
Document Number: P3319R3

Date: 2025-02-03

Reply-to: Matthias Kretz <m.kretz@gsi.de>

Audience: LEWG

Target: C++26

Add an iota object for simd (and
more)

ABSTRACT

There is one important constant in SIMD programming: 0, 1, 2, 3, In the standard library

we have an algorithm called iota that can initialize a range with such values. For simd we want to
have simple to spell constants that scale with the SIMDwidth. This paper proposes a simple facility

that can be generalized.

CONTENTS

1 Changelog 1
1.1 Changes from revision 0 . 1
1.2 Changes from revision 1 . 1
1.3 Changes from revision 2 . 1

2 Straw Polls 1
2.1 SG9 at Wrocław 2024 . 1

3 Motivation 2
4 Generalization 3
5 Alternative: reuse existing iota 4
6 Naming: Is reuse of the term “iota” confusing or helpful? 6
7 Relation to list-initialization of simd 6
8 Behavior on overflow 6
9 Proposed polls 7
10 Wording 7
A Bibliography 8

P3319R3 1 Changelog

1 CHANGELOG

(placeholder)

1.1 changes from revision 0

Previous revision: P3319R0

• Add a simple example to the motivation section.

• Expand the “Generalization” section to clearly define the feature rather than just sketching

it. Also add a discussion of initial value and step.

• Discuss why reusing the existing iota algorithm/view does not work/suffice for the simd use
case.

• Discuss why iota_v is the right name.

1.2 changes from revision 1

Previous revision: P3319R1

• Add SG9 poll results.

• Add wording for std::simd_iota.

1.3 changes from revision 2

Previous revision: P3319R2

• Clean up naming in the discussion.

• Discuss overflow in a new section (Section 8).

• Mandate “no overflow” in the wording.

2 STRAW POLLS

2.1 sg9 at wrocław 2024

Poll:Wewant the variable template that creates an iota sequence described in the paper for basic_-
simd and arithmetic scalars.

SF F N A SA

6 1 1 0 0

1

https://wg21.link/P3319R0
https://wg21.link/P3319R1
https://wg21.link/P3319R2

P3319R3 3 Motivation

Poll: The iota facility should be generalized to any sequence of static extent.

SF F N A SA

0 0 4 3 1

Poll: Assuming the author provides wording and a wording expert verifies that it matches design

intent, forward P3319R1 to LEWG for inclusion in C++26.

SF F N A SA

6 1 1 0 0

3 MOTIVATION

The 90%1 use case for simd generator constructors is a simd with values 0, 1, 2, 3, … potentially

with scaling and offset applied. However, often it would be easier and more readable to use an

“iota” simd object instead.
generator ctor iota

std::simd <int > a([](int i) { return i; };

std::simd <int > b([](int i) { return 2 + 3 * i; };

auto a = std::simd_iota <std::simd <int >>;

auto b = 2 + 3 * std::simd_iota <std::simd <int >>;

1 Sorry, that number is completely made up.

2

P3319R3 4 Generalization

An example where an simd_iota<simd> comes up is the calculation of the Mandelbrot set. The

program needs to iterate over all visible pixels and calculate the corresponding value in the complex

plane. Thus a loop like

for (int x = 0; x < 1024; ++x) {
float real = float(x) * scale + offset;

turns into

using floatv = simd <float >;
using intv = rebind_simd_t <int , floatv >;
for (intv x = simd_iota <intv >; any_of(x < 1024); x += intv :: size ()) {

floatv real = floatv(x) * scale + offset;

The minimal definition proposed can be implemented like this:

namespace std {
template <class T>

requires is_arithmetic_v <T>
or (simd-type<T> and is_arithmetic_v < typename T:: value_type >)

constexpr T simd_iota = T();

template <class T, class Abi >
constexpr basic_simd <T, Abi >
simd_iota <basic_simd <T, Abi > >([](T i) {

static_assert (basic_simd <T, Abi >:: size () - 1 <= numeric_limits <T >:: max ());
return i;

});
}

If [P3287R2] Exploration of namespaces for std::simd is adopted to introduce a std::simd names-

pace, it would be called std::simd::iota.

4 GENERALIZATION

By defining a variable template std::simd_iota<T> where T must be a basic_simd type, we’re

simply initializing a sequence of values at compile time. We can create such an object for more

types. This is especially interesting for the degenerate case in SIMD-generic programming, where

T could e. g. be an int. An std::simd_iota<int> is nothing other than an object int with value 0.
We can easily generalize to std::iota_v<std::array<T, N>> and std::iota_v<T[N]>. And the

next step then is to allow any type that

• has a static extent,

• has a value_type member type,

• can be list-initialized with N numbers of type value_type, where N equals the static extent of
the type, and

3

P3319R3 5 Alternative: reuse existing iota

• where value_type() + 1 is an constant expression and convertible to value_type.

But there are more types (in the standard library and beyond)wherewe can create such an object.

All we need is a type

1. with valid ranges::range_value_t<T> type (this could be weakened to also allow std::
tuple<int, int>),

2. with static extent (T::size(), T::extent, std::extent_v<T>, or std::tuple_size_v<T>),

3. and that can be list-initialized from a sequence of N integers (cast to range_value_t<T>),
where N equals the static extent of the type.

For the scalar case, a very general constraint requires T to be

• a regular type

• that can be list-initialized from a single value

• and that compares equal to that value after construction.

Consequently you could write

auto x = std::iota_v <float [5] >;
auto y = std::iota_v <std::array < my_fixed_point , 8>>;
// ...

A second generalization could allow different sequences other than only 0, 1, 2, 3, 4, …. std
::iota and std::ranges::iota take a value argument to define the first value in the sequence.

They do not allow any different step other than applying the pre-increment operator.

For simd, I would typically just write e. g.

constexpr auto vec = std::iota_v <std::simd <int >> * 3 + 5; // 5, 8, 11, ...

To construct the same sequence for an array, iota_v would require a “first” and a “step” argument:

constexpr auto arr = std::iota_v <std::array <int , 4>, 5, 3>; // 5, 8, 11, 14

Providing a (defaulted) “step” argument is simple and more general. The only reason, that I can

think of, for not adding it is that std::iota / std::ranges::iota don’t have it.

5 ALTERNATIVE: REUSE EXISTING IOTA

We already have std::iota and std::ranges::iota. Why isn’t that sufficient to create a solution

that composes?

One motivation for iota_v<simd<int>> instead of simd<int>::iota is that iota_v<int> works
while int::iota cannot work. The same is true for simd<int>(views::iota(0)) vs. int(views::
iota(0)). Supporting the degenerate case is very helpful for SIMD-generic programming.

4

P3319R3 5 Alternative: reuse existing iota

// scalar loop:
for (int i = 0; i < 1024; ++i) {

...
}

// simd loop:
for (auto i = iota_v <simd <int >>; all_of(i < 1024); i += simd <int >:: size) {

...
}

// simd - generic loop:
for (auto i = iota_v <T>; all_of(i < 1024); i += simd_size_v <T>) {

...
}

// alternative :
for (int ii = 0; ii < 1024; ii += simd_size_v <T>) {

T i = ii + iota_v <T>;
...

}

In addition, with [P3299R3] Proposal to extend std::simd with range constructors we continue

to only enable construction and load from contiguous ranges. So simd(random_access_range)
needs another paper altogether (while convenient, this is rarely what the user wanted; making non-

contiguous loads ill-formed helps against “performance errors”). So we could overload for specific

non-contiguous ranges, where we know that we can restore good performance. But that’s going to

be a closed set, rather than a general concept. Why then would simd(std::views:iota(0)) work
but simd(boost::views::iota(0)) is ill-formed?

The outcome of [P3299R3] Proposal to extend std::simdwith range constructors is that simd(range)
requires a statically sized contiguous rangewith exactlymatching size. Thus, even the call std::simd_-
unchecked_load<simd<int>>(std::views::iota(0)) does not work. It’s also not a solution to the

problem posed, since it is nowevenmore verbose than the generator constructor solution simd<int>([](int
i) return i;). It completely fails at the goal to make the code more readable.

Then what about std::views::iota(0) | std::ranges::to<basic_simd>()? It’s still too long

for a rather basic constant. And why should this work if both

• std::views::iota(0) | std::ranges::to<std::array>(); and

• std::views::iota(0) | std::ranges::to<std::array<int, 4>();

don’t work?

6 NAMING: IS REUSE OF THE TERM “IOTA” CONFUSING OR HELPFUL?

5

P3319R3 6 Naming: Is reuse of the term “iota” confusing or helpful?

In the Vc library, the library behind the initial proposal back in 2013, there’s a Vc::Vector<T>::
IndexesFromZero() constant. Back then SG1/WG21 wanted to reduce the scope for the TS to

a minimum and the constant was never considered any further. In any case, IndexesFromZero is a
fairly descriptive/elaborate name. But in the standard librarywe already have a term for a sequence

like this. And it’s “iota”. Using a different term for something that isn’t different (concept) is confusing

and incoherent.

std::iota has an existing meaning, as an algorithm that initializes a given existing range. What

this paper proposes is sufficiently different that we don’t want to overload that exact name. In ad-

dition, with std::iota being a function and this proposal adding a variable template it is technically

impossible to overload the same name.

Ifwe decide not to generalize the facility then std::simd_iota / std::simd::iota is the preferred
name. If we do want to generalize, we propose the name std::iota_v, since we’re defining an “iota
value”. If LEWG considers the _v suffix to be reserved for traits then we should consider std::
iota_value instead.

7 RELATION TO LIST-INITIALIZATION OF SIMD

If we add a constructor to basic_simd that enables list-initialization, then many users might use

that in place of a generator constructor. This leads to code that doesn’t scale with the vector width

anymore. Therefore we should provide a simple facility that is concise and portable2.

8 BEHAVIOR ON OVERFLOW

Consider simd_iota<simd<char, 512>>where is_signed_v<char> is true.While the standard only

requires support of basic_simd width up to 64, implemenations are still free to enable larger

widths. Should this be ill-formed (Mandates vs. Constraint) or should it match std::iota and

std::ranges::iota behavior and produce a sawtooth wave?

I was using simd_iota in test code and encountered both cases. In one case I had an error in

my test code and making it ill-formed helped fixing the problem. In another case I was comparing

against memory intitialized by std::iota and making simd_iota ill-formed unnecessarily made my

test cases harder to write.

Granted, most people won’t use simd_iota in order to compare it against std::iota. Instead,
the most likely use will be as a sequence of increasing offsets. In that case wraparound introduces

a bug, and potentially even out-of-bounds indexes leading to memory-safety issues. Therefore, I

prefer making simd_iota ill-formed if the basic_simd width is larger than the largest representable

2 in terms of SIMD width

6

P3319R3 9 Proposed polls

number. In terms of helpful diagnostics, a “Mandates” clause is the better solution. The wording

below implements it that way.

9 PROPOSED POLLS

Poll: We want an iota facility for basic_simd

SF F N A SA

Poll: The iota facility should be generalized to scalars (for SIMD-generic programming)

SF F N A SA

Poll: The iota facility should be generalized to any sequence of static extent

SF F N A SA

Poll: The iota facility should be generalized to allow a different first value

SF F N A SA

Poll: The iota facility should be generalized to allow a different step value

SF F N A SA

10 WORDING

Add the following to ([simd.syn]), after the declaration of simd_cat:
[simd.syn]

template<size_t Bs, class... Abis>
constexpr basic_simd_mask<Bs, deduce-t<integer-from<Bs>,

(basic_simd_mask<Bs, Abis>::size() + ...)>>
simd_cat(const basic_simd_mask<Bs, Abis>&...) noexcept;

template<class T> inline constexpr T simd_iota = see below;

// [simd.mask.reductions], basic_simd_mask reductions

7

P3319R3 A Bibliography

Add the following at the end of ([simd.creation]):

[simd.creation]

5 Returns: A data-parallel object initialized with the concatenated values in the xs pack of data-parallel
objects: The 𝑖th basic_simd/basic_simd_mask element of the 𝑗th parameter in the xs pack is copied to
the return value’s element with index 𝑖 + the sum of the width of the first 𝑗 parameters in the xs pack.

template<class T> inline constexpr T simd_iota = see below;

6 Constraints: is_arithmetic_v<T> is true or T is an enabled specialization of basic_simd.

7 Mandates: is_arithmetic_v<T> is true or T::size() - 1 ≤ numeric_limits<typename T::value_type>::
max().

8 Effects: If is_arithmetic_v<T> is true the value of simd_iota<T> is equal to T(). Otherwise, the value
of simd_iota<T> is equal to T([](typename T::value_type i) { return i; }).

(10.0.0.1) 29.10.7.7 Algorithms [simd.alg]

A BIBLIOGRAPHY

[P3287R2] Matthias Kretz. Exploration of namespaces for std::simd. ISO/IEC C++ Standards Com-

mittee Paper. 2024. url: https://wg21.link/p3287r2.

[P3299R3] Daniel Towner, Matthias Kretz, and Ruslan Arutyunyan. Proposal to extend std::simd

with range constructors. ISO/IEC C++ Standards Committee Paper. 2024. url: https:
//wg21.link/p3299r3.

8

https://wg21.link/p3287r2
https://wg21.link/p3299r3
https://wg21.link/p3299r3

	1 Changelog
	1.1 Changes from revision 0
	1.2 Changes from revision 1
	1.3 Changes from revision 2

	2 Straw Polls
	2.1 SG9 at Wrocław 2024

	3 Motivation
	4 Generalization
	5 Alternative: reuse existing iota
	6 Naming: Is reuse of the term “iota” confusing or helpful?
	7 Relation to list-initialization of simd
	8 Behavior on overflow
	9 Proposed polls
	10 Wording
	29.10.7.7 Algorithms [simd.alg] (10.0.0.1.0)

	A Bibliography

