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Abstract

In this paper, we enumerate all cases of core language undefined behaviour explicitly specified in
the C++ Standard, group them into ten categories, and classify them along a number of relevant
criteria.
We then present a holistic strategy for systematically detecting, mitigating, and ultimately
eliminating such undefined behaviour from the C++ Standard. This strategy is built on top of
seven basic tools: feature removal, refined behaviour, erroneous behaviour, insertion of runtime
checks, language subsetting, the introduction of annotations, and the introduction of entirely
new language features. We discuss which tools are applicable to which cases of core language
undefined behaviour.
We find that two of these tools — erroneous behaviour and runtime checks — are applicable to
a wide range of existing cases and do not require any source changes. We describe how runtime
checks can be systematically introduced via implicit contract assertions, giving users complete
control over what impact that undefined behaviour has on their programs. In addition to runtime
checking, we replace undefined behaviour with erroneous, but well-defined behaviour that allows
the program to continue execution past a violated implicit contract assertion wherever possible.
Building on Contracts as adopted for C++26, we provide a generic framework for applying
these two techniques across the entire C++ language specification, fundamentally changing the
landscape of how undefined behaviour is approached in C++.
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1 Introduction

Eliminating or at least meaningfully reducing the amount of undefined behaviour (UB) is an
important objective for the future evolution of C++. WG21 has been continuously working in that
direction. For a recent status update, see [Sutter2025] and references therein; for background, see
[Sutter2024] and references therein.
At WG21’s February 2025 meeting in Hagenberg, EWG agreed on a ship vehicle for a systematic
treatment of core language UB in C++: the pursuit of a core language UB white paper [P3656R1] in
the C++26 timeframe, covering erroneous behaviour (EB), Profiles, and Contracts. The proposed
process involves starting with an empty white paper working draft and then iteratively get EWG
approval for papers to be adopted into that working draft.
This paper directly addresses the major work items proposed by [P3656R1]. At WG21’s June 2025
meeting in Sofia, EWG reviewed revision R2 of this paper and approved its adoption into the core
language UB white paper working draft.
In Section 2, we identify and enumerate all core language UB explicitly specified in the current C++
working paper [N5008]. We group all core language UB into ten categories. We then classify cases of
UB along several relevant criteria, such as whether they are locally diagnosable, how expensive that
diagnosis is, and in which cases the UB can be replaced with meaningful, well-defined behaviour.
In Section 3, we present a holistic strategy for systematically detecting, mitigating, and ultimately
removing UB across the entire C++ programming language specification. The present revision of
this paper incorporates the presentation [P3754R0] we gave to EWG in Sofia outlining this strategy.
It also includes an updated version of the diagram on slide 53 from that presentation (a.k.a. the
“magic slide”) visualising this strategy. EWG reached consensus in Sofia to use this diagram as a
basis for the core language UB white paper.
The proposed strategy is composed of seven basic tools: feature removal, refined behaviour, erroneous
behaviour, insertion of runtime checks, language subsetting, the introduction of annotations, and
the introduction of entirely new language features. We use the results of the analysis in Section 2 to
take a first pass at identifying which tools would be applicable to which cases of UB. We find that
the conditions under which UB will occur can, in many cases, be identified by a runtime check. In
addition, there are a significant number of cases where UB can be replaced by well-defined erroneous
behaviour following a failed check. These two techniques are applicable to a wide range of existing
cases of UB and, importantly, do not require any source changes.
In Section 4, we present a generic framework for applying these two techniques across the entire
C++ language. The proposed design has been reviewed and approved by SG21, SG23, and EWG.
We describe how runtime checks can be systematically introduced via implicit contract assertions,
building on the basic framework of Contracts adopted for C++26 via [P2900R14] and giving users
complete control over what impact that undefined behaviour has on their programs. In addition to
runtime checking, we replace UB by erroneous, but well-defined behaviour that allows the program
to continue execution past a violated implicit contract assertion wherever possible. We also propose
an escape hatch to mitigate the runtime cost of such well-defined replacement behaviour and avoid
performance regressions in existing C++ programs.
In Section 5, we propose wording for approval into the core language UB white paper [P3656R1]
that implements the framework presented in Section 4.
Finally, in Section 6, we discuss how future extensions, such as Labels [P3400R1], will enable
programmatically identifying the category of UB that has occurred and provide us with granular,
in-source control of the evaluation semantics for implicit contract assertions.
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2 Analysis

2.1 Enumeration

2.1.1 Methodology

We manually inspected all occurrences of the word “undefined” in the current C++ working paper
[N5008]. We then constructed a list of all cases of explicitly specified core language UB. Our list
contains 80 cases of explicit language UB and can be found in Appendix A of this paper.
Each individual case of UB in our list has a stable identifier. We place those identifiers between
{curly braces} to visually distinguish them from the C++ working paper’s clause identifiers, which
we place between [square brackets].
There is currently an open pull request against the C++ working paper that proposes to add
these identifiers directly to the C++ working paper alongside a new appendix to that document
enumerating all cases of UB and providing explanation and code examples. This pull request and
the stable identifiers used therein are fully consistent with Appendix A of this paper.
Originally, we constructed our list independently from another effort to enumerate core language
UB led by Shafik Yaghmour (see [P1705R1], [P3075R0]). The current list in Appendix A and in
the pull request mentioned above represents a merger of the lists produced by both efforts, further
increasing confidence that we in fact exhaustively covered all core language UB explicitly specified
in the current C++ working paper.

2.1.2 Granularity

The granularity of our enumeration — i.e., when a piece of core language specification is considered
a distinct case of UB — is somewhat arbitrary. As a general rule, we consider a single sentence in
the C++ working paper that specifies a condition under which a core language operation has UB
to be one case of UB; if such a sentence contains a bulleted list where each item specifies such a
condition (e.g., [basic.life]/7), we consider each item to be a separate case of UB.
We could consider dividing up the cases of UB in different ways and with greater granularity. In
particular, we could more closely align the enumeration with possible mitigation strategies, rather
than with the lexical appearance of the word “undefined” in the C++ working paper.
For example, for [basic.life]/7, instead of considering each bullet to be a separate case of UB, we
could consider each different way in which a pointer can be invalid (lifetime of the object not started
yet, lifetime of the object ended already, pointer is null, etc.) to be a separate case of UB.
As another example, instead of considering flowing off the end of a function ([stmt.return]/4) as
a single case of UB, we could introduce separate cases for flowing off the end of an assignment
operator (which has a proposed mitigation, see [P2973R0]), flowing off the end of a function that
returns a built-in type (which could be mitigated via returning an erroneous value, see Section 2.4),
and flowing off the end of any other non-main function that returns a non-void type.
However, such alternative approaches would make the enumeration more difficult to map to existing
wording, which in turn would make it more difficult to track changes and reason about whether
the enumeration is exhaustive. Further, keeping the enumeration of cases of UB separate from the
enumeration of possible mitigation strategies reduces interdependencies and complexity. Instead,
whenever a mitigation strategy does not fully align with a case of UB, we point this out explicitly
(for example, inserting an implicit null pointer check is considered only a partial mitigation for
dereferencing an invalid pointer).
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2.1.3 Scope

In this paper, we consider only explicit UB, not implicit UB — that is, UB that exists by omission
because the C++ working paper failed to specify the behaviour of a well-formed operation. We
consider all cases of implicit UB that may be discovered in the future to be wording bugs that should
be addressed via Core issues, and then subsequently become explicit UB that can be addressed via
the framework proposed here. Importantly, while explicit UB can be enumerated exhaustively, and
we do so in Appendix A of this paper, enumerating all implicit UB is impossible in principle as we
can never be sure we found all wording bugs in the C++ working paper.
We exclude one case of explicit UB from our enumeration that does not actually represent a separate
case of UB. The current wording in this case1 normatively states that “the program has undefined
behaviour” but merely refers to cases of UB already specified elsewhere in the Standard, rather
than specifying any new such cases. The relevant wording should instead be a non-normative note;
this issue is currently being addressed by Core issue [CWG3022].
Further, in this paper we consider only runtime UB, not compile-time or link-time issues. We
therefore exclude all cases of IFNDR from our analysis: although the effects of IFNDR can manifest
at run time, whether a program is IFNDR is (unlike UB) fundamentally not a runtime property. We
also exclude the case of infinite recursion during template instantiation. The current wording2 for
this case can be interpreted to mean that such infinite recursion could cause runtime UB; however,
this interpretation makes little sense as failure during template instantiation is fundamentally a
compile-time issue. We therefore consider this case a wording bug rather than an instance of UB;
this issue is currently being addressed by Core issue [CWG3034].
Finally, we exclude library undefined behaviour. The natural mitigation approach for library UB is
to make use of contract assertions (pre, post, and contract_assert) in library implementations
and, where sensible, mandate such assertions through library hardening [P3471R4], both of which
are out of scope for this paper. We, therefore, consider only UB that is specified in the core language
part of the C++ working paper (Clauses 1–15). Further, we found one case of UB that is specified
in the core language part of [N5008] but actually represents a precondition on Standard Library
functions;3 that case is, therefore, also excluded from our list.

2.2 Classification

2.2.1 Categories

We found that all identified cases of core language UB can be classified into ten basic categories:

I. Initialisation — 1 case. Evaluating an expression that produces an indeterminate value.

II. Bounds — 5 cases. Using a pointer in a way that fails to respect the range of the pointed-to
object or array. Examples: incrementing a pointer beyond the past-the-end position; perform-
ing single-object delete on an operand obtained from an array-new expression; dereferencing a
pointer returned from a request for zero size.

1[class.dtor]/16: The invocation of a destructor is subject to the usual rules for member functions ([class.mfct]);
that is, if the object is not of the destructor’s class type and not of a class derived from the destructor’s class type
(including when the destructor is invoked via a null pointer value), the program has undefined behavior.

2[temp.inst]/16: There is an implementation-defined quantity that specifies the limit on the total depth of recursive
instantiations ([implimits]), which could involve more than one template. The result of an infinite recursion in
instantiation is undefined.

3[basic.start.term]/6: If there is a use of a standard library object or function not permitted within signal handlers
([support.runtime]) that does not happen before ([intro.multithread]) completion of destruction of objects with static
storage duration and execution of std::atexit registered functions ([support.start.term]), the program has undefined
behavior.
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III. Type and Lifetime — 51 cases. Operations that access storage and/or use pointers or
references to storage in an inappropriate way that is not already covered by Initialisation and
Bounds. Examples: attempting to access a value of one type through a pointer of a different,
incompatible type; attempting to access the value of an object after its lifetime has ended.

IV. Arithmetic — 9 cases. Executing an arithmetic operation whose operands fail to meet certain
preconditions. Examples: division by zero; conversion of a value to a different arithmetic type
that cannot represent that value.

V. Threading — 1 case. Performing two concurrent accesses, at least one of which is modifying,
to the same memory location from different threads where neither access happens before the
other, i.e., a data race.

VI. Sequencing — 1 case. Performing two concurrent accesses, at least one of which is modifying,
to the same memory location from the same thread where neither access is sequenced before
the other.

VII. Assumptions — 1 case. Reaching an [[assume]] declaration whose operand would not
evaluate to true.

VIII. Control Flow — 5 cases. Errors in control flow. Examples: flowing off the end of a function;
re-entering the same declaration recursively when initialising a static variable.

IX. Replacement Functions — 3 cases. Executing a user-defined replacement function
(operator new/delete) that fails to meet the specified requirements. Examples: return-
ing null from a user-defined placement new; throwing an exception from a user-defined
delete.

X. Coroutines — 3 cases. Misusing coroutine machinery. Examples: destroying a coroutine
that is not suspended; failing to provide a return_void function for a coroutine that does
not return a value.

Figure 1 shows the distribution of the 80 identified cases of explicit core language UB across these
ten basic categories.
The categories of Initialisation, Bounds, and Type and Lifetime correspond to the common terms
initialisation safety, bounds safety, type safety, and lifetime safety, respectively, and collectively

1 5

51

9

11
1

5
3 3 Initialisation

Bounds
Type and Lifetime
Arithmetic
Threading
Sequencing
Assumptions
Control Flow
Replacement Functions
Coroutines

Figure 1: Distribution of identified cases of explicit language UB across specified categories
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represent UB that is commonly referred to with the umbrella term memory safety. Much of the
ongoing work around how to “make C++ safe” is focused on these categories (see [P3081R2],
[P3700R0], and references therein).
Because unambiguously categorising a particular case of UB into either type safety or lifetime safety
is often impossible since it concerns both, we grouped them into a single combined category, Type
and Lifetime. While some cases of UB are primarily caused by type aliasing and others are primarily
caused by out-of-lifetime accesses, they form a spectrum, and many common operations in C++
(e.g., using a reference) rely on both type and lifetime constraints to be satisfied.
Remarkably, these three categories related to memory safety account for 57 cases of UB, or 71.25%
of all identified cases; the Type and Lifetime category alone accounts for 51 cases of UB, or 63.75%
of all identified cases.
The next two categories, Arithmetic and Threading, correspond to the common terms arithmetic
safety and thread safety, respectively; the latter contains only one case of UB, data races.
The following category, Sequencing, also contains just one case of UB: unsequenced operations, such
as i++ + ++i. Classifying UB due to data races and unsequenced operations into two separate
categories might seem surprising at first since they have a very similar same shape (except that one
is inter-thread and the other is intra-thread), but as we will see in Section 3, these two categories
actually require very different approaches to mitigation.
The next category, Assumptions, also contains just one case of UB: reaching an [[assume]]
declaration whose operand would not evaluate to true. As we will see later, this case of UB is of a
different nature than the others and warrants its own category.
The final three categories (Control Flow, Replacement Functions, and Coroutines) contain a handful
of cases of UB that are less frequently discussed in the current “safe C++” discourse.

2.2.2 Relevance for security

[P3656R1] asks which cases of UB are security related. The paper suggests having security experts
indicate which cases of UB have security impact and use “always”, “never”, and “sometimes”
tags. We are not security experts, so we do not attempt to do this here. However, we note that
cases of UB commonly associated with security vulnerabilities (see, for example, the CWE list at
https://cwe.mitre.org/) fall into the Initialisation, Bounds, and Type and Lifetime categories.
UB in other categories is not commonly exploited by malicious attackers to our knowledge. Nev-
ertheless, some of these cases, for example those in categories Arithmetic and Threading, are a
common source of program defects that do sizeable damage to existing software.
In principle, with aggressive optimising compilers any form of UB can lead to unpredictable defects
and vulnerabilities. Mitigating cases of UB currently considered to be the most critical security
concern will simply remove the easiest routes of attack from the table, and any UB not yet addressed
may become the new major candidate for attackers to leverage for nefarious purposes. Therefore,
prioritising implementation based on current trends amongst malicious actors, though helpful,
should not be used to limit the scope of our work on improving the C++ language specification
(see [Sutter2024], [P3500R1], and [P3578R0]).

2.3 Diagnosability

The second question [P3656R1] asks is which cases of UB are “efficiently locally diagnosable”. In
this paper, we split this question into three separate questions: whether diagnosis can happen
statically or whether it needs to happen dynamically (i.e., at run time), whether such diagnosis can
be performed locally, and the runtime cost of such diagnosis (whether performed locally or not).
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2.3.1 Static vs. dynamic diagnosis

A commonly asked question is “why does the committee not simply make all the UB ill-formed
instead”? The answer is that in order for that to happen, it would be necessary to determine
statically — i.e., at compile time — whether a given operation in a C++ program would lead to
UB when executed at run time. However, whether a C++ program will have UB when executed is
fundamentally a runtime property, i.e., the answer depends on runtime values unknown at compile
time (for example, the runtime value of a pointer or an integer). Therefore, in the vast majority of
cases, such a compile-time determination cannot be made. In fact, in our entire list of 80 cases of
UB, we cannot identify any cases that can unconditionally be diagnosed at compile time.
Of course, static analysis is still useful and widely used in the field. There are many situations where
static analysis can detect a bug that would lead to UB when executed, because the relevant values
or conditions happen to be known at compile time in the particular program at hand. However,
given an existing C++ program, any approach based on static analysis fundamentally has to choose
between false positives (rejecting code for which no proof can be constructed one way or another,
even if that code happens to be correct) and false negatives (accepting incorrect code that will lead
to UB when executed).
Crucially, whether a pointer or reference refers to a valid object of the correct type within its
lifetime at a given point in time (“memory safety”), the relevant property for addressing UB in the
Initialisation, Bounds, and Type and Lifetime categories, seems to be fundamentally unprovable at
compile time in the general case (see [Baxter2024]).
As we will see in Section 3, despite these fundamental limitations there are things we can (and
should) do in the C++ Standard to enable static analysis to construct a proof in more cases, such
as subsetting the language (3.3.5), providing replacement features (3.3.7), and adding annotations
(3.3.6). However, for existing C++ programs, reliably detecting cases of UB without rejecting
correct code will inevitably have to leverage runtime detection, i.e., the insertion of additional
runtime checks when compiling the program. We therefore focus on such runtime detection for the
remainder of this analysis.

2.3.2 Locality of diagnosis

An important property for diagnosis of UB is whether such diagnosis (whether static or dynamic) can
be performed locally, i.e. without keeping track of additional information across the entire program
that is not available within the C++ abstract machine (achievable with additional instrumentation
of the kind that is implemented in sanitisers, such as ASan and UBSan) and without analysing
code in other branches (which is limited by the Halting problem) or on the other side of a function
call boundary (which might be located in another TU and therefore inaccessible).
Most cases of UB in the Initialisation, Bounds, and Type and Lifetime categories are, in general, not
locally diagnosable. They could potentially be made locally diagnosable in the future with the intro-
duction of novel features such as lifetime annotations [P2771R1] or “ghost data” [Lippincott2025]
which are the subject of ongoing research. We discuss some of these approaches in Section 3; here,
we focus on the status quo in Standard C++.
In the Bounds category, {expr.add.out.of.bounds} and {expr.add.sub.diff.pointers} are partially
locally diagnosable (only if the array bound is statically known). In the Type and Lifetime category,
{expr.static.cast.downcast.wrong.derived.type}, {expr.unary.dereference}, {conv.ptr.virtual.base},
and {expr.dynamic.cast.lifetime} are partially locally diagnosable (for the null pointer case).
{expr.mptr.oper.member.func.null} is locally diagnosable because this case requires only a null
pointer check. {basic.align.object.alignment} is locally diagnosable by checking the alignment of
storage when creating an object at run time. {expr.assign.overlap} is locally diagnosable by checking
the overlap of the two address ranges. (The ranges are known because the address and sizeof are
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known at run time for both the source and the destination object.) {class.abstract.pure.virtual}
is locally diagnosable by adding a runtime check to the pure virtual function stub to which the
base class vtable points. None of the other cases of UB in the Initialisation, Bounds, and Type and
Lifetime categories are locally diagnosable.
All cases of UB in the Arithmetic category are locally diagnosable since they are all cases of an
arithmetic operation producing a value that is somehow inappropriate (mathematically invalid, not
representable in the target type, etc.) and that value can be inspected at run time.
UB in the Threading category ({intro.races.data}) is not locally diagnosable, but UB in the
Sequencing category ({intro.execution.unsequenced.modification}) is.
UB in the Assumption category ({dcl.attr.assume.false}) is, in principle, locally diagnosable by
evaluating the operand of the assumption and verifying that the resulting value, contextually
converted to bool, equals true. However, if that evaluation has any side effects, such a check could
alter the observable state of the program. Therefore, even if the given assumption holds and no UB
occurs, the check itself might render the program invalid by altering its state. Thus, this case of
UB is meaningfully diagnosable in any automated fashion only if the operand has no side effects
when evaluated. However, proving that the operand has no side effects is generally impossible to do
efficiently and is outright impossible in the presence of an opaque function call.
Two cases of UB in the Control Flow category are locally diagnosable. {stmt.return.flow.off} can be
diagnosed by inserting a check at the end of every function body that does not end with a return
statement. {dcl.attr.noreturn.eventually.returns} can be diagnosed by inserting a check into every
function declared [[noreturn]]. The remaining three cases of UB in that category are not locally
diagnosable.
Some cases of UB in the Replacement Function category are partially or fully locally diagnos-
able. In particular, some of the constraints specified in {basic.stc.alloc.dealloc.constraint} and
{expr.new.non.allocating.null} are locally diagnosable, while others are not. In particular, we can
check locally that a deallocation function does not exit via an exception and that an allocation
function does not return null. However, checking the other constraints (locally or at all) is generally
not possible.
Finally, one case of UB in the Coroutine category, stmt.return.coroutine.flow.off}, is locally diagnos-
able in a way analogous to {stmt.return.flow.off} by inserting a check at the end of a coroutine for
which no return_void function is provided. The remaining two cases of UB in that category are
not locally diagnosable since being so would require tracking runtime state information that is not
currently maintained within the coroutine handle in most implementations.
Overall, as shown in Figure 2, only 18 cases of UB (22.5% of all cases) are unconditionally locally
diagnosable at run time, while 58 cases of UB (72.5%) are not; these cases require instrumentation
of the code in order to be diagnosed at run time. We will discuss these requirements in more detail
in Section 2.3.4.

2.3.3 Cost of local diagnosis

Considering locally checkable cases of UB separately from non-locally checkable ones is useful to
estimate the cost of diagnosis. For locally diagnosable cases, some kind of runtime check — an
assertion — could be inserted by the implementation and then evaluated at run time. The total
cost of diagnosis is, therefore, equal to the cost of evaluating that check multiplied by the number
of times the check needs to be evaluated.
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Checkable locally
Checkable locally in some cases
Checkable non-locally
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Figure 2: Runtime diagnosability of explicit core language UB

Note that in this paper, we study the theoretical, relative cost based on the current specification of
the C++ language. We do not, however, measure the actual cost in existing tooling that implements
such checks, nor do we present benchmarks in this paper; such studies are left for future work.
That said, the cheapest kind of check — and the only one that has (almost) no overhead for the happy
path — is the “fail if you get here” check, equivalent to a pre/post/contract_assert(false).
This kind of check is sufficient to diagnose {class.abstract.pure.virtual}, {stmt.return.flow.off},
{stmt.return.coroutine.flow.off}, and {dcl.attr.noreturn.eventually.returns}.
A slightly more expensive but still cheap and optimiser-friendly kind of check is a null check, required
to diagnose the null pointer cases ({expr.static.cast.downcast.wrong.derived.type}, {expr.unary.deref-
erence}, {conv.ptr.virtual.base}, {expr.dynamic.cast.lifetime}, {expr.mptr.oper.member.func.null},
and {expr.new.non.allocating.null}) as well as division by zero ({expr.mul.div.by.zero}).
Integer comparisons are similarly cheap and optimiser-friendly and are required for bounds checks
with statically known array bounds ({expr.add.out.of.bounds} and {expr.add.sub.diff.pointers}) as
well as for {expr.shift.neg.and.width} and {intro.execution.unsequenced.modification}.
Beyond this, a number of UB cases can still be checked by a straightforward arithmetic expression
but with increasingly expensive expressions: {expr.assign.overlap} requires computing whether two
integer ranges overlap, and {basic.align.object.alignment} requires computing an integer modulo.
At the expensive end of the locally diagnosable UB spectrum are runtime checks for which there
is no corresponding C++ expression; instead, the compiler would have to generate more complex
“magic” checks based on knowledge unavailable in the C++ abstract machine. In particular, this
case applies to all arithmetic UB except {expr.add.out.of.bounds} and {expr.add.sub.diff.pointers}.
The compiler would have to validate the bit patterns of values of arithmetic types according to
knowledge it has about how values of such types are represented on the targeted platform. Such
checks can be done locally, but they can slow operations involving built-in types and, in particular,
floating-point types.
In addition to the cost of the check itself, we need to consider the frequency with which these checks
would need to be done. Checks that would need to happen once when a function is called or when
a function returns are likely to be acceptable in most scenarios. Extensive checks for arithmetic UB
will probably be acceptable in fewer scenarios because such checks have the potential to significantly
slow arithmetic operations, which are performance sensitive in many contexts. On the extreme
end, if we wanted to diagnose {intro.execution.unsequenced.modification} via a runtime check, the
check itself would be fairly inexpensive, but the compiler would have to identify all potential read
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operations that are not sequenced with respect to each given write operation and then insert checks
to identify if those operations are actually going to reference the same address.

2.3.4 Cost of non-local diagnosis

For UB that is not locally diagnosable (which is most of the UB in C++), we need to consider the
cost of the required additional instrumentation. To get an idea of that cost, we must nail down
exactly which additional properties that are not normally known from within the C++ abstract
machine would need to be tracked by such instrumentation. This tracking would need to happen at
run time throughout the entire program; checks relying on the tracked information would have to
be inserted for every runtime operation that may be affected by such UB. The full list is available
in Appendix A; we provide an overview below.
To diagnose all cases of UB in the memory safety categories of Initialization, Bounds, and Type
and Lifetime, instrumentation would have to track all the following properties:

— Provenance of all pointers and pointers-to-member

— For all storage, whether it has been allocated or freed

— For all storage, whether it has been initialised

— For all storage, whether it has been created such that it can hold implicit lifetime objects

— For all storage, the type of the object associated with it (if any), including whether it is const
or volatile

— For all objects, whether their lifetime has been started or ended

— For all objects, whether they are currently being constructed or destroyed

— The dynamic type of all non-polymorphic objects of class type

— For all references, whether they have been initialized

— For all addresses that point to functions, the type of the function

To diagnose UB in the Threading category, instrumentation would have to track, for all memory
accesses, from which threads that memory is accessed and when these accesses synchronise with
each other. Doing this exhaustively is not practically possible; however, instrumentation that is
capable of diagnosing a subset of cases exists in the form of sanitisers (TSan).
The non-locally-diagnosable UB in the Control Flow category concerns operations that are not
allowed during construction and destruction of objects with static or thread-local storage duration
({basic.start.main.exit.during.destruction} and {basic.start.term.use.after.destruction}). To diagnose
these, instrumentation would have to insert guards tracking whether such objects are currently
being constructed and destroyed.
Finally, to diagnose {dcl.fct.def. coroutine. resume.not. suspended} and {dcl.fct.def. corou-
tine.destroy.not.suspended} in the Coroutine category, instrumentation would have to track the
suspension state associated with every coroutine handle.
As we know from existing sanitisers, such instrumentation is expensive enough that it is almost
never affordable in production. If we were to add instrumentation covering all of the above, we
would remove vast swathes of UB from the language, but performance would worsen by an order of
magnitude, unless special hardware-acceleration or some other radically new technology for these
checks becomes available.
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Given the substantial overhead of such instrumentation in both runtime cost and additional memory
consumption, the cost of the actual checks themselves (whether a specific pointer is valid at a
specific time, etc.) is not particularly important for non-local diagnosis because the performance
penalty would be dominated by the instrumentation overhead.

2.4 Existence of replacement behaviour

For existing code that cannot be modified in-source, removing runtime UB requires redefining the
semantics of the affected C++ operations, for the cases where UB would occur today, to have
well-defined behaviour instead. A useful question is therefore: for which cases of UB is it actually
possible to specify such well-defined replacement behaviour in a meaningful way?
For the purposes of this analysis, we need to be careful with delineating what exactly we mean
by replacement behaviour. If it is possible to insert a runtime check guarding a particular case of
UB (e.g., a bounds check, a null pointer check), we can specify well-defined behaviour for the case
when this check fails (e.g., terminate the program, throw an exception) which guarantees that we
never actually execute the operation that would have runtime UB, thus avoiding it. However, that
does not mean giving well-defined behaviour to the operation itself. What we mean by replacement
behaviour is that, regardless of the existence of the check, continuing execution and evaluating the
operation no longer leads to runtime UB even if the check failed, or would have failed.
As we will discuss in more detail in Section 3, we can conceptually distinguish between two types of
replacement behaviour — refined and erroneous behaviour — depending on whether the replacement
behaviour is considered correct or incorrect (despite no longer being undefined). In any case, for
either type of replacement behaviour to actually happen, the compiler must be able to lay down the
necessary instructions at compile time. Simultaneously, as discussed in Section 2.3.1, in the vast
majority of cases core language UB is fundamentally not diagnosable at compile time, as whether
or not the UB will occur depends on runtime parameters. Replacement behaviour can therefore not
depend on knowing that an error occurred. For non-locally-diagnosable UB, replacement behaviour
also cannot depend on any additional instrumentation being present.
For this paper, we systematically identified all cases of core language UB for which either form of
replacement behaviour can be meaningfully defined. This section gives an overview; the full list
can be found in Appendix A. As we will see, for most cases of UB, replacement behaviour does not
exist, and if it does, it is often not cheap.
For UB in the Initialization category ({basic.indet.value}), replacement behaviour is sometimes
possible for built-in types: an operation that would currently return an indeterminate value can be
specified to return some value instead.
We could consider returning a specific value such as 0, or returning some unspecified value (as a
form of refined behaviour). However, doing so removes the ability for tools to recognise that a
program defect is present (see [P2754R0]). The most meaningful option is to make it return an
erroneous value (a form of erroneous behaviour). For variables with automatic storage duration,
this replacement behaviour is already part of C++26 as EB via [P2795R5] because for this case,
the replacement behaviour is particularly cheap. The same behaviour could also be employed for
dynamically allocated variables but at greater cost (see [P2723R1] Section 6 for discussion).
On the other hand, producing an erroneous value (instead of, for example, the value that happened
to be in memory where an object was incorrectly presumed to have been initialised) requires having
a point in time where a fallback value can be unconditionally placed in memory, such as when
passing the declaration of an automatic variable; there are cases where such a point cannot be
determined.
Further, we cannot in general define replacement behaviour for uninitialised variables of user-defined
type. Even if we could zero out all the underlying storage for user-defined types (or overwrite it
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with some other known bit pattern), doing so does not always produce, for that type, a valid value
that can be accessed without UB. (Consider a user-defined type that relies on a member pointer
always being dereferenceable.) Therefore, {basic.indet.value} does not have replacement behaviour
for the general case.
Practically none of the UB in the categories of Bounds and Type and Lifetime have any plausible
replacement behaviour. The only exception is {conv.lval.valid.representation}: if the bits in the
value representation of an object of built-in type are not valid for that type, the compiler could
instead coerce the value into an erroneous value.4 For example, in the code example given in the
C++ working paper,

bool f() {
bool b = true;
char c = 42;
memcpy(&b, &c, 1);
return b; // undefined behavior if 42 is not a valid value representation for bool

}

the UB could be replaced by well-defined behaviour by appropriately bit-masking every accessed
bool value (and considering the result erroneous if the bit-mask operation changed the value).
Similar mitigations could be put in place for other built-in types since the space of allowed bit
representations for values of those types, for the targeted platform, are known to the compiler. The
caveat is that such mitigations would potentially incur a significant performance overhead on many
simple operations that involve built-in types.
All UB in the Arithmetic category has the same possible replacement behaviour: if an arithmetic
operation would produce an inappropriate value, it can be coerced into some other value instead. We
could contemplate refined behaviour in the form of a concrete value (e.g., saturate or wraparound for
signed integer overflow, choose the closest valid value for invalid conversions) or erroneous behaviour
in the form of an erroneous value being produced. In either case, such replacement behaviour will
incur significant performance overhead on common arithmetic operations.
Defining replacement behaviour for UB in the Threading category ({intro.races.data}) is in principle
possible: we could make all primitive memory accesses implicitly atomic, as in the Java memory
model. The overhead incurred by such a model will heavily depend on the memory model of
the underlying hardware; on weakly-ordered platforms, such as ARM, it will be larger than on
strongly-ordered platforms such as x86. Note that while such replacement behaviour is well-defined,
it still fails to prevent many real bugs that result from incorrect application of concurrency since
user-defined types with multiple members can still be easily observed with inconsistent (“torn”)
states if no proper synchronisation is performed.
The replacement behaviour for UB in the Sequencing category ({intro.execution.unsequenced.modifica-
tion}) is much more straightforward: we can define that the unsequenced operations happen in
some unspecified order. This behaviour can still have performance overhead in the form of losing
optimisation opportunities, but such overhead will likely be manageable.
The replacement behaviour for UB in the Assumption category ({dcl.attr.assume.false}) is trivial:
just ignore the assumption, instead of optimising based on it. The performance overhead is limited to
losing any optimisation opportunities from placing the assumption there. Of course, this mitigation
makes the assumption itself completely useless. We will discuss this case in more detail in Section 4.4.
Finally, we can define partial replacement behaviour for one cases of UB in the Control Flow category
({stmt.return.flow.off}) and an analogous case of UB in the Coroutines category ({stmt.return.
coroutine.flow.off}): when the function or coroutine would return a value of built-in type, we can
define that flowing off the end returns an erroneous value. This case is effectively handled in the

4This property of {conv.lval.valid.representation} is a potential argument for placing this case of UB into the
Arithmetic category instead of the Type and Lifetime category as we did here.
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Figure 3: Existence of well-defined replacement behaviour for explicit core language UB

same way as {basic.indet.value}; again, no plausible replacement behaviour exists for user-defined
return types in the general case.
Overall, as shown in Figure 3, we can define meaningful replacement behaviour for only 16 cases of
UB (20% of all cases). In addition, in 3 cases, this is only possible when the operation in question
produces a value of built-in type. Unconditional replacement behaviour exists for only 13 cases of
UB (16.25% of all cases). In all of these cases, the replacement behaviour consists of erroneous
behaviour; in most cases, removing the UB in this manner introduces significant runtime cost.

3 Strategy

Having performed an in-depth analysis of all explicit core language UB in the C++ working paper
in Section 2, we can use the results of this analysis to develop a holistic strategy for systematically
detecting, mitigating, and ultimately removing UB across the entire C++ programming language
specification. Our goal is for this strategy to guide the development of the core language UB white
paper [P3656R1] as well as future versions of Standard C++.
The outline of this strategy is illustrated in Figure 4, an updated version of the diagram on slide 53
in [P3754R0] (a.k.a. the “magic slide”) that we presented to EWG in Sofia and that EWG approved
as a basis for the core language UB white paper.

3.1 Overview

The proposed strategy is composed of seven basic tools that are orthogonal to each other: feature
removal, refined behaviour, erroneous behaviour, insertion of runtime checks, language subsetting,
the introduction of annotations, and the introduction of entirely new language features. In section 3.3,
we describe each tool and discuss which cases of UB identified in this paper it can be applied to.
Three of these tools (refined behaviour, erroneous behaviour, and runtime checks) have the interesting
property that they are applicable even in cases where the source code cannot be modified for whatever
reason, and thus can be used to remove UB from existing legacy C++ programs.
Further, in order to be usable effectively in practice, three of these tools (erroneous behaviour,
runtime checks, and language subsetting) need to be configurable by the user, either via compiler
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Figure 4: Overview of the proposed holistic strategy for removing UB from the C++ language:
seven orthogonal tools plus Profiles as a higher-level feature specified on top of these tools. The red
rectangle in the centre illustrates the scope of the proposal in Sections 4 and 5 of this paper.

options or directly in source. This design space is discussed in more detail in Section 3.4. Profiles,
another proposed feature currently in development, could be used to group together particularly
useful configuration presets across different tools in order to provide desirable sets of guarantees.

3.2 Scope

Our proposed strategy for removal of explicit core language UB focuses on tools that can be portably
specified within the C++ abstract machine. We therefore do not consider, in this paper, efforts
that operate largely outside of the C++ abstract machine and the specification tools afforded by
the C++ Standard. One noteworthy effort that falls into the latter category is [P3627R0], which
proposes a profile for preventing remote code execution (RCE) by employing implementation-defined
techniques such as stack isolation and address space layout randomisation (ASLR).
Further, as discussed in [P3700R0], making C++ “safe”5 consists of more than mitigating explicit
core language UB. We already touched upon implicit UB and language UB in Section 2.1.3. Beyond
those, there are many other classes of bugs unrelated to UB that can compromise the functional
safety, security, and correctness of a C++ program. Such bugs include resource leaks, termination
errors, and logic errors.
While there are tools available to address these classes of bugs (for example, logic errors can often
be avoided by using strongly typed utilities such as [P3045R6]), and there is interesting ongoing
work in those areas, they are out of scope for the strategy proposed here. At least for now, we
explicitly target the core language UB white paper [P3656R1] and therefore limit the scope of the
strategy described here to explicit core language UB.

5In this paper, we avoid unqualified uses of the terms “safe” and “safety” because of their ambiguity. As discussed
in [P3376R0], [P3500R1], and [P3578R0], it is critically important to distinguish between conflicting usages of those
terms, such as functional safety, language safety, memory safety, etc.
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3.3 Tools

3.3.1 Feature removal

The first and most blunt tool in our toolbox is to make a C++ operation that would otherwise lead
to runtime UB unconditionally ill-formed, i.e., to remove it from the language — either immediately
or via a deprecate-remove cycle spanning multiple releases of the C++ Standard.
However, we generally do not consider it acceptable to break an existing, correct program by using
this tool (or any of the other proposed tools). If we want to strictly follow this principle, usage of
the removal tool would have to be restricted to cases where we can determine at compile time that
the given operation will definitely have UB when executed.6 As discussed above in Section 2.3.1,
there is not a single case of UB in our list where such a determination can generally be made.
A slightly less conservative approach is to unconditionally remove a feature if we can determine at
compile time that it always either causes UB or does nothing useful. This removal can happen in a
single step; alternatively, a language construct can first be deprecated, and then removed in a later
Standard. Historically, the committee has been very wary of acting on such deprecations if there is
a belief that the code broken by a removal will be frequent, especially if the downside of the bad
construct is not generally catastrophic. In general, even breaking incorrect code such that it would
fail to compile can make the cost of migrating a large codebase to a new C++ standard unbearably
high if the problematic code is ubiquitous and its negative impact often benign.
A current example of using this tool is the proposal [P3424R0]. When a deallocation function
(i.e., a user-defined delete operator) exits via an exception, the behaviour is currently undefined.
Therefore, a throwing or potentially-throwing exception specification on such a deallocation function
always either causes UB (if an exception ends up being thrown from it) or does nothing useful (if no
such exception is ever being thrown). The paper proposes to deprecate deallocation functions with
an explicit non-throwing noexcept-specifier and making deallocation functions with a potentially-
throwing noexcept-specifier ill-formed.
We are currently not aware of any other areas in the C++ Standard where this tool could be
successfully applied, but it is worth keeping it in our toolbox in case such areas will be discovered in
the future, and committing to the slow but effective process of deprecating prior to removal when
the end result is meaningfully improved.

3.3.2 Refined behaviour

Some cases of UB can be addressed by unconditionally changing their runtime semantics to some
well-defined behaviour. We have extensively used this option in the past to gradually remove
UB from the language; examples of successfully applying this tool in the C++ Standard are the
introduction of implicit lifetime types in C++20 [P0593R6] which gave defined behaviour to certain
situations when a pointer to raw allocated memory is being cast to a pointer of object type, as
well as the range-based for loop fix in C++23 [P2644R1], which extended the lifetime of certain
temporary objects across the duration of executing the loop, thus avoiding UB due to dangling
references.
We expect that there are relatively few remaining situations in the C++ working paper where this
tool can be used effectively. To avoid creating language dialects, refined behaviour needs to be
unconditional. For example, GCC has an option -fwrapv which turns signed integer overflow into
wraparound. We cannot make that the new behaviour of signed integer addition unconditionally

6One could argue that even then, the program is not necessarily incorrect unless that operation actually ends up
being executed at run time. This is not something a C++ compiler can reason about unless the operation in question
is either lexically inside main or is provably being called from main.
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for two reasons. First, the associated runtime overhead would be unacceptable for many users;
and second, in many cases the result will still be incorrect but this new behaviour would mask the
bug, making it more difficult for users and tools to diagnose it. We also cannot have two different
language dialects where the same expression means two different things (overflow or wraparound).
In such cases, another tool is more appropriate — erroneous behaviour (see next section).

3.3.3 Erroneous behaviour

Some cases of UB can be addressed by replacing it with well-defined replacement behaviour, but
specifying that replacement behaviour as erroneous, that is, well-defined but still considered incorrect.
The purpose of introducing erroneous behaviour is to not remove the bug, and to leave tools with
the possibility of diagnosing it, but at the same time to place a limit on the program behaviour in
the face of the bug and in particular to prevent the bug from creating a security vulnerability.
Unlike refined behaviour, it is acceptable to specify erroneous behaviour in a way that is relatively
vague (e.g., return some erroneous value rather than return a specific value), as it represents an
incorrect program that cannot be relied on. For the same reason, it makes sense to make erroneous
behaviour configurable (see Section 3.4). Indeed, the definition of erroneous behaviour adopted for
C++26 via [P2795R5] permits different possible behaviours.
Together with that definition, we also adopted one instance of erroneous behaviour for C++26:
producing an erroneous value (instead of exhibiting undefined behaviour) when reading a default-
initialised automatic variable of arithmetic type [P2795R5]. Beyond that one instance, [P2795R5]
contains a section with a tentative list of other cases of UB that could be replaced with erroneous
behaviour, and [P2973R0] proposes to do so for erroneous behaviour for missing return from
assignment.
In this paper, we go further and propose to introduce erroneous behaviour for all cases for which
we identified in Section 2.4 that some kind of plausible well-defined replacement behaviour exists —
13 cases unconditionally plus 3 cases for built-in types only. In Sections 4 and 5 of this paper, we
provide a concrete specification for how to perform the necessary replacements in the C++ working
paper; the full list of proposed erroneous behaviours is provided in Appendix A.

3.3.4 Runtime checks

As we saw in Section 2.3, the large majority of UB (76 cases out of 80) can in principle be diagnosed
by inserting and performing a suitable runtime check. The check verifies the conditions necessary for
the operation in question to have well-defined behaviour at run time. It also acts as a guard against
UB: if the check fails, the program can be terminated, thus preventing the undefined behaviour
from occurring.
While such runtime checks invariably add runtime overhead, they are very effective at both diagnosing
bugs and removing security vulnerabilities. In Sections 4 and 5 of this paper, we propose a generic
framework for systematically adding runtime checks to C++ core language constructs via implicit
contract assertions.
Implicitly generated runtime checks are widely deployed in the field today. Checks that can be
generated locally by the compiler are often provided via compiler flags, for example the -ftrapv
flag in GCC that checks for signed integer overflow and terminates the program on failure. Checks
that require additional instrumentation to perform are provided by various flavours of sanitisers
such as ASan, UBSan, etc.
In order to be widely deployable, runtime checks — whether they are user-authored assertions,
compiler-generated checks guarding against UB, or any other form of correctness check that is
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redundant in a correct program and has non-negligible overhead — need to be configurable; this is
discussed in more detail in Section 3.4.

3.3.5 Language subsetting

While practically no C++ operation can, in the general case, be proven at compile time to exhibit
UB at run time, there are a number of operations that are particularly prone to exhibiting UB at
run time when not used correctly; such operations are colloquially known as “unsafe”. Examples of
such operations are C-style casts (which can silently fall back to reinterpret_cast) and pointer
arithmetics. Compilers and linters already provide options to statically flag the usage of such
features as a potential source of bugs. We could go one step further and make such constructs
ill-formed, particularly if there are “safer” alternative features that provide equivalent functionality.
However, in such cases, we cannot make these constructs unconditionally ill-formed, as this would
break a significant number of correct C++ programs deployed in the field. Therefore, we need
to use a tool different from simple removal (Section 3.3.1). The required tool is called language
subsetting: specifying named subsets of the C++ language that do not contain the “unsafe” features.
This tool can be very effective for avoiding UB in codebases that can be modernised or are being
newly written. However, because much of existing C++ code cannot be changed easily, subsetting
needs to be opt-in. Thus, it is the third tool in our toolbox that needs to be configurable by the
user (see Section 3.4).
While we do not propose a concrete specification for language subsetting in this paper, such a
specification is being developed in [P3716R0]. As described in that paper, a number of principles
need to be considered for designing this tool correctly: subsetting the language should never be
allowed to alter the semantics of well-formed code, subsets must always combine orthogonally, and
so forth.

3.3.6 Annotations

Some cases of UB can be mitigated by language-level annotations that provide additional information
that can be propagated across the interface boundaries of a C++ program. Such information can
turn cases of UB that are not locally diagnosable (which is the majority of UB today, see Section 2.3)
into cases that are locally diagnosable.
An example of a standard proposal in this area are the lifetime annotations proposed in [P2771R1].
An example of such annotations deployed in the field as non-standard vendor extensions is the
__counted_by attribute introduced in Clang 18. This attribute allows the user to propagate
information about array bounds to enable automatic out-of-bounds checks. Such attributes are
a great example for how different tools that form the proposed strategy, while being usable
independently from each other, can also work together to help each other cover even more cases of
UB.

3.3.7 New features

Finally, some cases of UB can be addressed by providing entirely new language features that
provide functionality equivalent to that of existing “unsafe” features but without the possibility
of UB. Examples of such proposals are std::saturate_cast [P0543R3] (approved for C++26),
enabling conversion from one integer type to another without the danger of UB due to values not
representable in the target type, and borrow checking [P3390R0], a memory-safe alternative to
pointers and references based on the Rust borrow checker.
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Note that combining the new features tool with the language subsetting tool is equivalent to the
approach encouraged by Bjarne Stroustrup, “superset then subset” (see [P3650R0] and references
therein).

3.4 Configuration

Three of the seven tools discussed above need to be configurable by the user in order to be usable in
practice: runtime checks, erroneous behaviour, and language subsetting.
Runtime checks with non-negligible overhead, in order to be widely deployable, necessarily need to
be configurable in several ways; this is discussed in much detail in [P2899R1] and references therein.
As we saw in Section 2.3, the majority of UB in C++ today is not locally diagnosable and requires
expensive sanitiser-like instrumentation to perform the checks. Even for those 18 cases of UB that
are locally diagnosable and do not require additional instrumentation to insert runtime checks,
in most cases the checks themselves will have a significant — and in some cases, unacceptable —
runtime overhead. Since correctness checks serve no purpose in a program known to be correct —
or for use cases where correctness is not the overriding concern — there needs to be an option to
turn the checks off to avoid the overhead. This option is offered by every assertion facility that we
know of.
Further, the behaviour of a failed check needs to be configurable as well. In some scenarios, the most
appropriate behaviour following a failed check is immediate termination; in others, termination is
unacceptable even in the face of bugs. In some scenarios, it is desirable to have detailed diagnostics
describing the failure; in others, the overhead of generating such diagnostics is undesirable.
Similar reasons apply to erroneous behaviour: in practically all cases, its introduction comes with
non-negligible — and in some cases, even very large — performance overhead. Therefore, to avoid
unacceptable performance regressions in existing, correct C++ code, we must offer an escape hatch
that reverts to today’s “unsafe” semantics. One such escape hatch is the [[indeterminate]]
attribute for uninitialised values. Such a syntactic escape hatch is not applicable for all cases; we
propose a generic escape hatch for erroneous behaviour that does not require syntax in Section 4.4.
Finally, as already discussed in Section 3.3.5, language subsetting needs to be opt-in in order to
avoid breaking existing, correct C++ programs.
For all these features, we need to clearly specify the available configuration options and the mecha-
nisms available for the user to select these options at different levels of granularity. For erroneous
behaviour and runtime checks, we accomplish this via leveraging contract evaluation semantics (see
Section 4); in-source configuration of these evaluation semantics at arbitrary granularity can be
achieved with Labels (see Section 6). For subsetting, the design of suitable configuration mechanisms
are not yet well understood; we expect future papers to make progress in this area.
Another proposed feature in this space is Profiles. We can distinguish between individual profiles —
collections of rules that aim to provide a guarantee that a C++ program exhibit certain qualities
(e.g., [P3081R2], [P3038R0], [P3402R3], and [P3446R0]) — and the Profiles framework [P3589R2],
a set of mechanisms to enable and disable a named profile at various levels of granularity.
There is no consensus yet on how Profiles relate to and compose with other proposals such as the
holistic strategy for removing UB from C++ proposed here. That said, most Profiles proposed
so far consist of some combination of specifying subsets of the language (Section 3.3.5), defining
replacement behaviour for UB (Section 3.3.3), and/or introducing runtime checks guarding against
UB (Section 3.3.4). It therefore seems logical to define Profiles as a higher-level feature building on
top of these three basic tools (see Figure 4). Given that these three features are configurable, a
concrete profile could be defined as being a named configuration preset for these features.
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For example, we may define a language subset that excludes pointer arithmetics, and a set of implicit
runtime checks for array bounds checking; further, the user may define explicit contract assertions
on their own functions and declare them as bounds checks. We can then define a “bounds” profile
whose purpose it is to allow the user to opt into all three of these features at once. Such profiles
can be tailored to particular problem areas of the language, such as type, bounds, or arithmetic
safety profiles, or to particular regulatory requirements, such as a MISRA profile. If we pursue
such a “multi-level” strategy, we must make it clear which feature is responsible for providing the
user-facing configuration mechanism for which tool (see also Section 6).

4 Proposed design

In this section, we propose a framework that systematically introduces runtime checks and well-
defined replacement behaviour — two of the tools that form the strategy presented in Section 3 —
to the C++ Standard. Runtime checks guarding against core language UB are realised as implicit
contract assertions, leveraging the foundation laid by Contracts as adopted for C++26; in addition,
replacement behaviour is added instead of UB wherever meaningfully possible. Both features are
controlled and configured via the evaluation semantics introduced by [P2900R14].

4.1 Defining implicit contract assertions

The initial subset of Contracts functionality added to C++26 via [P2900R14] contains three kinds of
contract assertions: pre, post, and contract_assert. Since these contract assertions are specified
by the user with explicit syntax, in this paper we call them explicit contract assertions. For example,
the author of a vector-like class can add a precondition assertion to its subscript operator to guard
against out-of-bounds access:

T& operator[] (size_t index)
pre (index < size());

The precondition assertion pre (index < size()) can be evaluated with a checked assertion
(observe, enforce, or quick-enforce), which allows the user to opt into defined behaviour — program
termination and/or a call to a contract-violation handler — when their vector is accessed out of
bounds. Further, the contract-violation handler can be replaced by the user, allowing them to query
information about the error and implement their own mitigation strategy. Alternatively, the user
can opt out of the runtime check by choosing an unchecked evaluation semantic (ignore) if their use
case requires it.
To implement runtime checks that guard against core language UB, we propose to introduce implicit
contract assertions, which are added implicitly by the implementation, rather than explicitly by the
user. In all other aspects, they work exactly the same as explicit contract assertions.
As an example, let us consider indexing into a plain array rather than a user-defined, vector-like
class. Let us further assume for the purpose of this example that the size N of this array is statically
known:

int main() {
int a[10] = { 1, 1, 2, 3, 5 };
std::size_t i;
std::cin >> i;
return a[i];

}

In C++ today, the behaviour of this program is undefined if the value of i is not smaller than 10
({expr.add.out.of.bounds}). However, instead of saying that out-of-bounds access into a plain array
is UB, we can say that access into a plain array has an implicit precondition assertion that the
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index is not out of bounds. Then, the program behaves as-if the compiler had wrapped every raw
array subscript operation for which it statically knows the array bound N into an inline function
with a precondition assertion:

template <typename T, std::size_t N>
T& __index_into_array(T (&a)[N], std::size_t i)
pre (i < N) {

return *(&a + i);
}

Other than being an implicit precondition assertion automatically generated by the compiler,
pre (i < N) behaves the same as an explicit precondition assertion. That is, the user has the
same choice of four evaluation semantics (ignore, observe, enforce, or quick-enforce) to specify the
desired behaviour depending on the tradeoffs that are most suitable for their application. When an
out-of-bounds access is detected and the semantic is observe or enforce, the same contract-violation
handler is called that is used for explicit contract assertions.

4.2 Applying implicit contract assertions

Having specified precisely what an implicit contract assertion is and how it behaves, we can now
apply that specification to every case of UB that is — at least in principle — checkable at run time.
As we saw in Section 2, this is true for 76 cases, that is, 95% of all identified cases of explicit core
language UB in C++.
This feat can be accomplished by applying the following transformation across the entire C++
Standard: change every occurrence of “if A is not true, operation X has undefined behaviour” to
“operation X has an implicit precondition that A is true; continuing execution past a violation of
this precondition is undefined behaviour”.
Note that the choice of evaluation semantic is implementation-defined; therefore, there are no
restrictions on the evaluation semantics of any of these 76 newly introduced implicit contract
assertions beyond the requirement that an implementation document which semantics they support
for which implicit contract assertions and which selection mechanism they offer. These options, and
the choice of the default, depend on the particular case.
Note that no implementation is actually required to implement these checks: a valid implemen-
tation choice is to make all 76 cases always have the ignore semantic. It follows that all existing
implementations of C++ are already conforming with this wording transformation.
Many of the other possible choices map directly to existing compiler and sanitiser options. For
example, for signed integer overflow, the GCC flag -ftrapw is a conforming implementation of the
quick-enforce semantic; sanitisers like ASan and UBSan are conforming implementations of the
enforce semantic for those cases of UB that they identify. These tools can continue to work in the
way they do; however, bringing them into the scope of the C++ Standard as proposed here has
many benefits.
One benefit is that implementations of such runtime checks will be able to leverage a shared paradigm
and shared terminology for reasoning about incorrect programs. In addition, once we have Labels
(see Section 6), for each case of UB guarded by an implicit contract assertion, implementations and
users can refer to each case and each category using portable standard names. Another benefit
is that they will be able to integrate with the same unified standard contract-violation handling
facility, significantly increasing the ability to deploy software to production systems that is hardened
against entire categories of potential bugs.
This is significant because today, the integration between such tools and user code tends to be
poor. For example, all Clang sanitisers have a callback, __sanitizer_set_death_callback, but
this callback takes no arguments. It can be used to inform us that the process is about to terminate,
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but it does not provide an API to programmatically query what happened or where. ASan has a
slightly more sophisticated callback, __asan_set_error_report_callback, which takes a single
argument of type const char*. This argument provides a string that contains the generated error
report. With our proposal, all these tools can instead hook into the standard contract-violation-
handling API. This API provides not only a user callback in the form of a program-wide replaceable
contract-violation handler, but also programmatically accessible information about the defect via the
contract_violation object passed into the contract-violation handler. This more comprehensive
API can serve as a uniform, standard callback mechanism for sanitisers and other tools.
Further, coding guidelines can place restrictions on which evaluation semantics are permitted for
which kinds of implicit contract assertions; our proposal provides the necessary standard terminology
for this. For example, in a safety-critical context, a set of coding guidelines may prescribe that
unchecked semantics may not be used for certain kinds of implicit contract assertions. Further, we
could add a syntactic way to render configurations not conforming with this requirement ill-formed
(see also Section 6.3). Thus, the usage of toolchains and compiler options that could lead to the
program exhibiting a particular kind of UB could be prevented by construction. Of course, this
option requires alternatives to exist that offer checked semantics for the associated implicit contract
assertions with acceptable performance tradeoffs.
Finally, applying implicit contract assertions throughout the language in the proposed fashion
addresses another much-discussed issue: explicit contract assertions in C++26, as specified in
[P2900R14], can themselves have UB when checked because explicit contract-assertion predicates
are boolean expressions and thus follow the usual rules for evaluating expressions in C++. This
property has been repeatedly raised as a concern (see [P2680R1], [P3173R0], [P3285R0], and
[P3362R0]).
The approach suggested in those papers is to constrain explicit contract-assertion predicates to
expressions that can be statically proven to have no UB. However, this approach does not seem to
be specifiable, implementable, or usable in practice (see [P3376R0], [P3386R0], and [P3499R1]) and
has repeatedly been rejected by SG21, SG23, and EWG. What does work is to specify a framework
for mitigating UB across the entire language, as proposed here. Once we have this framework, it
will then automatically also apply to the evaluation of explicit contract assertions.

4.3 Defining replacement behaviour

The next part of our proposal is to introduce well-defined replacement behaviour for all 16 cases of
core language UB for which such replacement behaviour exists (see Section 2.4). We accomplish
this by modifying the specification of each affected operation as follows. If a condition that would
have previously made the behaviour of the operation undefined (i.e., an implicit contract violation)
occurs, and control flow continues past that violation (because the associated check was evaluated
with the ignore or observe semantic), then the behaviour of the operation is defined to be that
replacement behaviour instead of UB. Consider the following example:

int g(int i) {
return i + 100;

}

This function returns the result of adding two signed integers, which may or may not exhibit UB
depending on whether the addition will overflow — which is unknown at compile time as one of the
integers in question is a runtime parameter of the function.
This program now behaves as-if the compiler performed every signed integer addition with a built-in
operator+ that is guarded by an implicit precondition assertion against overflow, and whose
implicitly defined function body always has well-defined behaviour as follows:
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int operator+(int a, int b)
pre ((b >= 0 && a <= INT_MAX - b) || (b < 0 && a >= INT_MIN - b)) {

// return the result of the addition or an erroneous value
}

The fact that this implicit function body always has well-defined behaviour is the major difference
between cases where meaningful replacement behaviour exists (such as this one), and cases where it
does not (such as array subscripting).
The wording transformation required to implement the above replacement across the entire C++
Standard is to change every occurrence of “if A is not true, operation X has undefined behaviour”
to “operation X has an implicit precondition that A is true; if this precondition is violated, the
behaviour is <replacement behaviour>”.
In all 16 cases identified in this paper, this replacement behaviour will be some form of erroneous
behaviour. For data races, the erroneous behaviour consists of performing all primitive memory
accesses atomically in some unspecified order; for unsequenced operations, it consists of performing
the operations in question in sone unspecified order; for assumptions, it consists of ignoring the
assumption; for all remaining cases, it consists of returning an erroneous value (which is only possible
in cases where the operation in question returns a value of built-in type).

4.4 Providing an escape hatch

As discussed in Section 2.4, if we apply the transformation describe in the previous section and
do nothing further, we introduce significant — and in many cases, unacceptable — performance
regressions to existing code. Therefore, we must offer an escape hatch to users that reverts to
today’s semantics: a violation of the implicit precondition leads to runtime UB.
For erroneous behaviour that arises from reading an indeterminate value, [P2795R5] introduced a
semantic escape hatch specific for this case: the [[indeterminate]] attribute. However, in many
cases, such a syntactic escape hatch is simply nonviable. Consider, for example, arbitrary arithmetic
expressions where some integer operations may overflow; where would we place a syntactic escape
hatch for a certain arithmetic operation within that expression? Instead, we need a generic escape
hatch that works for all cases and does not require syntax.
Further, this escape hatch needs to be flexible enough that implementations can choose whether or
not it should be engaged by default. Engaging the escape hatch by default seems counterintuitive
because doing so would fail to provide a “safe default”; however, in some cases, it will be necessary
as defaulting to the well-defined replacement behaviour and silently incurring the associated runtime
overhead would be too user-hostile.
As it turns out, such a generic, nonsyntactic escape hatch that reverts to today’s semantics — a
violation of the implicit precondition leads to UB — is nothing other than a new, fifth evaluation
semantic in addition to the four existing ones (ignore, observe, enforce, quick-enforce) that can be
applied to the evaluation of the affected implicit contract assertions. This evaluation semantic is
called the assume semantic.
Just like the ignore semantic, the assume semantic is a nonchecking semantic; i.e., its predicate is
not evaluated. Further, just like with the ignore semantic, if the predicate evaluates to true at the
point where the contract assertion is placed, the assume semantic has no effect; i.e., the program
behaves exactly as if the contract assertion were not there. However, unlike the ignore semantic, if
the predicate does not evaluate to true, the behaviour is undefined. This semantic allows compilers
to optimise on the assumption that the predicate is true, just like they do today for those cases of
core language UB.
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With this definition, we can map all five evaluation semantics for implicit contract assertions that
guard against core language UB to concrete behaviours. For example, for signed integer overflow,
this mapping is as follows:

— The GCC compiler option -ftrapv, which aborts the program on signed integer overflow, is a
conforming implementation of the quick_enforce semantic.

— A sanitiser that detects signed integer overflow and prints a diagnostic is a conforming
implementation of the enforce or observe semantic (depending on whether the process is
terminated or execution continues after printing the diagnostic).

— The GCC compiler option -fwrapv, which implements wraparound for signed integer addition
using twos-complement representation, is a conforming implementation of the ignore semantic,
silently executing well-defined replacement behaviour.

— The default behaviour in C++ today, which is to assume that signed integer addition never
overflows and to optimise based on this assumption when the appropriate optimisation flags
are selected by the user, is a conforming implementation of the assume semantic.

Just like with all other evaluation semantics, the mechanism by which the assume semantic is selected
is implementation-defined and will, in practice, be accomplished by vendor-provided compiler flags.
In addition, Labels (see Section 6.2) will provide the ability to choose and constrain the evaluation
semantic in code with arbitrary granularity.
Importantly, in light of the sustained opposition in EWG to allowing the assume semantic for explicit
contract assertions (pre, post, and contract_assert), we propose that the assume semantic is
allowed for only implicit contract assertions. Explicit contract assertions may not be evaluated with
the assume semantic (see also Section 6.3).
This restriction is important because, for explicit contract assertions, the assume semantic has the
potential to silently add UB to an otherwise correct program if used incorrectly. This risk does not
exist for implicit contract assertions since they are generated by the compiler; in all of those cases,
the assume semantic is merely a backwards-compatibility tool to achieve the same semantics that
those operations already have in C++ today.
Note that this set of five evaluation semantics has the interesting property that it provides a single
mechanism to configure two different tools in our toolbox simultaneously: the replacement behaviour
as well as the associated implicit contract assertion.

4.5 Interaction with noexcept

Consider:
bool f() {

int x;
return noexcept(x + 1);

}

In C++ today, calling f() has defined behaviour (the indeterminate value is never accessed; the
operand of noexcept is an unevaluated operand) and returns true (adding two integers can never
throw an exception unless the behaviour is undefined). If we want to avoid breaking changes to the
existing language, the result of the noexcept operator must remain the same with this proposal.
However, since x has an erroneous value, evaluating x + 1 may call the contract violation handler,
which in turn may throw an exception. With our proposal, it is therefore no longer true that
evaluating the core language expression x + 1 can never throw an exception unless UB occurs due
to signed integer overflow.
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A detailed discussion of this problem can be found in [P3541R1]. Fundamentally, in order to address
this problem, we need to choose between the following three options: either accept the breaking
change to the noexcept operator, or do not allow throwing violation handlers for implicit contract
assertions,7 or redefine the meaning of the noexcept operator to be “can never throw an exception
unless there is a contract violation”.
SG21 discussed this problem at great length. The first option introduces unacceptable breaking
changes to existing C++ programs. The second option precludes unwinding the stack in response
to a contract violation, which is not expected to be a very common strategy, but has important use
cases (see [P3318R0]). SG21 therefore concluded that the only acceptable solution is the third one.
For the proposal in this paper, we follow the SG21 consensus. It is therefore possible for an implicit
contract assertion to call a throwing contract-violation handler when violated, and for the evaluation
of the expression to exit via that exception, even if the noexcept operator returns true for that
expression.

4.6 Extending the library API

To give the user a way to programmatically distinguish explicit and implicit contract assertions
in the contract-violation handler, we propose to add a new enum value, implicit, to the enum
assertion_kind. We simply append the new enumerator to the existing ones, which gives it the
numerical value 4, without attaching any particular meaning to that numerical value.
Alternatively, we could define its numerical value to be 0 since that value is not yet taken; however,
we prefer to avoid using 0 and thus to retain the ability to detect the case in which the enum has
not been explicitly initialised with a valid value.8

No other changes to the library API for contract-violation handling are necessary. In particular,
unlike earlier revisions of this paper and unlike [P3081R1], which adopted its library API from those
earlier revisions, we no longer propose to add new enumerators to the enumeration detection_mode
to encode the category of error (Initialization, Bounds, and so on); instead, this encoding can be
accomplished more effectively and flexibly via Labels (see Section 6.1).
Further, we propose no changes to the specification of comment() and location(). C++26 non-
normatively recommends that these functions return a textual representation of the expression that
triggered the contract violation and the source location of the contract violation, respectively. While
returning such a representation is, in principle, possible for violations of implicit contract assertions,
generating a textual representation for every expression in the program that could lead to UB
is likely to cause an unacceptable amount of code bloat. However, generating some other string
that may help us identify the problem, such as the diagnostic message already printed by existing
sanitisers, is equally conforming, as is simply returning an empty string and a default-constructed
source location if no information is available or if the information cannot be made programmatically
accessible in the contract-violation handler (for example, because it is located in a separate debug
information file).
Finally, we do not propose a separate contract-violation handler for implicit contract assertions.
Having a single, program-wide handler for all contract violations is a central aspect of the [P2900R14]
design. By standardising on a central reporting mechanism, we clearly separate the responsibility
for reporting from the responsibility of knowing all the different mechanisms within a program by
which a bug might be detected. For example, the user might want to hard-code a particular form of

7As a variation of this option, [P3577R0] proposes that the default contract-violation handler should be normatively
prohibited from exiting via an exception, however a user-defined contract-violation handler is still free to do so.
However, this paper did not get consensus in SG21 or EWG.

8See also [P3227R0], which was adopted into [P2900R14] and made the same argument for adding new enumerators
to the enumeration evaluation_semantic.
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termination or to use a particular logger. Forcing the user to repeat these things in multiple places
is poor design. A user who wishes to use a different handler for implicit contract assertions can
always branch on the assertion_kind in the global contract-violation handler and dispatch to a
custom handler from there.

5 Proposed wording

The proposed wording is relative to the current C++ working paper, [N5008].
Modify [basic.contract.general] as follows:

Contract assertions allow the programmer to specify properties of the state of the program
that are expected to hold at certain points during execution. Explicit cContract asser-
tions are introduced by precondition-specifiers, postcondition-specifiers ([dcl.contract.func]),
and assertion-statements ([stmt.contract.assert]). Implicit contract assertions are applied to
operations by the implementation.
Each contract assertion has a predicate, which is an expression of type bool. [ Note: The
value of the predicate is used to identify program states that are expected. If it is determined
during program execution that the predicate does not evaluate to true, a contract violation
occurs. A contract violation is always the consequence of incorrect program code. — end
note ]

Modify [basic.contract.eval] as follows:

An evaluation of a contract assertion uses one of the following fivefour evaluation semantics:
assume, ignore, observe, enforce, or quick-enforce. Observe, enforce, and quick-enforce are
checking semantics; enforce and quick-enforce are terminating semantics.
It is implementation-defined which evaluation semantic is used for any given evaluation of a
contract assertion. Explicit contract assertions are never evaluated with the assume semantic.
[...]
The evaluation of a contract assertion using the ignore or assume semantic has no effect. If the
semantic is assume and the predicate would not evaluate to true, evaluation of the contract
assertion has runtime undefined behaviour.

Add a new section, [basic.contract.implicit] after [basic.contract.eval]:

A built-in operation O may have an implicit precondition assertion C applied to it. If so,
the evaluation of C is sequenced before the evaluation of O and after the evaluation of all
operands of O.
A built-in operation O may have an implicit postcondition assertion C applied to it. If so,
the evaluation of C is sequenced after the evaluation of O.

Modify [except.spec] as follows:

An expression E is potentially-throwing if [...] or any of the immediate subexpressions of E is
potentially-throwing. [Note: The evaluation of an expression that is not potentially-throwing
may nevertheless exit via an exception if, as part of that evaluation, the violation of an
implicit contract assertion ([basic.contract.general]) causes a call to the contract-violation
handler ([basic.contract.handler]) and that handler exits via an exception. — end note]

Modify [contracts.syn] as follows:
enum class assertion_kind : unspecified {

pre = 1,
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post = 2,
assert = 3,
implicit = 4

};

Modify [support.contract.enum] as follows:

Name Meaning
pre A precondition assertion
post A postcondition assertion
assert An assertion-statement
implicit An implicit contract assertion

Modify all cases of UB checkable at run time with replacement behaviour, as listed in Appendix A,
according to the following pattern.

— Example [expr.expr.eval]:

If during the evaluation of an expression, the result is not mathematically defined or not
in the range of representable values for its type, the behavior is undefined.Evaluation of an
expression has an implicit postcondition assertion that the result is mathematically defined
and in the range of representable values for its type; if this precondition assertion is violated,
the result is an erroneous value.

— Example [conv.rank]:

The value computations of the operands of an operator are sequenced before the value
computation of the result of the operator. The behavior is undefined ifThere is an implicit
contract assertion that ano side effect on a memory location ([intro.memory]) or starting or
ending the lifetime of an object in a memory location is unsequenced relative to another side
effect on the same memory location, starting or ending the lifetime of an object occupying
storage that overlaps with the memory location, or a value computation using the value of any
object in the same memory location, and the two evaluations are not potentially concurrent
([intro.multithread]); if this precondition assertion is violated, the value computations are
sequenced in an unspecified order.

Modify all cases of UB checkable at run time without replacement behaviour, as listed in Appendix A,
according to the following pattern.

— Example [basic.stc.dynamic.allocation]:

The effect of iIndirecting through a pointer has an implicit precondition assertion that the
pointer was not returned from a request for zero size; continuing execution past a violation
of this precondition assertion is undefined.

— Example [class.cdtor]:

For an object with a non-trivial destructor, referring to any non-static member or base class of
the object has an implicit precondition assertion that the destructor has not yet finishedafter
the destructor finishes execution; continuing execution past a violation of this precondition
assertion results in undefined behavior.

Written-out wording for all 79 cases of UB checkable at run time listed in Appendix A can be
provided in a future revision of this paper.
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6 Future extensions

We already briefly touched upon Labels in earlier sections of this paper. Here, we explore other exten-
sions that rely on Labels as proposed in [P3400R1] and provide important additional functionality
for implicit contract assertions not proposed in this paper.

6.1 Identifying the UB category

[P3400R1] proposes the addition of identification labels to contract assertions. These identification
labels can be used to identify groups of contract assertions by name. For explicit contract assertions,
we must introduce these identification labels manually; however, for implicit contract assertions,
we can define and assign such identification labels directly in the C++ Standard (see [P3400R1]
Section 2.2.8). Such implicitly defined identification labels would make possible programmatically
identifying, in the contract-violation handler, whether the violated implicit contract assertion is
related to an out-of-bounds issue, an arithmetic issue, and so forth; for example:

void handle_contract_violation(const std::contracts::contract_violation& violation)
{

if (auto* bounds_label =
violation.getLabel<std::contracts::labels::bounds_label>()) {
// handle violation of assertion labelled with the bounds label

}
}

Notably, the [P3400R1] approach has an important advantage over using the detection_mode enum,
as proposed in [P3081R1] and in earlier versions of this paper: a single implicit contract assertion can
belong to multiple groups. We identified cases of UB, such as {expr.dynamic.cast.glvalue.lifetime},
that are simultaneously type and lifetime issues.
In addition, users (and, more importantly, libraries) can use such labels to annotate their own
explicit contract assertions, enabling the same policies to guide handling of core language bounds
violations and violations of higher-level functions. For example, the indexing operator of a user-
defined container (such as the one shown in Section 4.1) can have an explicit precondition labelled
to belong to the same Bounds category as bounds checks defined by the C++ Standard itself. The
same identification labels can be defined for hardened preconditions in the C++ Standard Library.

6.2 Granular control of the evaluation semantic

Another important feature enabled by Labels is the possibility to control and constrain the evaluation
semantic in code. This possibility also extends to implicit contract assertions (see [P3400R1] Section
2.2.8). Any possible label, such as “always enforce”, “never enforce”, etc., can be applied to any
group of implicit contract assertions at any granularity: per file, per TU, per module, per namespace,
per function, or per code block:

int f(int a, int b) {
contract_assert implicit arithmetic |= always_enforce;
return a + b;

}

In addition to labels that specify or constrain the evaluation semantics directly, there are labels
that give the user higher-level control of the evaluation semantics based on meaningful decisions,
for example an “audit” label to identify expensive checks.
Labels used in this way provide granular control when needed, allow the Standard to specify useful
groupings of different sources of program defects, and give developers the freedom they need to
control mitigations for those defects based on exactly the criteria needed for their environments.
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Such a control mechanism for runtime checks (or for other tools in our toolbox such as language
subsetting) needs to be designed carefully and take into account the overall strategy (Figure 4).
In particular, we need to make it clear which feature is responsible for providing the user-facing
configuration mechanism for which tool, and avoid ending up in a situation where the same
functionality is provided simultaneously by different features in incompatible ways.
For granular, in-source control of the evaluation semantics of implicit contract assertions, we need to
agree whether this happens via directives such as the ones proposed in [P3400R1] and shown here,
or by using the syntax proposed in the Profiles framework as proposed in [P3589R2]. If we want to
have both, we need to specify one in terms of the other to avoid an incoherent and messy design.
If we follow the idea in Section 3.4 and consider Profiles to be a higher-level feature defined in terms
of the seven basic tools (the low-level features), then a Profile that enables or disables runtime checks
can be defined as essentially a declaration that expands to [P3400R1] directives as the one shown
above. Alternatively, we could design Profiles as an auditing feature rather than a configuration
feature: instead of actively enabling certain configuration options, the effect of a Profile would be
that the program is ill-formed if the configuration options chosen via [P3400R1] directives or other
mechanisms are not compatible with the guarantees that that Profile ensures.

6.3 Integrating assertions and assumptions

In Section 4.4, we introduced the assume semantic as a backwards-compatibility escape hatch for
newly introduced erroneous behaviour; as such, it can only apply to implicit contract assertions,
not to explicit ones.
Allowing the assume semantic on explicit contract assertions has met sustained opposition in EWG
due to the possibility of inadvertently adding new UB to a C++ program instead of removing it.
The presence of the assume semantic in the C++2a Contracts proposal [P0542R5] contributed
to that proposal being removed from the C++20 Working Draft. In response to this opposition,
no assume semantic was included in C++26 Contracts [P2900R14]. Assumptions were instead
standardised as a separate feature in the form of the [[assume]] attribute [P1774R8] to enable the
required functionality.
However, Labels, as proposed in [P3400R1], open up the possibility of introducing an explicit label
that would allow the assume semantic to apply to an explicit contract assertion as well. Consider
the limiter example from [P1774R8]:

void limiter(float* data, size_t size) {
[[assume(size > 0)]];
[[assume(size % 32 == 0)]];
// implementation

}

With a may_be_assumed label, we could instead write:
void limiter(float* data, size_t size)

pre<may_be_assumed> (size > 0);
pre<may_be_assumed> (size % 32 == 0);

Now, the assumptions are not only visible on the declaration of the function, but also benefit from
all other features of explicit precondition assertions, such as the ability to select evaluation semantics
other than assume.
To avoid the possibility of introducing an assumption by accident, the assume semantic would be
allowed on explicit contract assertions only when the may_be_assumed label is present; further, a
“safe C++” profile could make such a label ill-formed. Thus, contract assertions without the explicit
label would be no less “safe” than they are in C++26.
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Such a label would be a vast improvement over today’s [[assume]] attribute since it would allow
for checkable assumptions (see [P2064R0] for context), achieving the integration between assertions
and assumptions that we failed to achieve in the C++20 cycle. The [[assume]] attribute — a
temporary solution that was introduced as a reaction to that failure — could then be deprecated.
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Appendix A: List of language UB

All wording is taken from the current C++ working paper [N5008]. Each row corresponds to one case of explicit core language UB. Rows are arranged
by category, as defined in Section 2.2.1; within each category, rows follow the same order as that of the corresponding wording in [N5008].

Identifier Wording Runtime-
checkable

Locally
checkable

Checking strategy Replacement
behaviour

I. Initialization

{basic.indet.
value}

[basic.indet]/2: Except in the following
cases, if an indeterminate value is
produced by an evaluation, the
behavior is undefined, [...]

Yes No Track whether storage has been
initialized

Only for
built-in types:
initialise
default-
initialised
variables with
erroneous
value

II. Bounds

{basic.stc.
alloc.zero.
dereference}

[basic.stc.dynamic.allocation]/2: The
effect of indirecting through a pointer
returned from a request for zero size is
undefined.

Yes No Track pointer provenance, insert bounds
check

None

{expr.delete.
mismatch}

[expr.delete]/2: In a single-object
delete expression, the value of the
operand of delete may be a null pointer
value, a pointer value that resulted
from a previous non-array
new-expression, or a pointer to a base
class subobject of an object created by
such a new-expression. If not, the
behavior is undefined.

Yes No Track pointer provenance, insert bounds
check

None
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Identifier Wording Runtime-
checkable

Locally
checkable

Checking strategy Replacement
behaviour

{expr.
delete.array.
mismatch}

[expr.delete]/2: In an array delete
expression, the value of the operand of
delete may be a null pointer value or a
pointer value that resulted from a
previous array new-expression whose
allocation function was not a
non-allocating form
([new.delete.placement]). If not, the
behavior is undefined.

Yes No Track pointer provenance, insert bounds
check

None

{expr.add.out.
of.bounds}

[expr.add]/4: When an expression J
that has integral type is added to or
subtracted from an expression P of
pointer type, the result has the type of
P. If P evaluates to a null pointer value
and J evaluates to 0, the result is a null
pointer value. Otherwise, if P points to
a (possibly-hypothetical) array element
i of an array object x with n elements
([dcl.array]), the expressions P + J and
J + P (where J has the value j) point
to the (possibly-hypothetical) array
element i + j of x if 0 ≤ i + j ≤ n and
the expression P - J points to the
(possibly-hypothetical) array element
i − j of x if 0 ≤ i − j ≤ n. Otherwise,
the behavior is undefined.

Yes Only if the
array
bound is
statically
known

Track pointer provenance, insert bounds
check

None
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Identifier Wording Runtime-
checkable

Locally
checkable

Checking strategy Replacement
behaviour

{expr.add.sub.
diff.pointers}

[expr.add]/4: When an expression J
that has integral type is added to or
subtracted from an expression P of
pointer type, the result has the type of
P. If P evaluates to a null pointer value
and J evaluates to 0, the result is a null
pointer value. Otherwise, if P points to
a (possibly-hypothetical) array element
i of an array object x with n elements
([dcl.array]), the expressions P + J and
J + P (where J has the value j) point
to the (possibly-hypothetical) array
element i + j of x if 0 ≤ i + j ≤ n and
the expression P - J points to the
(possibly-hypothetical) array element
i − j of x if 0 ≤ i − j ≤ n. Otherwise,
the behavior is undefined.

Yes Only if the
array
bound is
statically
known

Track pointer provenance, insert bounds
check

None

III. Type and Lifetime

{intro.object.
implicit.
create}

[intro.object]/11: For each operation
that is specified as implicitly creating
objects, that operation implicitly
creates and starts the lifetime of zero
or more objects of implicit-lifetime
types ([basic.types.general]) in its
specified region of storage if doing so
would result in the program having
defined behavior. If no such set of
objects would give the program defined
behavior, the behavior of the program
is undefined.

Yes No Track whether storage can hold implicit
lifetime objects

None
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Identifier Wording Runtime-
checkable

Locally
checkable

Checking strategy Replacement
behaviour

{intro.object.
implicit.
pointer}

[intro.object]/11: Further, after
implicitly creating objects within a
specified region of storage, some
operations are described as producing
a pointer to a suitable created object.
These operations select one of the
implicitly-created objects whose
address is the address of the start of
the region of storage, and produce a
pointer value that points to that
object, if that value would result in the
program having defined behavior. If no
such pointer value would give the
program defined behavior, the behavior
of the program is undefined.

Yes No Track whether storage can hold implicit
lifetime objects

None

{basic.
align.object.
alignment}

[basic.align]/1: Attempting to create
an object ([intro.object]) in storage
that does not meet the alignment
requirements of the object’s type is
undefined behavior.

Yes Yes Insert alignment check None
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Identifier Wording Runtime-
checkable

Locally
checkable

Checking strategy Replacement
behaviour

{lifetime.
outside.
pointer.
delete}

[basic.life]/7: Before the lifetime of an
object has started but after the storage
which the object will occupy has been
allocated or, after the lifetime of an
object has ended and before the
storage which the object occupied is
reused or released, any pointer that
represents the address of the storage
location where the object will be or
was located may be used but only in
limited ways. [...] The program has
undefined behavior if the pointer is
used as the operand of a
delete-expression [...]

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

None

{lifetime.
outside.
pointer.
member}

[basic.life]/7: [...] The program has
undefined behavior if [...] the pointer is
used to access a non-static data
member or call a non-static member
function of the object, [...]

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

None

{lifetime.
outside.
pointer.
virtual}

[basic.life]/7: [...] The program has
undefined behavior if [...] the pointer is
implicitly converted ([conv.ptr]) to a
pointer to a virtual base class [...]

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

None
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Identifier Wording Runtime-
checkable

Locally
checkable

Checking strategy Replacement
behaviour

{lifetime.
outside.
pointer.static.
cast}

[basic.life]/7: [...] The program has
undefined behavior if [...] the pointer is
used as the operand of a static_cast
([expr.static.cast]), except when the
conversion is to pointer to cv void, or
to pointer to cv void and subsequently
to pointer to cv char, cv unsigned
char, or cv std::byte ([cstddef.syn])
[...]

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

None

{lifetime.
outside.
pointer.
dynamic.cast}

[basic.life]/7: [...] The program has
undefined behavior if [...] the pointer is
used as the operand of a
dynamic_cast ([expr.dynamic.cast]).

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

None

{lifetime.
outside.
glvalue.
access}

[basic.life]/8: Similarly, before the
lifetime of an object has started but
after the storage which the object will
occupy has been allocated or, after the
lifetime of an object has ended and
before the storage which the object
occupied is reused or released, any
glvalue that refers to the original
object may be used but only in limited
ways. [...] The program has undefined
behavior if the glvalue is used to access
the object [...]

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

None

{lifetime.
outside.
glvalue.
member}

[basic.life]/8: [...] The program has
undefined behavior if [...] the glvalue is
used to call a non-static member
function of the object [...]

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

None
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Identifier Wording Runtime-
checkable

Locally
checkable

Checking strategy Replacement
behaviour

{lifetime.
outside.
glvalue.ref.
virtual}

[basic.life]/8: [...] The program has
undefined behavior if [...] the glvalue is
bound to a reference to a virtual base
class ([dcl.init.ref]) [...]

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

None

{lifetime.
outside.
glvalue.
dynamic.
cast}

[basic.life]/8: [...] The program has
undefined behavior if [...] the glvalue is
used as the operand of a
dynamic_cast ([expr.dynamic.cast]) or
as the operand of typeid.

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

None

{original.
type.implicit.
destructor}

[basic.life]/11: If a program ends the
lifetime of an object of type T with
static ([basic.stc.static]), thread
([basic.stc.thread]), or automatic
([basic.stc.auto]) storage duration and
if T has a non-trivial destructor, and
another object of the original type
does not occupy that same storage
location when the implicit destructor
call takes place, the behavior of the
program is undefined.

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

None

{creating.
within.const.
complete.obj}

[basic.life]/12: Creating a new object
within the storage that a const,
complete object with static, thread, or
automatic storage duration occupies,
or within the storage that such a const
object used to occupy before its
lifetime ended, results in undefined
behavior.

Yes No Track whether storage is associated with
a const object

None
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Identifier Wording Runtime-
checkable

Locally
checkable

Checking strategy Replacement
behaviour

{basic.
compound.
invalid.
pointer}

[basic.compound]/4: If a pointer value
P is used in an evaluation E and P is
not valid in the context of E, then the
behavior is undefined if E is an
indirection ([expr.unary.op]) or an
invocation of a deallocation function
([basic.stc.dynamic.deallocation]) [...]

Yes No Track whether storage has been
allocated and freed

None

{expr.basic.
lvalue.strict.
aliasing.
violation}

[basic.lval]/11.3: If a program attempts
to access ([defns.access]) the stored
value of an object through a glvalue
through which it is not type-accessible,
the behavior is undefined.

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

None

{expr.basic.
lvalue.union.
initialization}

[basic.lval]/11.3: If a program invokes
a defaulted copy/move constructor or
copy/move assignment operator for a
union of type U with a glvalue
argument that does not denote an
object of type cv U within its lifetime,
the behavior is undefined.

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

None

{expr.type.
reference.
lifetime}

[expr.type]/1: If a pointer to X would
be valid in the context of the
evaluation of the expression
([basic.fundamental]), the result
designates X; otherwise, the behavior
is undefined.

Yes No Track whether storage has been
allocated and freed

None
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Identifier Wording Runtime-
checkable

Locally
checkable

Checking strategy Replacement
behaviour

{conv.
lval.valid.
representation}

[conv.lval]/3.4: Otherwise, if the bits
in the value representation of the
object to which the glvalue refers are
not valid for the object’s type, the
behavior is undefined.

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

Coerce invalid
value represen-
tations into
erroneous
values

{conv.ptr.
virtual.base}

[conv.ptr]/3: Otherwise, if B is a
virtual base class of D and v does not
point to an object whose type is
similar ([conv.qual]) to D and that is
within its lifetime or within its period
of construction or destruction
([class.cdtor]), the behavior is
undefined.

Yes Only for
the null
pointer
case

Track whether storage is associated with
an object of correct type within its
lifetime or an object currently being
constructed or destroyed; insert null
pointer check

None

{conv.
member.
missing.
member}

[conv.mem]/2: If class D does not
contain the original member and is not
a base class of the class containing the
original member, the behavior is
undefined.

Yes No Track which type the pointer to member
originated from

None

{expr.call.
different.
type}

[expr.call]/5: Calling a function
through an expression whose function
type is not call-compatible with the
type of the called function’s definition
results in undefined behavior.

Yes No Track type information of function
based on address

None

{expr.ref.
member.not.
similar}

[expr.ref]/9: If E2 is a non-static
member and the result of E1 is an
object whose type is not similar
([conv.qual]) to the type of E1, the
behavior is undefined.

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

None
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Identifier Wording Runtime-
checkable

Locally
checkable

Checking strategy Replacement
behaviour

{expr.
dynamic.
cast.pointer.
lifetime}

[expr.dynamic.cast]/7: If v has type
“pointer to cv U” and v does not point
to an object whose type is similar
([conv.qual]) to U and that is within its
lifetime or within its period of
construction or destruction
([class.cdtor]), the behavior is
undefined.

Yes Only for
the null
pointer
case

Track whether storage is associated with
an object of correct type within its
lifetime or an object currently being
constructed or destroyed; insert null
pointer check

None

{expr.
dynamic.
cast.glvalue.
lifetime}

[expr.dynamic.cast]/7: If v is a glvalue
of type U and v does not refer to an
object whose type is similar to U and
that is within its lifetime or within its
period of construction or destruction,
the behavior is undefined.

Yes No Track whether storage is associated with
an object of correct type within its
lifetime or an object currently being
constructed or destroyed

None

{expr.static.
cast.base.
class}

[expr.static.cast]/2: An xvalue of type
“cv1 B” can be cast to type “rvalue
reference to cv2 D” with the same
constraints as for an lvalue of type
“cv1 B”. If the object of type “cv1 B” is
actually a base class subobject of an
object of type D, the result refers to
the enclosing object of type D.
Otherwise, the behavior is undefined.

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

None
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Identifier Wording Runtime-
checkable

Locally
checkable

Checking strategy Replacement
behaviour

{expr.static.
cast.downcast.
wrong.derived.
type}

[expr.static.cast]/11: If the prvalue of
type “pointer to cv1 B” points to a B
that is actually a base class subobject
of an object of type D, the resulting
pointer points to the enclosing object
of type D. Otherwise, the behavior is
undefined.

Yes Only for
the null
pointer
case

Track whether storage is associated with
an object of correct type within its
lifetime or an object currently being
constructed or destroyed; insert a null
pointer check

None

{expr.static.
cast.does.not.
contain.
orignal.
member}

[expr.static.cast]/12: If class B contains
the original member, or is a base class
of the class containing the original
member, the resulting pointer to
member points to the original member.
Otherwise, the behavior is undefined.

Yes No Track which type the pointer to member
originated from

None

{expr.unary.
dereference}

[expr.unary.op]/1: If the operand
points to an object or function, the
result denotes that object or function;
otherwise, the behavior is undefined
except as specified in [expr.typeid].

Yes Only for
the null
pointer
case

Track whether storage is associated with
an object of correct type within its
lifetime; track whether the address is
associated with a function; insert a null
pointer check

None

{expr.delete.
dynamic.type.
differ}

[expr.delete]/3: In a single-object
delete expression, if the static type of
the object to be deleted is not similar
([conv.qual]) to its dynamic type and
the selected deallocation function (see
below) is not a destroying operator
delete, the static type shall be a base
class of the dynamic type of the object
to be deleted and the static type shall
have a virtual destructor or the
behavior is undefined.

Yes No Track dynamic type of non-polymorphic
objects

None
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Identifier Wording Runtime-
checkable

Locally
checkable

Checking strategy Replacement
behaviour

{expr.delete.
dynamic.
array.
dynamic.
type.differ}

[expr.delete]/3: In an array delete
expression, if the dynamic type of the
object to be deleted is not similar to its
static type, the behavior is undefined.

Yes No Track dynamic type of non-polymorphic
objects

None

{expr.mptr.
oper.not.
contain.
member}

[expr.mptr.oper]/4: Abbreviating
pm-expression.*cast-expression as
E1.*E2, E1 is called the object
expression. If the result of E1 is an
object whose type is not similar to the
type of E1, or whose most derived
object does not contain the member to
which E2 refers, the behavior is
undefined.

Yes No Track which type the pointer to member
originated from and the dynamic type of
non-polymorphic objects

None

{expr.mptr.
oper.member.
func.null}

[expr.mptr.oper]/6: The result of a .*
expression whose second operand is a
pointer to a member function is a
prvalue. If the second operand is the
null member pointer value, the
behavior is undefined.

Yes Yes Insert null pointer check None

{expr.add.not.
similar}

[expr.add]/6: For addition or
subtraction, if the expressions P or Q
have type “pointer to cv T”, where T
and the array element type are not
similar, the behavior is undefined.

Yes No Track whether storage is associated with
an object of correct type

None
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Identifier Wording Runtime-
checkable

Locally
checkable

Checking strategy Replacement
behaviour

{expr.assign.
overlap}

[expr.assign]/7: If the value being
stored in an object is read via another
object that overlaps in any way the
storage of the first object, then the
overlap shall be exact and the two
objects shall have the same type,
otherwise the behavior is undefined.

Yes Yes Check overlap of the two address ranges None

{dcl.type.cv.
modify.const.
obj}

[dcl.type.cv]/4: Any attempt to modify
([expr.assign], [expr.post.incr],
[expr.pre.incr]) a const object
([basic.type.qualifier]) during its
lifetime ([basic.life]) results in
undefined behavior.

Yes No Track whether storage is associated with
a const object

None

{dcl.type.
cv.access.
volatile}

[dcl.type.cv]/5: If an attempt is made
to access an object defined with a
volatile-qualified type through the use
of a non-volatile glvalue, the behavior
is undefined.

Yes No Track whether storage is associated with
a volatile object

None

{dcl.ref.
incompatible.
function}

[dcl.ref]/6: Attempting to bind a
reference to a function where the
converted initializer is a glvalue whose
type is not call-compatible ([expr.call])
with the type of the function’s
definition results in undefined
behavior.

Yes No Track the types of all functions based on
their addresses

None
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Identifier Wording Runtime-
checkable

Locally
checkable

Checking strategy Replacement
behaviour

{dcl.ref.
incompatible.
type}

[dcl.ref]/6: Attempting to bind a
reference to an object where the
converted initializer is a glvalue
through which the object is not
type-accessible ([basic.lval]) results in
undefined behavior.

Yes No Track whether storage is associated with
an object of correct type

None

{dcl.ref.
uninitialized.
reference}

[dcl.ref]/6: The behavior of an
evaluation of a reference
([expr.prim.id], [expr.ref]) that does
not happen after ([intro.races]) the
initialization of the reference is
undefined.

Yes No Track whether references have been
initialised

None

{class.dtor.no.
longer.exists}

[class.dtor]/18: Once a destructor is
invoked for an object, the object’s
lifetime ends; the behavior is undefined
if the destructor is invoked for an
object whose lifetime has ended
([basic.life]).

Yes No Track whether storage is associated with
an object of correct type within its
lifetime

None

{class.
abstract.
pure.virtual}

[class.abstract]/6: Member functions
can be called from a constructor (or
destructor) of an abstract class; the
effect of making a virtual call
([class.virtual]) to a pure virtual
function directly or indirectly for the
object being created (or destroyed)
from such a constructor (or destructor)
is undefined.

Yes Yes Insert a pre(false) into the pure
virtual stub pointed to from the
base-class vtable

None
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Identifier Wording Runtime-
checkable

Locally
checkable

Checking strategy Replacement
behaviour

{class.base.
init.mem.fun}

[class.base.init]/16: Member functions
(including virtual member functions,
[class.virtual]) can be called for an
object under construction or
destruction. Similarly, an object under
construction or destruction can be the
operand of the typeid operator
([expr.typeid]) or of a dynamic_cast
([expr.dynamic.cast]). However, if
these operations are performed during
evaluation of a ctor-initializer (or in a
function called directly or indirectly
from a ctor-initializer) before all the
mem-initializers for base classes have
completed, a precondition assertion of
a constructor, or a postcondition
assertion of a destructor
([dcl.contract.func]), the program has
undefined behavior.

Yes No Track whether objects are currently
being constructed or destroyed

None

{class.cdtor.
before.ctor.
after.dtor}

[class.cdtor]/1: For an object with a
non-trivial constructor, referring to any
non-static member or base class of the
object before the constructor begins
execution results in undefined
behavior.

Yes No Track whether objects are currently
being constructed or destroyed

None
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Identifier Wording Runtime-
checkable

Locally
checkable

Checking strategy Replacement
behaviour

{class.cdtor.
before.ctor.
after.dtor}

[class.cdtor]/1: For an object with a
non-trivial destructor, referring to any
non-static member or base class of the
object after the destructor finishes
execution results in undefined
behavior.

Yes No Track whether objects are currently
being constructed or destroyed

None

{class.cdtor.
convert.or.
form.pointer}

[class.cdtor]/3: To explicitly or
implicitly convert a pointer (a glvalue)
referring to an object of class X to a
pointer (reference) to a direct or
indirect base class B of X, the
construction of X and the construction
of all of its direct or indirect bases that
directly or indirectly derive from B
shall have started and the destruction
of these classes shall not have
completed, otherwise the conversion
results in undefined behavior.

Yes No Track whether objects are currently
being constructed or destroyed

None

{class.cdtor.
convert.or.
form.pointer}

[class.cdtor]/3: To form a pointer to
(or access the value of) a direct
non-static member of an object obj,
the construction of obj shall have
started and its destruction shall not
have completed, otherwise the
computation of the pointer value (or
accessing the member value) results in
undefined behavior.

Yes No Track whether objects are currently
being constructed or destroyed

None
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Identifier Wording Runtime-
checkable

Locally
checkable

Checking strategy Replacement
behaviour

{class.cdtor.
virtual.not.x}

[class.cdtor]/4: If the virtual function
call uses an explicit class member
access ([expr.ref]) and the object
expression refers to the complete
object of x or one of that object’s base
class subobjects but not x or one of its
base class subobjects, the behavior is
undefined.

Yes No Track whether objects are currently
being constructed or destroyed

None

{class.cdtor.
typeid}

[class.cdtor]/5: If the operand of
typeid refers to the object under
construction or destruction and the
static type of the operand is neither
the constructor or destructor’s class
nor one of its bases, the behavior is
undefined.

Yes No Track whether objects are currently
being constructed or destroyed

None

{class.cdtor.
dynamic.cast}

[class.cdtor]/6: If the operand of the
dynamic_cast refers to the object
under construction or destruction and
the static type of the operand is not a
pointer to or object of the constructor
or destructor’s own class or one of its
bases, the dynamic_cast results in
undefined behavior.

Yes No Track whether objects are currently
being constructed or destroyed

None

{except.
handle.
handler.
ctor.dtor}

[except.handle]/11: Referring to any
non-static member or base class of an
object in the handler for a
function-try-block of a constructor or
destructor for that object results in
undefined behavior.

Yes No Track whether objects are currently
being constructed or destroyed

None

50



Identifier Wording Runtime-
checkable

Locally
checkable

Checking strategy Replacement
behaviour

IV. Arithmetic

{expr.expr.
eval}

[expr.pre]/4: If during the evaluation
of an expression, the result is not
mathematically defined or not in the
range of representable values for its
type, the behavior is undefined.

Yes Yes Insert a check of whether the value is
valid

Coerce into
erroneous
value

{conv.double.
out.of.range}

[conv.double]/2: A prvalue of
floating-point type can be converted to
a prvalue of another floating-point
type with a greater or equal conversion
rank ([conv.rank]). [...] If the source
value can be exactly represented in the
destination type, the result of the
conversion is that exact representation.
If the source value is between two
adjacent destination values, the result
of the conversion is an
implementation-defined choice of either
of those values. Otherwise, the
behavior is undefined.

Yes Yes Insert a check of whether the value is
valid

Coerce into
erroneous
value

{conv.fpint.
float.not.
represented}

[conv.fpint]/1: A prvalue of a
floating-point type can be converted to
a prvalue of an integer type. The
conversion truncates; that is, the
fractional part is discarded. The
behavior is undefined if the truncated
value cannot be represented in the
destination type.

Yes Yes Insert a check of whether the value is
valid

Coerce into
erroneous
value
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Identifier Wording Runtime-
checkable

Locally
checkable

Checking strategy Replacement
behaviour

{conv.fpint.
int.not.
represented}

[conv.fpint]/2: A prvalue of an integer
type or of an unscoped enumeration
type can be converted to a prvalue of a
floating-point type. [...] If the value
being converted is outside the range of
values that can be represented, the
behavior is undefined.

Yes Yes Insert a check of whether the value is
valid

Coerce into
erroneous
value

{expr.static.
cast.enum.
outside.
range}

[expr.static.cast]/9: If the enumeration
type does not have a fixed underlying
type, the value is unchanged if the
original value is within the range of the
enumeration values ([dcl.enum]), and
otherwise, the behavior is undefined.

Yes Yes Insert a check of whether the value is
valid

Coerce into
erroneous
value

{expr.static.
cast.fp.
outside.
range}

[expr.static.cast]/10: A prvalue of
floating-point type can be explicitly
converted to any other floating-point
type. If the source value can be exactly
represented in the destination type, the
result of the conversion has that exact
representation. If the source value is
between two adjacent destination
values, the result of the conversion is
an implementation-defined choice of
either of those values. Otherwise, the
behavior is undefined.

Yes Yes Insert a check of whether the value is
valid

Coerce into
erroneous
value
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Identifier Wording Runtime-
checkable

Locally
checkable

Checking strategy Replacement
behaviour

{expr.mul.div.
by.zero}

[expr.mul]/4: The binary / operator
yields the quotient, and the binary %
operator yields the remainder from the
division of the first expression by the
second. If the second operand of / or %
is zero, the behavior is undefined.

Yes Yes Insert a check of whether the second
operand is zero

Coerce into
erroneous
value

{expr.mul.
representable.
type.result}

[expr.mul]/4: For integral operands,
the / operator yields the algebraic
quotient with any fractional part
discarded; if the quotient a/b is
representable in the type of the result,
(a/b)*b + a%b is equal to a;
otherwise, the behavior of both a/b
and a%b is undefined.

Yes Yes Insert a check of whether the value is
valid

Coerce into
erroneous
value

{expr.shift.
neg.and.
width}

[expr.shift]/1: The behavior is
undefined if the right operand is
negative, or greater than or equal to
the width of the promoted left
operand.

Yes Yes Insert check whether right operand is
valid

Coerce into
erroneous
value

V. Threading

{intro.races.
data}

[intro.races]/17: Any such data race
results in undefined behavior.

Partially No Track from which threads memory is
accessed and when accesses synchronise
with each other; only practical for a
subset of cases (see TSan)

Make all
primitive
memory
accesses
implicitly
atomic
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Identifier Wording Runtime-
checkable

Locally
checkable

Checking strategy Replacement
behaviour

VI. Sequencing

{intro.
execution.
unsequenced.
modification}

[conv.rank]/10: The behavior is
undefined if a side effect on a memory
location ([intro.memory]) or starting or
ending the lifetime of an object in a
memory location is unsequenced
relative to another side effect on the
same memory location, starting or
ending the lifetime of an object
occupying storage that overlaps with
the memory location, or a value
computation using the value of any
object in the same memory location,
and the two evaluations are not
potentially concurrent
([intro.multithread]).

Yes Yes Identify all potential read operations
that are not sequenced with respect to
each given write operation; insert checks
to identify if those operations are
referencing the same address

Sequence
operations in
some
unspecified
order

VII. Assumptions

{dcl.attr.
assume.false}

[dcl.attr.assume]/1: If the converted
expression would evaluate to true at
the point where the assumption
appears, the assumption has no effect.
Otherwise, evaluation of the
assumption has runtime undefined
behavior.

No No No automatic checking strategy is
possible because the predicate cannot
be, in general, proven to be free of side
effects; instead,
the user has to change [[assume(x)]] to
contract_assert<may_be_assumed>(x)
and select an appropriate evaluation
semantic

Ignore the
assumption
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Identifier Wording Runtime-
checkable

Locally
checkable

Checking strategy Replacement
behaviour

VIII. Control Flow

{basic.start.
main.exit.
during.
destruction}

[basic.start.main]/4: If std::exit is
invoked during the destruction of an
object with static or thread storage
duration, the program has undefined
behavior.

Yes No Track whether static or thread-local
objects are currently being destroyed

None

{basic.start.
term.use.after.
destruction}

[basic.start.term]/4: If a function
contains a block variable of static or
thread storage duration that has been
destroyed and the function is called
during the destruction of an object
with static or thread storage duration,
the program has undefined behavior if
the flow of control passes through the
definition of the previously destroyed
block variable.

Yes No Track the lifetime of static objects None

{stmt.return.
flow.off}

[stmt.return]/4: Otherwise, flowing off
the end of a function that is neither
main ([basic.start.main]) nor a
coroutine ([dcl.fct.def.coroutine])
results in undefined behavior.

Yes Yes Insert contract_assert(false) at end
of function-body

Only for
built-in return
types: return
erroneous
value

{stmt.dcl.
local.static.
init.recursive}

[stmt.dcl]/3: If control re-enters the
declaration recursively while the
variable is being initialized, the
behavior is undefined.

Yes No Insert a recursion counter into a guard
for static and thread-local object
construction

None
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Identifier Wording Runtime-
checkable

Locally
checkable

Checking strategy Replacement
behaviour

{dcl.attr.
noreturn.
eventually.
returns}

[dcl.attr.noreturn]/2: If a function f is
invoked where f was previously
declared with the noreturn attribute
and that invocation eventually returns,
the behavior is runtime-undefined.

Yes Yes Insert post(false) None

IX. Replacement Functions

{basic.stc.
alloc.dealloc.
constraint}

[basic.stc.dynamic.general]/3: If the
behavior of an allocation or
deallocation function does not satisfy
the semantic constraints specified in
[basic.stc.dynamic.allocation] and
[basic.stc.dynamic.deallocation], the
behavior is undefined.

Partially:
some
constraints
can be
checked
locally
(e.g.,
allocation
function
does not
return
null);
others
cannot be
checked at
all.

Partially Insert checks where possible None

{basic.stc.
alloc.dealloc.
throw}

[basic.stc.dynamic.deallocation]/4: If a
deallocation function terminates by
throwing an exception, the behavior is
undefined.

Make
ill-formed
via
[P3424R0]

— —
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checkable

Locally
checkable

Checking strategy Replacement
behaviour

{expr.new.
non.allocating.
null}

[expr.new]/22: If the allocation
function is a non-allocating form
([new.delete.placement]) that returns
null, the behavior is undefined.

Yes Yes Insert post(r: r) None

X. Coroutines

{stmt.return.
coroutine.flow.
off}

[stmt.return.coroutine]/3: If a search
for the name return_void in the
scope of the promise type finds any
declarations, flowing off the end of a
coroutine’s function-body is equivalent
to a co_return with no operand;
otherwise flowing off the end of a
coroutine’s function-body results in
undefined behavior.

Yes Yes Insert contract_assert(false) at end
of function-body if no return_void
function is provided

Only for
built-in return
types: return
erroneous
value

{dcl.fct.def.
coroutine.
resume.not.
suspended}

[dcl.fct.def.coroutine]/9: Invoking a
resumption member function for a
coroutine that is not suspended results
in undefined behavior.

Yes No Track the suspension state associated
with every coroutine handle

None

{dcl.fct.def.
coroutine.
destroy.not.
suspended}

[dcl.fct.def.coroutine/12: If destroy is
called for a coroutine that is not
suspended, the program has undefined
behavior.

Yes No Track the suspension state associated
with every coroutine handle

None
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