
Making erroneous behaviour compatible with Contracts

Timur Doumler (papers@timur.audio)
Joshua Berne (jberne4@bloomberg.net)

Gašper Ažman (gasper.azman@gmail.com)

Document #: P3229R1
Date: 2025-02-09
Project: Programming Language C++
Audience: EWG, LEWG

Abstract

This paper proposes the first step towards [P3100R1] — a unified framework for describing and
handling incorrect C++ programs. In this framework, undefined behaviour, erroneous behaviour,
and contract violations are all different aspects of a coherent whole. While most of the changes
proposed in [P3100R1] can wait until C++29, this paper contains the part that needs to be
adopted for C++26 to avoid setting in stone inconsistencies between the concepts of erroneous
behaviour on the one hand and contract violation on the other hand that would greatly hinder
future evolution towards [P3100R1]. Adopting this change paves the way for a brighter future
and clarifies the scope of erroneous behaviours already adopted.

1 Motivation and context

C++ is at an inflection point. To effectively address the safety and security challenges facing the
C++ ecosystem, a holistic strategy is needed. A key part of this strategy is to introduce a unified
framework to the C++ Standard that describes incorrect programs, i.e. programs whose source
code has a bug, and mitigating such bugs during program execution, without leaving the behaviour
undefined. This approach is complementary to introducing static language constraints that make
unsafe constructs ill-formed (e.g., [P3390R0]), and targets bugs that cannot be detected statically.
Such a unified framework is being proposed in [P3100R1]. That proposal is large and the proposed
specification is not yet fully complete; it is thus not in scope for C++26. However, there is a small
subset of [P3100R1] that must be applied before we ship C++26, otherwise we would be setting in
stone inconsistencies that would greatly hinder future evolution towards [P3100R1]. This paper
proposes to apply just this part to the C++26 Working Draft.
The issue is that we currently have two separate specification tools for describing incorrect programs,
both of which are independently heading towards C++26: erroneous behaviour ([P2795R5]; already
merged into the C++26 WD) and contract violations ([P2900R13]). Both describe the same concept:
at some point during execution, a program is found to be defective, yet its behaviour at that point
is still well-defined. Furthermore, both provide essentially the same set of four possible evaluation
semantics. According to [intro.abstract] in the current C++26 WD:

If the execution contains an operation specified as having erroneous behaviour, the implemen-
tation is permitted to issue a diagnostic and is permitted to terminate the execution at an
unspecified time after that operation.

1

mailto:papers@timur.audio
mailto:jberne4@bloomberg.net
mailto:gasper.azman@gmail.com

Note the equivalence between the four possible options for handling erroneous behaviour and the four
contract evaluation semantics enforce, quick-enforce, observe, and ignore proposed in [P2900R13]:

issue a diagnostic and terminate == enforce
do not issue a diagnostic and terminate == quick-enforce

issue a diagnostic and do not terminate == observe
do not issue a diagnostic and do not terminate == ignore

The only instance of erroneous behaviour currently defined in the C++ WD is occurs when an
erroneous value is produced by certain evaluations ([basic.indet]). With the equivalence established
above, an expression E that evaluates to an erroneous value is thus notionally equivalent to the
following function:

auto eval_E()
post (r: !is_erroneous_value(r)) {

return E;
}

If we break them down, we can see that the two approaches to handling incorrect programs are
very similar in shape and differ primarily in nomenclature:

— Erroneous behaviour identifies behaviour that is incorrect (yet well defined) and implies the
condition under which that behaviour is reached;

— Contract assertions explicitly identify the condition under which the behaviour is considered
incorrect, and leave it up to the user to implement the — possibly well-defined but possibly
undefined — behaviour that follows a violation.

From that description, it is clear that any case of well-defined behaviour after a contract violation is
nothing other than erroneous behaviour. Similarly, any condition that identifies erroneous behaviour
as part of an operation is nothing other a contract assertion on that operation. The only difference
is that erroneous behaviour is always well-defined behaviour that follows a contract violation, while
contract violations can in principle also be followed by undefined behaviour (if ignored or observed).
Understanding now that erroneous behaviour is a specific category of behaviour that might follow
a contract violation, we must then consider the concrete differences in the behaviours specified
for erroneous in the draft Standard today and how a contract violation followed by matching
well-defined behaviour would behave:

— While printing a diagnostic message is recommended behaviour for both contract violations
and erroneous behaviour, [P2900R13] allows the user to override this behaviour and install
their own user-defined contract-violation handler, while erroneous behaviour does not.

— When a contract assertion is evaluated with a terminating semantic (enforce or quick-enforce)
and a contract violation has been detected, [P2900R13] specifies a set of conforming modes of
termination,1 while erroneous behaviour does not.

— If the program is terminated due to a contract violation, termination happens as part of
evaluating the contract assertion and immediately after the violation has been handled; on
the other hand, if erroneous behaviour is encountered, termination happens “at an unspecified
time after that operation”, thereby introducing some sort of “Damocles semantic”.

1The conforming modes of termination on contract violation are the three erroneous termination modes available
in C++: std::terminate, std::abort, and immediate termination, such as via a trap instruction. All three have
important use cases; detailed discussion can be found in [P3520R0].

2

— If an expression would evaluate an operation that would have erroneous behaviour, it does not
qualify as a core constant expression, which in turn allows the user to SFINAE on whether an
expression results in erroneous behaviour. On the other hand, [P2900R13] does not allow the
user to SFINAE on the presence or evaluation of a contract assertion: if an enforced contract
assertion fails during constant evaluation, the program is straight up ill-formed.

To remove the above inconsistencies and pave the way towards a unified standard framework
for reasoning about incorrect programs, we need to change the terminology and specification of
erroneous behaviour to align with Contracts — before shipping erroneous behaviour in C++26.

2 Proposed design

2.1 Introducing implicit contract assertions

The first and most important step towards the unified framework proposed in [P3100R1] is to extend
the notion of contract assertion by distinguishing between explicit and implicit contract assertions.
Explicit contract assertions are those that [P2900R13] proposes. They are added to the program
explicitly using function contract specifiers (pre, post) and assertion statements (contract_assert).
They specify conditions on a correct program that relate to user-defined code and thus only the
user knows how to specify those conditions.
By contrast, implicit contract assertions are not directly visible in code. They specify conditions on
a correct program that are relied on by core language operations and thus the implementation can
inject them into the code in an automated fashion.
Otherwise, explicit and implicit contract assertions behave the same. Importantly, they can be
evaluated with the same four evaluation semantics — ignore, observe, enforce, and quick-enforce —
and call the same global contract-violation handler which may be replaced by the user.

2.2 Adjusting the definition of erroneous behaviour

The second step towards our unified design is to recognise that the occurrence of erroneous behaviour
— such as when a builtin operation results in an erroneous value — is equivalent to the violation of
an implicit contract assertion that the operation does not result in an erroneous value.
We propose to make the following adjustments to the current definition of erroneous behaviour to
recognise this equivalence:

— Replace all instances of “if condition X holds, the behaviour is erroneous” with “the operation
has an implicit contract assertion that condition X does not hold” (note that there is currently
only one such instance in the C++26 WD, where X is “if an erroneous value is produced by
an evaluation”);

— Change the definition of the term “erroneous behaviour” to mean “well-defined behaviour
that follows the violation of an implicit contract assertion (note that this does not imply that
that contract assertion was actually checked; note further that this does not change the set of
behaviours currently defined as erroneous).

This modification instantly removes all inconsistencies described in Section 1. Following [P2900R13],
the inserted implicit postcondition assertion can now be evaluated with any of the four evaluation
semantics, a violation can trigger the contract-violation handler, etc.

3

Calling a user-defined contract-violation handler on erroneous behaviour, while not permitted by the
current C++26 WD, is already existing practice. UBSan, an implementation that detects erroneous
behaviour, offers an API for installing such a custom handler.2 As discussed in [P3100R1], there
are many benefits in standardising an API for such callbacks via the replaceable contract-violation
handler, and allowing any program defect detected during program execution, including erroneous
behaviour, to trigger that same handler.
The same strategy can be applied to all other cases that [P2795R5], Section “The Broader Picture”
lists as a “candidate for conversion to erroneous behaviour”: signed integer overflow, unrepresentable
arithmetic conversions, bad bitshifts, and so on. We can remove the undefined behaviour from all
these operations by specifying the appropriate implicit precondition or postcondition assertions and
the appropriate erroneous behaviour.

2.3 Extending the contract-violation handling API

In order to introduce implicit contract assertions on top of [P2900R13], we need to extend the
contract-violation handling API, which currently only covers explicit contract assertions. Specifically,
we need to specify the state of the std::contracts::contract_violation object that a user-
defined contract-violation handler will see when such an implicit contract assertion is violated. Only
two small extensions to that API are needed.
The first extension concerns the kind() property of contract_violation, which returns an enum
value that represents the syntactic form of the violated contract assertion. In addition to the
three enumerators pre, post, and assert from [P2900R13], which represent explicit precondition
assertions, postcondition assertions, and assertion statements, respectively, we propose a fourth
enumerator implicit, which represents all forms of implicit contract assertions, including the ones
resulting from erroneous values that we propose to introduce here. Note that the same enumerator
is being proposed in [P3100R1] (of which this paper is a subset) and also in [P3081R1] (Profiles).
The second extension concerns the detection_mode() property of contract_violation, which
returns an enum value that represents the particular failure mode. In addition to the three
enumerators predicate_false and evaluation_exception from [P2900R13], we propose a third
enumerator erroneous_value, which represents a contract violation due to an erroneous value
being produced.
Note that this is distinct from the evaluation of a boolean predicate returning false or exiting via
an exception, because the determination that an erroneous value was produced (and therefore a
contract violation occurred) takes place in an implementation-defined fashion and not necessarily
by evaluating a boolean predicate; therefore, the existing two enumerators do not apply. This is
again fully consistent with the direction in [P3100R1] as well as with [P3081R1] and [P3599R0],
which both propose new values for detection_mode() for the new failure modes introduced by
those papers.
The numeric values of the enumerators do not carry any special meaning (see [P3327R0], Section
3.4 for rationale), so it does not matter very much how we choose them. Here, we propose to
make assertion_kind::implicit first in the list (value 1), because implicit contract assertions
are the only ones that are not introduced by a syntactic specifier and thus are distinct from all
other kinds of assertions, including kinds we might add in C++29 or later, such as class invariants
and procedural interfaces. However, if a breaking change to [P2900R13] is not desired, we might as
well append it to the list by giving it the value 4. As for detection_mode, any proposal adding a
new detection mode to the Contracts framework, including this one, should simply append them to
the list.

2All Clang sanitisers offer the API __sanitizer_set_death_callback for this purpose; ASan additionally offers
a slightly more sophisticated API __asan_set_error_report_callback.

4

2.4 Replacing the “Damocles semantic” by “sticky” erroneous values

With erroneous behaviour as specified today, a program effectively enters an “erroneous state”
once any erroneous behaviour happens, and the program may be unceremoniously terminated at
any point after that. The expectation is that it will be either reasonably soon or never, but the
specification gives significantly more freedom to the implementation, making it much harder to
reason about the behaviour of the program.
We, as a community, are lucky enough to already have implementations that identify and trap on
uses of uninitialised values. The implementation of such checks is often done as instrumentation of
compiled code, and the mapping of code in C++ to post-optimization machine instructions can
often be unintuitive. In particular, the exact place where a read of an erroneous value occurs can
be rolled into many subsequent operations, and it is those subsequent operations where a diagnostic
could potentially be emitted, not the initial read. The case that can actually be caught is often a
branch that occurs whose condition is dependent on an uninitialized value, and that branch might
be very far removed from where the first read of the uninitialized value occurs in the abstraction
machine. This implementation strategy is the original motivation for the current specification of
erroneous behaviour as introduced by [P2795R5].
On the other hand, no real-world implementation will notice an uninitialised read and then set a
timer, wait an arbitrary time, and terminate the program while it is doing something completely
unrelated. The specification of erroneous behaviour today allows this choice unnecessarily. It also
prevents consistency in semantics between erroneous values and other types of implicit contract
violations.
To fix this issue while retaining compatibility between the specification and existing implementations,
we propose that erroneous values be “sticky” in a way that they are not today. The specification
today takes the approach that once you read an erroneous value the value itself is then “cleaned” and
no longer toxic, but comes with the downside that all following program behaviour is now erroneous
and thus at risk of termination. By having erroneous values propagate with the data, however, we
can extend the scope of the problematic data sufficiently to cover all realistic implementations while
avoiding the more toxic threat of eventual and surprising termination at a later date.
In practice, we do not expect the erroneous of a value to transport beyond a single function or
translation unit, but we should still allow for that possibility if an adventurous platform chooses to
do so. Therefore, we simply make any operation whose result is dependent on an erroneous value
produce an erroneous value. Each such operation will fail its implicit postcondition assertion that the
value produced is not erroneous, but as per the [P2900R13] model of implementation-defined choice
of evaluation semantic, the implementation is free to evaluate any of these implicit postcondition
assertions with the ignore semantic. A program is therefore free to discard all such data and move
on. Such a program is now no longer under threat of unexpected termination, while leaving us
maximal flexibility for identifying the bug when it is most convenient to do so.

2.5 Interaction with noexcept

Consider:
bool f() {

int x;
return noexcept(x + 1);

}

In C++ today, calling f() has defined behaviour (the indeterminate value is never accessed; the
operand of noexcept is an unevaluated operand) and returns true (adding two integers can never
throw an exception unless the behaviour is undefined). If we want to avoid breaking changes to the
existing language, the result of the noexcept operator must remain the same with this proposal.

5

However, since x has an erroneous value, evaluating x + 1 may call the contract violation handler,
which may throw an exception.3 With this proposal, it is therefore no longer true that x + 1 can
never throw an exception unless the behaviour is undefined.
A detailed discussion of this problem can be found in [P3541R1]. The possible solutions broadly
fall into three categories: either accept the breaking change to the noexcept operator, or do not
allow throwing violation handlers for implicit contract assertions, or redefine the meaning of the
noexcept operator to be “can never throw an exception unless there is a contract violation”. SG21
discussed this problem at great length and achieved consensus that the only acceptable solution is
the last one. We follow this decision in this paper.
It is therefore possible for an implicit contract assertion to call a throwing contract-violation handler
when violated, and for the evaluation of the expression to exit via that exception, even if the
noexcept operator returns true for that expression.
Note that this design is fully consistent with [P3081R1] and [P3599R0] which propose the same
behaviour for implicit contract assertions inserted by the implementation to check for out-of-bounds
access into an array, null pointer dereference, and signed integer overflow.

2.6 Constant evaluation

The change proposed here makes it impossible to SFINAE on whether an expression results in an
erroneous value. Such compile-time branching on the presence of a bug should never be allowed; a
detailed rationale can be found in [P2900R13] Section 3.1, which enshrines this design principle in
the so-called Contracts Prime Directive.
In [P2900R13], when an explicit contract assertion is encountered during constant evaluation, it
can be ignored (the predicate is not evaluated at all), observed (if the predicate does not evaluate
to true, a compiler warning is issued), or enforced (if the predicate does not evaluate to true, the
program is ill-formed).
Explicit contract assertions are user-authored and have important use cases for all three evaluation
semantics. The ignore semantic is useful in code bases where constant evaluation of all contract
predicates would have a prohibitively costly impact on compile time, while the observe semantic is
useful when the author is not yet confident about the correctness of the check itself and wishes to
avoid running the risk of breaking the build.
On the other hand, implicit contract assertions do not fall into either category. We can therefore
remove the possibility to SFINAE on whether an expression results in an erroneous value while
preserving the property of the current C++26 WD that during constant evaluation, an erroneous
value can never be produced. We achieve this by specifying that during constant evaluation, implicit
contract assertions can only be evaluated with the enforce semantic. In other words, if any implicit
contract assertions fails during constant evaluation, the program will be straight up ill-formed.

2.7 Effect on in-progress erroneous behaviour papers

There are two in-progress papers on erroneous behaviour that are affected by this proposal.
[P2973R0] “Erroneous behaviour for missing return from assignment” proposes that flowing off
the end of a copy or move assignment operator results in erroneous behaviour and is erroneously
equivalent to a return with operand *this. With this proposal, we can equivalently specify this

3[P3577R0] proposes that the default contract-violation handler should be normatively prohibited from exiting via
an exception, however a user-defined contract-violation handler is still free to do so. Unwinding the stack in response
to a contract violation is not expected to be a very common strategy, but it has important use cases (see [P3318R0]).

6

behaviour by saying that flowing off the end of a copy or move assignment operator is equivalent to
a return with operand *this preceded by an implicit contract assertion whose predicate is false.
[P3232R1] “User-defined erroneous behaviour” proposes a new Standard Library function std::erroneous()
which invokes erroneous behaviour when called and has no effect otherwise. With this pro-
posal, a call to std::erroneous() becomes essentially obsolete as it is exactly equivalent to
contract_assert(false). We might still consider adopting std::erroneous() as a mechanism
to express a particular intent, much like std::unreachable() expresses a particular intent while
being exactly equivalent to [[assume(false)]].

3 Proposed wording

The wording changes proposed in this section are relative to the C++ Working Draft [N5001] with
the changes proposed in [P2900R13] (Contracts) already applied.
Replace “contract assertion” with “explicit contract assertion” in all places in the wording that do
not apply to implicit contract assertions. This complete list will be reproduced when a core-approved
version of the wording in [P2900R13] is available.
Modify [defns.erroneous]:

erroneous behavior
well-defined behavior that the implementation is recommended to diagnosefollows the violation
of an implicit contract assertion ([basic.contract.general]).
[Note to entry: Erroneous behavior is always the consequence of incorrect program code.
Implementations are allowed, but not required, to diagnose it ([intro.compliance.general]).The
contract violation that precedes the erroneous behavior can aid in diagnosing the defect,
depending on the chosen evaluation semantic ([basic.contract.eval]). Evaluation of a constant
expression ([expr.const]) never exhibits behavior specified as erroneous in Clause 4 through
Clause 15erroneous behaviour.— end note]

Modify [intro.abstract]:

A conforming implementation executing a well-formed program shall produce the same
observable behavior as one of the possible executions of the corresponding instance of the
abstract machine with the same program and the same input. However, if any such execution
contains an undefined operation, this document places no requirement on the implementation
executing that program with that input (not even with regard to operations preceding the first
undefined operation). If the execution contains an operation specified as having erroneous
behavior, the implementation is permitted to issue a diagnostic and is permitted to terminate
the execution at an unspecified time after that operation.
Recommended practice: An implementation should issue a diagnostic when such an operation
is executed.
[Note: An implementation can issue a diagnostic if it can determine that erroneous behavior
is reachable under an implementation-specific set of assumptions about the program behavior,
which can result in false positives. — end note]

Modify [basic.contract.general] as follows:
Contract assertions allow the programmer to specify properties of the state of the program
that are expected to hold at certain points during execution.
Explicit cContract assertions are introduced by precondition-specifiers, postcondition-specifiers
([dcl.contract.func]), and assertion-statements ([stmt.contract.assert]). Implicit contract
assertions are inserted into the program by the implementation as specified in this document.

7

Each contract assertion has a predicate, which is an expression of type bool. [Note: The
value of the predicate is used to identify program states that are expected. — end note]

Modify [basic.contract.eval]:

An evaluation of a contract assertion uses one of the following four evaluation semantics:
ignore, observe, enforce, or quick-enforce. Observe, enforce, and quick-enforce are checking
semantics; enforce and quick-enforce are terminating semantics.
Which evaluation semantic is used for any given evaluation of a contract assertion is
implementation-defined. [Note: The evaluation semantics can differ for different evalu-
ations of the same contract assertion, including evaluations during constant evaluation. —
end note]
During constant evaluation, implicit contract assertions are always evaluated with the enforce
semantic. [Note: Therefore, evaluation of a constant expression ([expr.const]) never exhibits
a violation of an implicit contract assertion. — end note]
Recommended practice: An implementation should provide the option to translate a program
such that all evaluations of explicit contract assertions use the ignore semantic as well as the
option to translate a program such that all evaluations of explicit contract assertions use the
enforce semantic. By default, evaluations of explicit contract assertions should use the enforce
semantic.

Modify [basic.indet] as follows:

The evaluation of any builtin operation includes an implicit postcondition assertion ([ba-
sic.contract.general]) that it does not produce an erroneous value. Except in the following
cases, if any operand of a built-in operator is erroneous then the value produced by that
operator is erroneous:

— If the built-in operation is * or & and the other operand is a non-erroneous zero value.
— If the built-in operation is | and the other operand is a non-erroneous value whose base-2

representation all of whose coefficients are 1.

Except in the following cases, if an indeterminate value is produced by an evaluation, the
behavior is undefined and if an erroneous value is produced by an evaluation , the behavior is
erroneous and the result of the evaluation is the value so produced but is not erroneous and
it is erroneous:

— ...

Converting an indeterminate or erroneous value of unsigned ordinary character type or
std::byte type produces an indeterminate or erroneous value, respectively. In the latter
case, the result of the conversion is the value of the converted operand.

Modify [expr.const], paragraph 10:

An expression E is a core constant expression unless the evaluation of E, following the rules
of the abstract machine ([intro.abstract]), would evaluate one of the following:

— ...
— an operation that would have undefined or erroneous behavior as specified in Clause 4

through Clause 15;
— ...

Modify [dcl.attr.indet], paragraph 3:

8

[Note: Reading from an uninitialized variable that is marked [[indeterminate]] can cause
undefined behavior.

void f(int);
void g() {

int x [[indeterminate]], y;
f(y); // erroneous behaviorcontract violation ([basic.indet])
f(x); // undefined behavior

}

[...]

— end note]

Modify [nullablepointer.requirements], paragraph 2:

A value-initialized object of type P produces the null value of the type. The null value shall
be equivalent only to itself. A default-initialized object of type P may have an indeterminate
or erroneous value.
Note: Operations involving indeterminate values can cause undefined behavior, and operations
involving erroneous values can cause erroneous behaviorcontract violations ([basic.indet]).—
end note]

Modify [contracts.syn]:

// all freestanding
namespace std::contracts {

enum class assertion_kind : unspecified
implicit = 1,
pre = 12,
post = 23,
assert = 34

};

[...]

enum class detection_mode : unspecified
predicate_false = 1,
evaluation_exception = 2,
erroneous_value = 3

};

Modify [support.contracts.enum.kind]:

The enumerators of assertion_kind correspond to the possible syntactic forms of a contract
assertion ([basic.contract]):

— assertion_kind::implicit: the evaluated contract assertion was an implicit contract
assertion.

— assertion_kind::pre: the evaluated contract assertion was an explicit precondition
assertion.

— assertion_kind::post: the evaluated contract assertion was an explicit postcondition
assertion.

9

— assertion_kind::assert: the evaluated contract assertion was an explicit assertion-
statement.

Modify [support.contracts.enum.detection]:

The enumerators of detection_mode correspond to the manners in which a contract violation
([basic.contract.eval]) can be identified:

— detection_mode::predicate_false: the contract violation occurred because the pred-
icate evaluated to false or would have evaluated to false.

— detection_mode::evaluation_exception: the contract violation occurred because the
evaluation of the predicate exited via an exception.

— detection_mode::erroneous_value: the contract violation occurred because an erro-
neous value was encountered.

Acknowledgements

Thanks to Roger Orr for his helpful feedback on the first revision of this paper.

Revision History

R0 → R1:

— No longer proposing to remove the term erroneous behaviour

— Fixed code example

— Editorial changes

10

Bibliography

[N5001] Thomas Köppe. Working Draft, Standard for Programming Language C++. https:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/n5001.pdf, 2024-12-17.

[P2795R5] Thomas Köppe. Erroneous behaviour for uninitialized reads. https://wg21.link/
p2795r5, 2024-03-22.

[P2900R13] Joshua Berne, Timur Doumler, and Andrzej Krzemieński. Contracts for C++. https:
//wg21.link/p2900r13, 2025-01-13.

[P2973R0] Jonathan Wakely and Thomas Köppe. Erroneous behaviour for missing return from
assignment. https://wg21.link/p2973r0, 2023-09-15.

[P3081R1] Herb Sutter. Core safety profiles for C++26. https://wg21.link/p3081R1, 2025-01-06.

[P3100R1] Timur Doumler, Gašper Ažman, and Joshua Berne. Undefined and erroneous behaviour
is a contract violation. https://wg21.link/p3100r1, 2024-10-16.

[P3232R1] Thomas Köppe. User-defined erroneous behaviour. https://wg21.link/p3232r1, 2024-
11-18.

[P3318R0] Ville Voutilainen. Throwing violation handlers, from an application programming
perspective. https://wg21.link/p3318r0, 2024-05-22.

[P3327R0] Timur Doumler. Contract assertions on function pointers. https://wg21.link/p3327r0,
2024-09-17.

[P3390R0] Sean Baxter and Christian Mazakas. Safe C++. https://wg21.link/p3390r0, 2024-
09-11.

[P3520R0] Timur Doumler, Joshua Berne, and Andrzej Krzemieński. Contracts for C++: Wrocław
technical fixes. https://wg21.link/p3520r0, 2024-11-21.

[P3541R1] Andrzej Krzemieński. Violation handlers vs noexcept. https://wg21.link/p3541r1,
2025-01-06.

[P3577R0] John Lakos. Require a non-throwing default contract-violation handler. https://wg21.
link/p3577r0, 2025-01-13.

[P3599R0] Joshua Berne and Timur Doumler. Initial Implicit Contract Assertions. https://wg21.
link/p3599r0, 2025-01-30.

11

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/n5001.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/n5001.pdf
https://wg21.link/p2795r5
https://wg21.link/p2795r5
https://wg21.link/p2900r13
https://wg21.link/p2900r13
https://wg21.link/p2973r0
https://wg21.link/p3081R1
https://wg21.link/p3100r1
https://wg21.link/p3232r1
https://wg21.link/p3318r0
https://wg21.link/p3327r0
https://wg21.link/p3390r0
https://wg21.link/p3520r0
https://wg21.link/p3541r1
https://wg21.link/p3577r0
https://wg21.link/p3577r0
https://wg21.link/p3599r0
https://wg21.link/p3599r0

	1 Motivation and context
	2 Proposed design
	2.1 Introducing implicit contract assertions
	2.2 Adjusting the definition of erroneous behaviour
	2.3 Extending the contract-violation handling API
	2.4 Replacing the ``Damocles semantic'' by ``sticky'' erroneous values
	2.5 Interaction with noexcept
	2.6 Constant evaluation
	2.7 Effect on in-progress erroneous behaviour papers

	3 Proposed wording

