed Graph Library for the Standard C++ Library.
The Table 1 describes all the related papers.

Paper Status Description
P1709 Inactive Original proposal, now separated into the following papers.
P3126 Active Overview, describes the big picture of what we are proposing.
P3127 Active Background and Terminology provides the motivation, theoretical background, and

terminology used across the other documents.
P3128 Active Algorithms covers the initial algorithms as well as the ones we’d like to see in the future.
P3129 Active Views has helpful views for traversing a graph.
P3130 Active Graph Container Interface is the core interface used for uniformly accessing graph data

structures by views and algorithms. It is also designed to easily adapt to existing graph data
structures.

P3131 Active Graph Containers describes a proposed high-performance compressed_graph container. It
also discusses how to use containers in the standard library to define a graph, and how to
adapt existing graph data structures.

P3337 Active Comparison to other graph libraries on performance and usage syntax. Not published
yet.

Table 1: Graph Library Papers

Reading them in order will give the best overall picture. If you’re limited on time, you can use the following
guide to focus on the papers that are most relevant to your needs.

Reading Guide

— If you’re new to the Graph Library, we recommend starting with the Overview (P3126) paper to
understand the focus and scope of our proposals. You’ll also want to check out how it stacks up against
other graph libraries in performance and usage syntax in the Comparison (P3337) paper.

— If you want to understand the terminology and theoretical background that underpins what we’re
doing, you should read the Background and Terminology (P3127) paper.

— If you want to use the algorithms, you should read the Algorithms (P3128) and Graph Containers (P3131)
papers. You may also find the Views (P3129) and Graph Container Interface (P3130) papers helpful.

— If you want to write new algorithms, you should read the Views (P3129), Graph Container Interface
(P3130), and Graph Containers (P3131) papers. You’ll also want to review existing implementations in the
reference library for examples of how to write the algorithms.

— If you want to use your own graph data structures, you should read the Graph Container Interface
(P3130) and Graph Containers (P3131) papers.

2 Revision History
P3337r0

— New paper comparing the Graph Library to the NWGraph and Boost Graph Libraries on performance and
usage syntax.

§2.0 2

https://www.wg21.link/P3126
https://www.wg21.link/P3127
https://www.wg21.link/P3128
https://www.wg21.link/P3129
https://www.wg21.link/P3130
https://www.wg21.link/P3131
https://www.wg21.link/P3337
https://www.wg21.link/P3126
https://www.wg21.link/P3337
https://www.wg21.link/P3127
https://www.wg21.link/P3128
https://www.wg21.link/P3131
https://www.wg21.link/P3129
https://www.wg21.link/P3130
https://www.wg21.link/P3129
https://www.wg21.link/P3130
https://www.wg21.link/P3131
https://www.wg21.link/P3130
https://www.wg21.link/P3131

© ISO/IEC P3337r0

3 Naming Conventions
Table 2 shows the naming conventions used throughout the Graph Library documents.

Template Variable
Parameter Type Alias Names Description
G Graph

graph_reference_t<G> g Graph reference
GV val Graph Value, value or reference
EL el Edge list
V vertex_t<G> Vertex descriptor

vertex_reference_t<G> u,v Vertex descriptor reference. u is the source
(or only) vertex. v is the target vertex.

VId vertex_id_t<G> uid,vid,source Vertex id. uid is the source (or only) vertex
id. vid is the target vertex id.

VV vertex_value_t<G> val Vertex Value, value or reference. This can be
either the user-defined value on a vertex, or a
value returned by a function object (e.g. VVF)
that is related to the vertex.

VR vertex_range_t<G> ur,vr Vertex Range
VI vertex_iterator_t<G> ui,vi Vertex Iterator. ui is the source (or only)

vertex iterator. vi is the target vertex iterator.
first,last first and last are the begin and end iterators

of a vertex range.
VVF vvf Vertex Value Function: vvf(u) → vertex value,

or vvf(uid) → vertex value, depending on
requirements of the consuming algorithm or
view.

VProj vproj Vertex info projection function: vproj(u) →
vertex_info<VId,VV> .

partition_id_t<G> pid Partition id.
P Number of partitions.

PVR partition_vertex_range_t<G> pur,pvr Partition vertex range.
E edge_t<G> Edge descriptor

edge_reference_t<G> uv,vw Edge descriptor reference. uv is an edge from
vertices u to v . vw is an edge from vertices v
to w .

EV edge_value_t<G> val Edge Value, value or reference. This can be
either the user-defined value on an edge, or a
value returned by a function object (e.g. EVF)
that is related to the edge.

ER vertex_edge_range_t<G> Edge Range for edges of a vertex
EI vertex_edge_iterator_t<G> uvi,vwi Edge Iterator for an edge of a vertex. uvi is

an iterator for an edge from vertices u to v .
vwi is an iterator for an edge from vertices v
to w .

EVF evf Edge Value Function: evf(uv) → edge value.
EProj eproj Edge info projection function: eproj(uv) →

edge_info<VId,Sourced,EV> .

Table 2: Naming Conventions for Types and Variables

§3.0 3

© ISO/IEC P3337r0

For the algorithms in this paper, the reference implementation of the proposed graph library is referred to as
graph-v2 [1]. A recent library that this implementation is based on is referred to as NWGraph [2, 3]. BGL is
used to refer to algorithms using the Boost Graph Library [4].

4 Syntax Comparison
In this section, we provide a usage syntax comparison of several graph algorithms in Tier 1 of P3128 against
the equivalent implementations in BGL and the more recent NWGraph. These algorithms are breadth-first
search (BFS, Figure 1), connected components (CC, Figure 2), single source shortest paths (SSSP, Figure 3), and
triangle counting (TC, Figure 4). We take these algorithms from the GAP Benchmark Suite [5]. We defer to
later sections any discussion of underlying implementation details and resulting performance.

Unlike BGL, graph-v2 does not specify edge direction as a graph property. If a graph in graph-v2 implemented
by container::compressed_graph is undirected, then it will contain distinct edges in both directions. BGL has a
boost::graph::undirectedS property which can be used in the boost::graph::adjacency_matrix class to specify
an undirected graph, but not in the boost::graph::compressed_sparse_row_graph class. Thus in Figures 1-4,
the BGL graph type always includes boost::graph::directedS . Similar to graph-v2, undirected graphs must
contain the edges in both directions.

Intermediate data structures (e.g., edge lists) will be needed to construct the compressed graph structures. In
order to focus on the differences in algorithm syntax, we omit code which populates the graph data structures. See
the tests or examples in the graph-v2 repository (https://github.com/stdgraph/graph-v2) to better understand
graph construction. In the following subsections, we address the syntax differences for each of these algorithms.

using namespace std;
using namespace boost;

using G = compressed_sparse_row_graph<
directedS, no_property, no_property>;

using Vertex = graph_traits<G>::vertex_descriptor;

G g;
//populate g

vector<Vertex> parents(num_vertices(g));

auto vis = make_bfs_visitor(
make_pair(

record_predecessors(parents.begin(),
on_tree_edge())));

breadth_first_search(g,
vertex(0, g),
visitor(vis));

(a) BGL

using namespace std;
using namespace graph;

using G = container::compressed_graph<
void, void, void, uint32_t, uint32_t>;

using VId = vertex_id_t<G>;

G g;
// populate g

vector<VId> parents(size(vertices(g));

auto bfs =
edges_breadth_first_search_view<G,void,true>(

g, 0);

for (auto&& [uid, vid, uv] : bfs) {
parents[vid] = uid;

}

(b) graph-v2

Figure 1: Breadth-First Search Syntax Comparison

4.1 Breadth-First Search
Figure 1 compares the simplest BGL BFS visitor against the range-based-for loop implementation of graph-v2.
BFS is often described as a graph algorithm, though a BFS traversal by itself does not actually perform any task.
In reality, it is a data access pattern which specifies an order vertices and edges should be processed by some
higher level algorithm. BGL provides a very customizable interface to this data access pattern through the use
of visitors which allows users to customize function calls during BFS events. For example discover_vertex is
called when a vertex is encountered for the first time; examine_vertex is called when a vertex is popped from the

§4.1 4

© ISO/IEC P3337r0

using namespace std;
using namespace boost;

using G =
compressed_sparse_row_graph<

directedS, no_property, no_property>;

G g;
//populate g

vector<size_t> c(num_vertices(g)); //components
int num_cmps = connected_components(g, &c[0]);

(a) BGL

using namespace std;
using namespace graph;

using G =
container::compressed_graph<

void, void, void, uint32_t, uint32_t>;

G g;
//populate g

vector<size_t> c(size(vertices(g))); //components
int num_cmps = connected_components(g, c);

(b) graph-v2

Figure 2: Connected Components Syntax Comparison

queue; examine_edge is called on each edge of a vertex when it is discovered, etc. Figure 1(a) demonstrates the
usage of a BFS visitor record_predecessors which is called upon event on_tree_edge during BFS traversal to
store the parent node of every discovered vertex.

This capability is very powerful but often cumbersome if the BFS traversal simply requires vertex and edge access
upon visiting. For this reason graph-v2 provides a simple, range-based-for loop BFS traversal called a view.
Figure 1(b) demonstrates how the visited edge uv and incident vertices uid and vid are exposed to the library
user to store the parent information explicitly. The authors of this proposal acknowledge that some power users
still want the full customization provided by visitors, and we plan to add them to this proposal.

Also note BGL often requires the use of vertex descriptors to uniquely identify vertices, as shown by the
graph_traits<G>::vertex_descriptor type in Figure 1(a). Algorithms written using graph-v2 use a unique
vertex id, as shown by the vertex_id_t<G> type in Figure 1(b). This same difference is seen in the algorithms
that follow.

4.2 Connected Components
From Figure 2 we see little difference in how the connected components algorithm is used in graph-v2 and BGL.
However when looking at the function definition there is a slight difference in the requirements on the resulting
component vector c . graph-v2 requires the component data structure to meet the concept requirements of
std::ranges::random_access_range which requires the data structure to be contiguous. BGL requires a map
data structure which satisfies BGL’s own WritablePropertyMapConcept (C++20 concepts were not available at
the time). This concept only requires the data structure by indexable by vertex id, so the data structure need
not be contiguous.

4.3 Single Source Shortest Paths
SSSP algorithm computes for every vertex (1) a distance from the start vertex, and (2) a predecessor vertex
along the shortest path. A commonly used SSSP algorithm is the Dijkstra algorithm, which is available in BGL
and graph-v2 and shown in Figure 3.

Of the four algorithms discussed here, only SSSP makes use of an edge property associated with the input graph,
the distance used to compute shortest paths. In Figure 3 we see a difference in how each implementation accesses
this distance property of an edge. BGL creates a property map for the edge weights so the algorithm can access
an edge’s weight via it’s edge descriptor. This BGL example is more general than necessary since if the weight
map is not provided, the Dijkstra implmentation creates a default one based on the edge weight property tag in
the graph type declaration (property<edge_weight_t, int>). Property maps can be confusing and difficult to
use which is why graph-v2 provides the equivalent functionality using a lambda function shown in Figure 3(b).
The user tells the algorithm how it will access the distance property given an edge reference.

§4.3 5

© ISO/IEC P3337r0

using namespace std;
using namespace boost;

using G = compressed_sparse_row_graph<
directedS, no_property,
property<edge_weight_t, int>>;

using Vertex = graph_traits<G>::vertex_descriptor;

G g;
//populate g

vector<Vertex> p(num_vertices(g)); //predecessors
vector<int> d(num_vertices(g)); //distances

property_map< graph_t, edge_weight_t >::type
weightmap = get(edge_weight, g);

dijkstra_shortest_paths(
g, vertex(0, g),
predecessor_map(

make_iterator_property_map(
p.begin(), get(vertex_index, g))).

distance_map(
make_iterator_property_map(

d.begin(), get(vertex_index, g))));

(a) BGL

using namespace std;
using namespace graph;

using G = container::compressed_graph<
int, void, void, uint32_t, uint32_t>;

using VId = vertex_id_t<G>;

G g;
//populate g

vector<VId> p(size(vertices(g))); //predecessors
vector<int> d(size(vertices(g))); //distances
init_shortest_paths(distance, predecessors);

auto weight_fn =
[&g](graph::edge_reference_t<graph_type> uv)

-> int {
return edge_value(g, uv);

};

dijkstra_shortest_paths(g, 0, d, p, weight_fn);

(b) graph-v2

Figure 3: Single Source Shortest Paths Syntax Comparison

BGL also requires property maps be used to store the resulting path and distance unlike graph-v2. This leads
to a much more verbose function call to Dijkstra than the equivalent graph-v2 usage.

4.4 Triangle Counting
BGL does not provide a triangle counting algorithm similar to the one proposed in graph-v2. The code example
in Figure 4(a) is representative of what is currently available in BGL; it iterates through the vertices, counting
the number of triangles incident on every vertex, and adjusts for overcounting at the end.

graph-v2 provides a much more efficient implementation with a high level interface shown in Figure 4(b). The
underlying graph-v2 implementation performs a set intersection of the neighbor list of vertices u and v, only
if v is a neighbor of u. This approach requires the edges of a vertex to be stored in lexicographic order (by
target vertex id), and to only contain successor edges (target vertex id greater than source vertex id). The latter
requirement is equivalent to the graph only containing the upper triangular portion of the adjacency matrix.
Then the set intersection is limited to neighbors with vertex ids greater than u and v, avoiding duplicate counting.

In fairness to BGL, especially for the purposes of the performance comparison in Section 5, we implement TC
in BGL using the same set intersection approach used inside graph-v2. Figure 5 compares the underlying
implementation syntax for each library. Note again for BGL the need to go through vertex descriptors to access
the out edges of a vertex while graph-v2 uses a vertex id. The incidence_iterator in graph-v2 is not random
access and requires != comparison. When using the same != comparison in the BGL example, we find the
while loop to continue past the end of a neighbor list, so the comparison operator is used instead. This is not
expected and perhaps a bug in the BGL version we use.

§4.4 6

© ISO/IEC P3337r0

using namespace boost;

using G =
compressed_sparse_row_graph<

directedS, no_property, no_property>;
using Vertex = graph_traits<G>::vertex_descriptor;

G g;
//populate g

size_t count{0};
for(size_t i = 0; i < N; i++) {

Vertex cur = vertex(i, g);
count += num_triangles_on_vertex(g, cur);

}
count /= 6;

(a) BGL

using namespace graph;

using G =
container::compressed_graph<

void, void, void, uint32_t, uint32_t>;

G g;
//populate g

size_t count = triangle_count(g);

(b) graph-v2

Figure 4: Triangle Counting Syntax Comparison

§4.4 7

© ISO/IEC P3337r0

using namespace boost;

using G =
compressed_sparse_row_graph<

directedS, no_property, no_property>;

using edge_iterator = graph_traits<G>::
out_edge_iterator;

size_t N(num_vertices(g));
size_t triangles(0);

for (size_t uid = 0; uid < N; ++uid) {
Vertex u = vertex(uid, g);
std::pair<edge_iterator, edge_iterator>

u_neighbors = out_edges(u, g);

auto i = u_neighbors.first;
auto ie = u_neighbors.second;
while (i < ie) {

size_t vid = target(*i, g);
Vertex v = vertex(vid, g);
std::pair<edge_iterator, edge_iterator>

v_neighbors = out_edges(v, g);

auto i2 = i;
auto j = v_neighbors.first;
auto je = v_neighbors.second;

while (i2 < ie && j < je) {
size_t wid1 = target(*i2, g);
size_t wid2 = target(*j, g);
if (wid1 < wid2) {

++i2;
} else if (wid2 < wid1) {

++j;
} else {

++triangles;
++i2;
++j;

}
}
++i;

}
}

(a) BGL

using namespace graph;

using G =
container::compressed_graph<

void, void, void, uint32_t, uint32_t>;

size_t N(size(vertices(g)));
size_t triangles(0);

for (vertex_id_t<G> uid = 0; uid < N; ++uid) {

incidence_iterator<G> i(g, uid);
auto ie = end(edges(g, uid));
while (i != ie) {

auto&& [vid, uv] = *i;

incidence_iterator<G> j(g, vid);
auto i2 = i;
auto je = end(edges(g, vid));

while (i2 != ie && j != je) {
auto&& [wid1, uw] = *i2;
auto&& [wid2, vw] = *j;
if (wid1 < wid2) {

++i2;
} else if (wid2 < wid1) {

++j;
} else {

++triangles;
++i2;
++j;

}
}
++i;

}
}

(b) graph-v2

Figure 5: Triangle Counting Underlying Implementation Syntax Comparison

§4.4 8

© ISO/IEC P3337r0

5 Performance Comparison
5.1 Experimental Setup
To evaluate the performance of this proposed library, we compare its reference implementation (graph-v2)
against BGL and NWGraph on a subset of the GAP Benchmark Suite [5]. This comparison includes four
of the five GAP algorithms that are in the tier 1 algorithm list of this proposal: breadth-first search (BFS),
connected components (CC), single-source shortest paths (SSSP), and triangle counting (TC). The performance
of NWGraph on the algorithms and a comparison to other graph frameworks was carried out in [6]. Table 3
summarizes the graphs specified by the GAP benchmark. These graphs were chosen with a variety of degree
distributions and diameters, and to be large (with edge counts into the billions) but still fit on shared memory
machines.

We compare to BGL because it the commonly used sequential C++ graph library as described above. NWGraph
is the direct predecessor of graph-v2, with many of the NWGraph authors contributing to this library proposal
and the graph-v2 reference implementation. It was implemented with many of the ideas of this proposal in
mind, e.g. graphs as a range of ranges and generic algorithms that support any data structure that meet the
concept requirements. Since the two implementations are based on similar ideas, we expect similar experimental
performance, and include NWGraph to verify graph-v2 does not introduce any performance overhead.

Name Description #Vertices #Edges Degree (Un)directed References
(M) (M) Distribution

road USA road network 23.9 57.7 bounded undirected [7]
Twitter Twitter follower links 61.6 1,468.4 power directed [8]

web Web crawl of .sk domain 50.6 1,930.3 power directed [9]
kron Synthetic graph 134.2 2,111.6 power undirected [10]

urand Uniform random graph 134.2 2,147.5 normal undirected [11]

Table 3: Summary of GAP Benchmark Graphs

The NWGraph authors published a similar comparison to BGL in which they demonstrated performance
improvement of NWGraph over BGL [2]. To simplify experimental setup, we rerun these new experiments using
the same machine used in that paper, (compute nodes consisting of two Intel® Xeon® Gold 6230 processors, each
with 20 physical cores running at 2.1 GHz, and 188GB of memory per processor). All three implementations were
compiled into a single experimental driver to ensure uniform compiler setup (gcc 13.2 using -Ofast -march=native
compilation flags.) Additionally any graph preprocessing such as symmetricization (for undirected algorithms) or
vertex relabeling are guaranteed to be the same for all three implementations.

5.2 Experimental Analysis
Table 4 summarizes our GAP benchmark results for graph-v2 compared to BGL and NWGraph. In addition
to runtime, the table contains the number of connected components and the number of triangles for each graph
as this is helpful for understanding performance. The below subsections consider each GAP algorithm, describe
the specific algorithm implementation(s) tested for each library, and examine the performance results.

5.2.1 Breadth-First Search

All implementations of BFS use a sequential push variant that one could find in a textbook (no direction
optimization or parallel processing of frontier). As mentioned in Section 4, BGL contains support for visitors
which is not available in NWGraph or the version of graph-v2 being tested here.

BFS results are competitive between the libraries, with the graph-v2 implementation achieving the fastest time
on all but the road graph. NWGraph has noticably worse performance on kron and urand. BGL underperforms
on web by 2x but this run only takes around 4s.

§5.2 9

© ISO/IEC P3337r0

Algorithm Library Variant road twitter kron web urand

BFS
BGL 0.99s 7.82s 17.40s 4.13s 59.05s
NWGraph 0.88s 9.08s 25.04s 2.09s 68.18s
graph-v2 0.92s 7.00s 15.93s 2.61s 55.13s

CC
1 CC 19.9M CC 71.2M CC 123 CC 1 CC

BGL DFS-based 1.30s 32.03s 71.38s 11.93s 94.80s
graph-v2 DFS-based 0.76s 27.87s 41.21s 6.64s 64.87s
NWGraph Afforest 1.15s 6.09s 28.42s 3.29s 28.73s
graph-v2 Afforest 0.97s 5.85s 23.37s 3.16s 33.84s

SSSP
BGL Dijkstra 3.97s 45.24s OOM 24.86s OOM
NWGraph Dijkstra 3.62s 95.78s 313.96s 30.66s 356.11s
graph-v2 Dijkstra 4.06s 104.38s 348.72s 33.77s 387.75s
NWGraph DeltaStepping 1.49s 24.48s 74.43s 12.53s 103.97s

TC
439K T 34.8B T 107B T 84.9B T 5.38K T

BGL 1
6 tr(A3) 1.34s >24H >24H >24H 4425.54s

BGL Upper triangular 0.61s 1672.71s 8346.70s 251.78s 405.37s
NWGraph Upper triangular 0.20s 567.97s 2962.32s 107.85s 152.52s
graph-v2 Upper triangular 0.17s 524.68s 2683.41s 71.10s 128.32s

Table 4: GAP Benchmark Performance: Time for GAP benchmark algorithms is shown for BGL, NWGraph,
graph-v2

5.2.2 Connected Components

The NWGraph implementation of CC is based on the Afforest [12] algorithm. BGL does not provide an
Afforest variant. Instead, BGL implements a simple depth-first search based CC algorithm. graph-v2 contains
implementations of both. However, the graph-v2 implementation of Afforest does not contain support for
parallel execution policies which NWGraph does, and does not contain the overhead of atomics.

It is likely that other researchers implementing the GAP benchmark use CC to refer to weakly connected
components of a directed graph. As the DFS based CC implmentation of BGL and graph-v2 assumes an
undirected graph, we make all graphs undirected before running these experiments.

Comparing the two DFS based implementations, graph-v2 has consistently better performance, up to 2x, over
the BGL implementation. The Afforest implementations outperform the DFS based implementations. Of the
two Afforest implementations, graph-v2 is slightly faster but this is reasonable considering it does not have the
parallel overhead of the NWGraph implementation.

5.2.3 Single Source Shortest Paths

Each graph library contains an implementation of Dijkstra’s SSSP algorithm which we include in these experiments.
Actually NWGraph contains multiple Dijkstra implementations, but we use the simplest one which is taken
directly from the NWGraph benchmark directory. The GAP specification for SSSP only requires that the
algorithm compute the shortest distance to every vertex, not the shortest path. We use a variant of SSSP that
only computes shortest distances for all of these results.

Although we include performance numbers of the NWGraph implementation of Dijkstra, the SSSP results in [2]
were based on delta-stepping. NWGraph’s delta-stepping implmentation was highly tuned for performance
compared to its Dijkstra implementation. Therefore we include NWGraph delta-stepping timing to consider
its best “out of the box” performance. This implementation is not sequential as it contains std::for_each ,
and is therefore not useful for helping us understand potential difference between libraries or their Dijkstra
implmentations.

SSSP results are mixed, with superior performance for BGL on twitter and web, while BGL fails by running
out of memory on kron and urand. The edge distances required for SSSP make this a more memory intensive
algorithm than the other GAP algorithms. The 2x performance of BGL over NWGraph and graph-v2 on

§5.2 10

© ISO/IEC P3337r0

twitter is notable and calls for further investigation.

5.2.4 Triangle Counting

NWGraph and graph-v2 contain similar implementations of TC that perform a set intersection of the neighbor
list of vertices. This is discussed in Section 4 and the graph-v2 code is shown in Figure 5(b). As noted in
Section 4, the naïve BGL TC implementation shown in Figure 4(a) is very inefficient. For these performance
experiments we include both the inefficient BGL approach, and our own BGL set intersection implementation
shown in Figure 5(b).

TC performance from our naïve BGL implementation is far slower than the adjacency matrix set intersection
used by NWGraph and graph-v2. Since the same triangle is counted six times in BGL, one can expect at
least that much of a slowdown; however, the slowdown is often much worse likely due to poor memory access
patterns. The BGL implementation of the set intersection approach is much faster than the naïve approach, but
is still significantly slower than the NWGraph or graph-v2 implementations, up to a factor of 3x on road and
kron. It is unclear if this is a fundamental limitation of BGL or our implementation could be further optimized.
graph-v2 consistently outperforms NWGraph, up to 1.5x on web. This is surprising given the similarity of the
implementations, and could indicate more efficient data access for the graph-v2 graph data structure.

6 Memory Allocation
Unlike existing STL algorithms, the graph algorithms in the graph-v2 reference implementation often need
to allocate their own temporary data structures. Table 5 records the internal memory allocations required for
graph-v2’s implementation of the GAP Benchmark algorithms where relevant. It is important to note that
the memory usage is not prescribed by the algorithm interface in P3128, and is ultimately determined by the
library implementer. Some memory use, such as the queues in BFS and SSSP, will probably be common to most
implementations. However, the color map in BFS and the reindex map in CC (used to ensure the resulting
component indices are contiguous) could potentially be avoided.

Algorithm Required Internal Data Max Size
BFS queue O(|V |)

color map V
CC reindex map O(|components|)

SSSP priority queue O(|E|)
TC None NA

Table 5: Internal Memory Allocations of GAP Benchmark Algorithm Implementations in graph-v2

§6.0 11

© ISO/IEC P3337r0

Acknowledgements
Phil Ratzloff’s time was made possible by SAS Institute.

Portions of Andrew Lumsdaine’s time was supported by NSF Award OAC-1716828 and by the Segmented Global
Address Space (SGAS) LDRD under the Data Model Convergence (DMC) initiative at the U.S. Department
of Energy’s Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle Memorial Institute
under Contract DE-AC06-76RL01830.

Michael Wong’s work is made possible by Codeplay Software Ltd., ISOCPP Foundation, Khronos and the
Standards Council of Canada.

Muhammad Osama’s time was made possible by Advanced Micro Devices, Inc.

The authors thank the members of SG19 and SG14 study groups for their invaluable input.

References
[1] A. Lumsdaine, K. Deweese, S. McMillan, and P. Ratzloff, “Standard graph library reference implementation,

version 2.” "https://github.com/stdgraph/graph-v2".

[2] A. Lumsdaine, L. D’Alessandro, K. Deweese, J. Firoz, T. Liu, S. McMillan, P. Ratzloff, and M. Zalewski,
“Nwgraph: A library of generic graph algorithms and data structures in c++20.” "https://drops.dagstuhl.de/
opus/volltexte/2022/16259/".

[3] A. Lumsdaine, L. D’Alessandro, K. Deweese, J. Firoz, T. Liu, S. McMillan, P. Ratzloff, and M. Zalewski,
“Nwgraph library code.” "https://github.com/pnnl/NWGraph".

[4] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost Graph Library: User Guide and Reference Manual.
Addison-Wesley Professional, Dec. 2001.

[5] S. Beamer, K. Asanović, and D. Patterson, “The gap benchmark suite,” arXiv preprint arXiv:1508.03619,
2015.

[6] A. Azad, M. M. Aznaveh, S. Beamer, M. P. Blanco, J. Chen, L. D’Alessandro, R. Dathathri, T. Davis,
K. Deweese, J. Firoz, H. A. Gabb, G. Gill, B. Hegyi, S. Kolodziej, T. M. Low, A. Lumsdaine, T. Manlaibaatar,
T. G. Mattson, S. McMillan, R. Peri, K. Pingali, U. Sridhar, G. Szarnyas, Y. Zhang, and Y. Zhang, “Evaluation
of graph analytics frameworks using the gap benchmark suite,” in 2020 IEEE International Symposium on
Workload Characterization (IISWC), pp. 216–227, 2020.

[7] “9th DIMACS implementation challenge - Shortest paths..” http://www.dis.uniroma1.it/challenge9/,
2006.

[8] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a social network or a news media?,” WWW,
2010.

[9] P. Boldi and S. Vigna, “The WebGraph framework I: Compression techniques,” WWW, pp. 595–601, 2004.

[10] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing the Graph 500,” in Cray User’s
Group, CUG, 2010.

[11] P. Erdős and A. Rényi, “On random graphs. I,” Publicationes Mathematicae, vol. 6, pp. 290–297, 1959.

[12] M. Sutton, T. Ben-Nun, and A. Barak, “Optimizing parallel graph connectivity computation via subgraph
sampling,” in IPDPS, pp. 12–21, IEEE, 2018.

§6.0 12

"https://github.com/stdgraph/graph-v2"
"https://drops.dagstuhl.de/opus/volltexte/2022/16259/"
"https://drops.dagstuhl.de/opus/volltexte/2022/16259/"
"https://github.com/pnnl/NWGraph"

	Getting Started
	Revision History
	Naming Conventions
	Syntax Comparison
	Breadth-First Search
	Connected Components
	Single Source Shortest Paths
	Triangle Counting

	Performance Comparison
	Experimental Setup
	Experimental Analysis
	Breadth-First Search
	Connected Components
	Single Source Shortest Paths
	Triangle Counting

	Memory Allocation
	Acknowledgements

