
Graph Library: Views
Document #: P3129r2
Date: 2025-04-13
Project: Programming Language C++
Audience: Library Evolution

SG19 Machine Learning
SG14 Game, Embedded, Low Latency

Revises: P3129r1

Reply-to: Phil Ratzloff (SAS Institute)
phil.ratzloff@sas.com
Andrew Lumsdaine
lumsdaine@gmail.com

Contributors: Kevin Deweese
Muhammad Osama (AMD, Inc)
Jesun Firoz
Michael Wong (Intel)
Jens Maurer
Richard Dosselmann (University of Regina)
Matthew Galati (Amazon)
Guy Davidson (Creative Assembly)
Oliver Rosten

1

mailto:phil.ratzloff@sas.com
mailto:lumsdaine@gmail.com


© ISO/IEC P3129r2

1 Getting Started
This paper is one of several interrelated papers for a proposed Graph Library for the Standard C++ Library.
The Table 1 describes all the related papers.

Paper Status Description
P1709 Inactive Original proposal, now separated into the following papers.
P3126 Active Overview, describes the big picture of what we are proposing.
P3127 Active Background and Terminology provides the motivation, theoretical background, and

terminology used across the other documents.
P3128 Active Algorithms covers the initial algorithms as well as the ones we’d like to see in the future.
P3129 Active Views has helpful views for traversing a graph.
P3130 Active Graph Container Interface is the core interface used for uniformly accessing graph data

structures by views and algorithms. It is also designed to easily adapt to existing graph data
structures.

P3131 Active Graph Containers describes a proposed high-performance compressed_graph container. It
also discusses how to use containers in the standard library to define a graph, and how to
adapt existing graph data structures.

P3337 In process Comparison to other graph libraries on performance and usage syntax. Not published
yet.

Table 1: Graph Library Papers

Reading them in order will give the best overall picture. If you’re limited on time, you can use the following
guide to focus on the papers that are most relevant to your needs.

Reading Guide

— If you’re new to the Graph Library, we recommend starting with the Overview (P3126) paper to
understand the focus and scope of our proposals. You’ll also want to check out how it stacks up against
other graph libraries in performance and usage syntax in the Comparison (P3337) paper.

— If you want to understand the terminology and theoretical background that underpins what we’re
doing, you should read the Background and Terminology (P3127) paper.

— If you want to use the algorithms, you should read the Algorithms (P3128) and Graph Containers (P3131)
papers. You may also find the Views (P3129) and Graph Container Interface (P3130) papers helpful.

— If you want to write new algorithms, you should read the Views (P3129), Graph Container Interface
(P3130), and Graph Containers (P3131) papers. You’ll also want to review existing implementations in the
reference library for examples of how to write the algorithms.

— If you want to use your own graph data structures, you should read the Graph Container Interface
(P3130) and Graph Containers (P3131) papers.

2 Revision History
P3129r0

— Split from P1709r5. Added Getting Started section.

— Removed allocator parameters on views, for consistency with existing views in the standard.

P3129r1
— Add the edgelist as an abstract data structure as a peer to the adjacency list. The range returned by

edgelist_view adheres to the basic_sourced_index_edgelist concept, and to the has_edge_value concept

§2.0 2

https://www.wg21.link/P3126
https://www.wg21.link/P3127
https://www.wg21.link/P3128
https://www.wg21.link/P3129
https://www.wg21.link/P3130
https://www.wg21.link/P3131
https://www.wg21.link/P3337
https://www.wg21.link/P3126
https://www.wg21.link/P3337
https://www.wg21.link/P3127
https://www.wg21.link/P3128
https://www.wg21.link/P3131
https://www.wg21.link/P3129
https://www.wg21.link/P3130
https://www.wg21.link/P3129
https://www.wg21.link/P3130
https://www.wg21.link/P3131
https://www.wg21.link/P3130
https://www.wg21.link/P3131


© ISO/IEC P3129r2

if a evf(uv) function is passed. The same applies to all sourced versions of the BFS, DFS and Topological
Sort views.

— Restore the allocator parameters on the DFS, BFS and Toplogical Sort views, based on feedback and by
SG14/SG19 joint meeting.

— Add a note that we will be unable to support a freestanding graph library in this proposal because of the
need for stack , queue and potential bad_alloc exception in many of the views.

— Rename descriptor structs to info structs in preparation for new BGL-like descriptors.

P3129r2
— Replace the use of id and reference with descriptor, leading to a simpler interace. It also creates a more

flexible interface that can support associative containers in the future. The following changes were made:

— The number of View functions has been halved because we no longer need separate functions that
only have id , and another set that has has both id and reference . Only functions with descriptor
are needed.

— The vertex_id member has been removed from the vertex_info struct, and the vertex member can
hold either an id or a descriptor, depending on the context it’s used. The same changes have also been
applied to the edge_info and neighbor_info structs.

— The copyable info type aliases and concepts have been removed. vertex_info , edge_info and
neighbor_info are always copyable because they no longer contain references.

— See P3130 Graph Container Interface for more details about descriptors.

§2.0 3

https://www.wg21.link/P3130


© ISO/IEC P3129r2

3 Naming Conventions
Table 2 shows the naming conventions used throughout the Graph Library documents.

Template Variable
Parameter Type Alias Names Description
G Graph

graph_reference_t<G> g Graph reference
GV val Graph Value, value or reference
EL el Edge list
V vertex_t<G> Vertex descriptor

vertex_reference_t<G> u,v Vertex descriptor reference. u is the source
(or only) vertex. v is the target vertex.

VId vertex_id_t<G> uid,vid,seed Vertex id. uid is the source (or only) vertex
id. vid is the target vertex id.

VV vertex_value_t<G> val Vertex Value, value or reference. This can be
either the user-defined value on a vertex, or a
value returned by a function object (e.g. VVF )
that is related to the vertex.

VR vertex_range_t<G> ur,vr Vertex Range
VI vertex_iterator_t<G> ui,vi Vertex Iterator. ui is the source (or only)

vertex iterator. vi is the target vertex iterator.
first,last first and last are the begin and end iterators

of a vertex range.
VVF vvf Vertex Value Function: vvf(u) → vertex value,

or vvf(uid) → vertex value, depending on
requirements of the consuming algorithm or
view.

VProj vproj Vertex info projection function: vproj(u) →
vertex_info<VId,VV> .

partition_id_t<G> pid Partition id.
P Number of partitions.

PVR partition_vertex_range_t<G> pur,pvr Partition vertex range.
E edge_t<G> Edge descriptor

edge_reference_t<G> uv,vw Edge descriptor reference. uv is an edge from
vertices u to v . vw is an edge from vertices v
to w .

EV edge_value_t<G> val Edge Value, value or reference. This can be
either the user-defined value on an edge, or a
value returned by a function object (e.g. EVF )
that is related to the edge.

ER vertex_edge_range_t<G> Edge Range for edges of a vertex
EI vertex_edge_iterator_t<G> uvi,vwi Edge Iterator for an edge of a vertex. uvi is

an iterator for an edge from vertices u to v .
vwi is an iterator for an edge from vertices v
to w .

EVF evf Edge Value Function: evf(uv) → edge value.
EProj eproj Edge info projection function: eproj(uv) →

edge_info<VId,Sourced,EV> .

Table 2: Naming Conventions for Types and Variables

§3.0 4



© ISO/IEC P3129r2

4 Introduction
The views in this paper provide common ways that algorithms use to traverse graphs. They are a simple as
iterating through the set of vertices, or more complex ways such as depth-first search and breadth-first search.
The also provide a consistent and reliable way to access related elements using the View Return Types, and
guaranteeing expected values, such as that the target is really the target on unordered edges.

We are unable to support freestanding implementations in this proposal. Many of the views require a stack or
queue , which are not available in a freestanding environment. Additionally, stack and queue require memory
allocation which could throw a bad_alloc exception.

5 Info Structs (Return Types)
Views return one of the types in this section, providing a consistent set of value types for all graph data structures.
They are templated so that the view can adjust the types of the members to be appropriate for its use. The
three types, vertex_info, edge_info and neighbor_info , define the common data model used by algorithms.

The following examples show the general design and how it’s used. The example focuses on vertexlist when
iterating over vertices, and the same pattern applies with using the other view functions.

// the type of uu is vertex_info<vertex_t<G>, void>
for(auto&& uu : vertexlist(g)) {

vertex_reference_t<G> u = uu.vertex;
// ... do something interesting

}

A function object can also be passed to return a value from the vertex. In this case, vertexlist(g, vvf) returns
a struct with two members, vertex and value .

auto vvf = [&g](vertex_reference_t<G> u) { return vertex_value(g,u); };
// the type of uu is vertex_info<vertex_t<G>, decltype(vvf(u))>
for(auto&& uu : vertexlist(g, vvf)) {

vertex_reference_t<G> u = uu.vertex;
vertex_value_t<G>& value = uu.value;
// ... do something interesting

}

Structured bindings make it simpler.
for(auto&& [u] : vertexlist(g)) {

// ... do something interesting
}

Finally, using structured binding with the vertex value function.
// the type returned by vertexlist is vertex_info<vertex_t<G>, decltype(vvf(vertex_t<G>))>
auto vvf = [&g](vertex_reference_t<G> u) { return vertex_value(g,u); };
for(auto&& [u, value] : vertexlist(g, vvf)) {

// ... do something interesting
}

5.1 struct vertex_info<VId, VV>

vertex_info is used to return vertex information. It is used by vertexlist(g) , vertices_breadth_first_search
(g,u) , vertices_dfs(g,u) and others. The vertex member is typically a vertex descriptor, but can also be a
vertex id, and always exists.

§5.1 5



© ISO/IEC P3129r2

template <class VorVId, class VV>
struct vertex_info {

using vertex_type = VorVId; // e.g. vertex_reference_t<G> or void
using value_type = VV; // e.g. vertex_value_t<G> or void

vertex_type vertex;
value_type value;

};

Specializations are defined with V=void or VV=void to suppress the existance of their associated member variables,
giving the following valid combinations in Table 3 . For instance, the second entry, vertex_info<VId, void> has
one member {vertex_type vertex;} and value_type is void .

Template Arguments Members
vertex_info<VorVId, VV> vertex value
vertex_info<VorVId, void> vertex

Table 3: vertex_info Members

5.2 struct edge_info<VId, Sourced, E, EV>

edge_info is used to return edge information. It is used by incidence(g,u), edgelist(g), edges_breadth_first_search
(g,u), edges_dfs(g,u) and others. source and target are typically vertex descriptors, but can also be vertex
ids. If no specific mention of vertex ids are used, assume they are vertex descriptors. In this section, source and
target can be either vertex descriptors or vertex ids.

When Sourced=true , the source member is included with type V or VId . The target member always exists.
template <class VorVId, bool Sourced, class E, class EV>
struct edge_info {

using source_type = VorVId; // e.g. vertex_t<G> or vertex_id_t<G> when Sourced==true, or void
using target_type = VorVId; // e.g. vertex_t<G> or vertex_id_t<G>
using edge_type = E; // e.g. edge_reference_t<G> or void
using value_type = EV; // e.g. edge_value_t<G> or void

source_type source;
target_type target;
edge_type edge;
value_type value;

};

Specializations are defined with Sourced=true|false , E=void or EV=void to suppress the existance of the associated
member variables, giving the following valid combinations in Table 4 . For instance, the second entry, edge_info<
VId,true,E> has three members {source_id_type source_id; target_id_type target_id; edge_type edge;} and
value_type is void .

5.3 struct neighbor_info<VId, Sourced, V, VV>

neighbor_info is used to return information for a neighbor vertex, through an edge. It is used by neighbors(g,u)
. When Sourced=true , the source member is included with type source_type . The target member always
exists.

§5.3 6



© ISO/IEC P3129r2

Template Arguments Members
edge_info<VorVId, true, E, EV> source target edge value
edge_info<VorVId, true, E, void> source target edge
edge_info<VorVId, true, void, EV> source target value
edge_info<VorVId, true, void, void> source target
edge_info<VorVId, false, E, EV> target edge value
edge_info<VorVId, false, E, void> target edge
edge_info<VorVId, false, void, EV> target value
edge_info<VorVId, false, void, void> target

Table 4: edge_info Members

template <class VorVId, bool Sourced, class VV>
struct neighbor_info {

using source_type = VorVId; // e.g. vertex_t<G> or vertex_id_t<G> when Sourced==true, or void
using target_type = VorVId; // e.g. vertex_t<G> or vertex_id_t<G>
using value_type = VV; // e.g. vertex_value_t<G> or void

source_type source;
target_type target;
value_type value;

};

Specializations are defined with Sourced=true|false or EV =void to suppress the existance of the associated
member variables, giving the following valid combinations in Table 5 . For instance, the second entry, neighbor_info
<V,true> has two members {source_type source; target_type target;} and value_type is void .

Template Arguments Members
neighbor_info<VorVId, true, EV> source target value
neighbor_info<VorVId, true, void> source target
neighbor_info<VorVId, false, EV> target value
neighbor_info<VorVId, false, void> target

Table 5: neighbor_info Members

6 Graph Views
6.1 vertexlist Views
vertexlist views iterate over a range of vertices, returning a vertex_info on each iteration. Table 6 shows
the vertexlist functions overloads and their return values. u is a vertex descriptor. first and last are vertex
iterators.

The vertexlist view without the value function is of limited value, since vertices(g) does the same thing,
without using a structured binding. However, it is included for consistency with the overload that uses a value
function.

6.2 incidence Views
incidence views iterate over a range of adjacent edges of a vertex, returning a edge_info on each iteration.
Table 7 shows the incidence function overloads and their return values.

Since the source vertex u is available when calling an incidence function, there’s no need to include sourced
versions of the function to include the source vertex in the output.

§6.2 7



© ISO/IEC P3129r2

Example Return
for(auto&& [u] : vertexlist(g)) vertex_info<void,V,void>
for(auto&& [u,val] : vertexlist(g,vvf)) vertex_info<void,V,VV>
for(auto&& [u] : vertexlist(g,first,last)) vertex_info<void,V,void>
for(auto&& [u,val] : vertexlist(g,first,last,vvf)) vertex_info<void,V,VV>
for(auto&& [u] : vertexlist(g,vr)) vertex_info<void,V,void>
for(auto&& [u,val] : vertexlist(g,vr,vvf)) vertex_info<void,V,VV>

Table 6: vertexlist View Functions

The incidence view without the value function is of limited value, since edges(g,u) does the same thing, without
using a structured binding. However, it is included for consistency with the overload that uses a value function.

Example Return
for(auto&& [uv] : incidence(g,u)) edge_info<void,false,E,void>
for(auto&& [uv,val] : incidence(g,u,evf)) edge_info<void,false,E,EV>

Table 7: incidence View Functions

6.3 neighbors Views
neighbors views iterate over a range of edges for a vertex, returning a vertex_info of each neighboring target
vertex on each iteration. Table 8 shows the neighbors function overloads and their return values.

Since the source vertex u is available when calling a neighbors function, there’s no need to include sourced
versions of the function to include source vertex in the output.

Example Return
for(auto&& [v] : neighbors(g,uid)) neighbor_info<void,false,V,void>
for(auto&& [v,val] : neighbors(g,uid,vvf)) neighbor_info<void,false,V,VV>

Table 8: neighbors View Functions

6.4 edgelist Views
edgelist views iterate over all edges for all vertices, returning a edge_info on each iteration. Table 9 shows the
edgelist function overloads and their return values.

The range returned by edgelist adheres to the basic_sourced_index_edgelist concept (future proposals may
only adhere to basic_sourced_edgelist ). If a evf(uv) function is passed, it adheres to the has_edge_value
concept.

Example Return
for(auto&& [u,v,uv] : edgelist(g)) edge_info<V,true,E,void>
for(auto&& [u,v,uv,val] : edgelist(g,evf)) edge_info<V,true,E,EV>

Table 9: edgelist View Functions

7 "Search" Views
7.1 Common Types and Functions for “Search”
The Depth First, Breadth First, and Topological Sort searches share a number of common types and functions.

§7.1 8



© ISO/IEC P3129r2

Here are the types and functions for cancelling a search, getting the current depth of the search, and active
elements in the search (e.g. number of vertices in a stack or queue).

// enum used to define how to cancel a search
enum struct cancel_search : int8_t {

continue_search, // no change (ignored)
cancel_branch, // stops searching from current vertex
cancel_all // stops searching and dfs will be at end()

};

// stop searching from current vertex
template<class S)
void cancel(S search, cancel_search);

// Returns distance from the seed vertex to the current vertex,
// or to the target vertex for edge views
template<class S>
auto depth(S search) -> integral;

// Returns number of pending vertices to process
template<class S>
auto size(S search) -> integral;

Of particular note, size(dfs) is typically the same as depth(dfs) and is simple to calculate. breadth_first_search
requires extra bookkeeping to evaluate depth(bfs) and returns a different value than size(bfs) .

The following example shows how the functions could be used, using dfs for one of the depth_first_search views.
The same functions can be used for all all search views.

auto&& g = ...; // graph
auto&& dfs = vertices_dfs(g,0); // start with vertex_id=0
for(auto&& [vid,v] : dfs) {

// No need to search deeper?
if(depth(dfs) > 3) {

cancel(dfs,cancel_search::cancel_branch);
continue;

}

if(size(dfs) > 1000) {
std::cout << "Big depth of " << size(dfs) << '\n';

}

// do useful things
}

The range returned by sourced views (includes source_id) adheres to the basic_sourced_index_edgelist concept.
If a evf(uv) function is passed, it also adheres to the has_edge_value concept.

7.2 Depth First Search Views
Depth First Search views iterate over the vertices and edges from a given seed vertex, returning a vertex_info
or edge_info on each iteration when it is first encountered, depending on the function used. Table 10 shows the
functions and their return values.

7.3 Breadth First Search Views
Breadth First Search views iterate over the vertices and edges from a given seed vertex, returning a vertex_info
or edge_info on each iteration when it is first encountered, depending on the function used. Table 11 shows the
functions and their return values.

§7.4 9



© ISO/IEC P3129r2

Example Return
for(auto&& [v] : vertices_dfs(g,seed)) vertex_info<void,V,void>
for(auto&& [v,val] : vertices_dfs(g,seed,vvf)) vertex_info<void,V,VV>
for(auto&& [v,uv] : edges_dfs(g,seed)) edge_info<V,false,E,void>
for(auto&& [v,uv,val] : edges_dfs(g,seed,evf)) edge_info<V,false,E,EV>
for(auto&& [u,v,uv] : sourced_edges_dfs(g,seed)) edge_info<V,true,E,void>
for(auto&& [u,v,uv,val] : sourced_edges_dfs(g,seed,evf)) edge_info<V,true,E,EV>

Table 10: depth_first_search View Functions

Example Return
for(auto&& [v] : vertices_bfs(g,seed)) vertex_info<void,V,void>
for(auto&& [v,val] : vertices_bfs(g,seed,vvf)) vertex_info<void,V,VV>
for(auto&& [v,uv] : edges_bfs(g,seed)) edge_info<V,false,E,void>
for(auto&& [v,uv,val] : edges_bfs(g,seed,evf)) edge_info<V,false,E,EV>
for(auto&& [u,v,uv] : sourced_edges_bfs(g,seed)) edge_info<V,true,E,void>
for(auto&& [u,v,uv,val] : sourced_edges_bfs(g,seed,evf)) edge_info<V,true,E,EV>

Table 11: breadth_first_search View Functions

7.4 Topological Sort Views
Topological Sort views iterate over the vertices and edges from a given seed vertex, returning a vertex_info or
edge_info on each iteration when it is first encountered, depending on the function used. Table 12 shows the
functions and their return values.

Example Return
for(auto&& [v] : vertices_topological_sort(g,seed)) vertex_info<void,V,void>
for(auto&& [v,val] : vertices_topological_sort(g,seed,vvf)) vertex_info<void,V,VV>
for(auto&& [v,uv] : edges_topological_sort(g,seed)) edge_info<V,false,E,void>
for(auto&& [v,uv,val] : edges_topological_sort(g,seed,evf)) edge_info<V,false,E,EV>
for(auto&& [u,v,uv] : sourced_edges_topological_sort(g,seed)) edge_info<V,true,E,void>
for(auto&& [u,v,uv,val] : sourced_edges_topological_sort(g,seed,evf)) edge_info<V,true,E,EV>

Table 12: topological_sort View Functions

Acknowledgements
Phil Ratzloff’s time was made possible by SAS Institute.

Portions of Andrew Lumsdaine’s time was supported by NSF Award OAC-1716828 and by the Segmented Global
Address Space (SGAS) LDRD under the Data Model Convergence (DMC) initiative at the U.S. Department
of Energy’s Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle Memorial Institute
under Contract DE-AC06-76RL01830.

Michael Wong’s work is made possible by Codeplay Software Ltd., ISOCPP Foundation, Khronos and the
Standards Council of Canada.

Muhammad Osama’s time was made possible by Advanced Micro Devices, Inc.

The authors thank the members of SG19 and SG14 study groups for their invaluable input.

§7.4 10


	Getting Started
	Revision History
	Naming Conventions
	Introduction
	Info Structs (Return Types)
	[breaklines=true,columns=fullflexible]struct vertexinfo<VId, VV> 
	[breaklines=true,columns=fullflexible]struct edgeinfo<VId, Sourced, E, EV> 
	[breaklines=true,columns=fullflexible]struct neighborinfo<VId, Sourced, V, VV> 

	Graph Views
	vertexlist Views
	incidence Views
	neighbors Views
	edgelist Views

	"Search" Views
	Common Types and Functions for ``Search'' 
	Depth First Search Views
	Breadth First Search Views
	Topological Sort Views

	Acknowledgements

