
Library Support for Expansion Statements
Document #: P1789R1
Date: 2025-04-15
Project: Programming Language C++
Audience: Library Evolution
Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>
Jeremy Rifkin
<jeremy@rifkin.dev>
Matthias Wippich
<mfwippich@gmail.com>

Contents
Abstract 1

Revision history 2

1 Introduction 3
1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 An essential C++26 feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Motivation and Use Cases 4
2.1 Comparing tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Implementing std::tuple::swap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Splicing reflections with structured bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Proposed Solution 7
3.1 Make integer_sequence support structured bindings . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Sample implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Wording 8

5 Acknowledgements 10

6 References 10

Abstract
This paper proposes support for using std::integer_sequence in structured bindings and expansion statements.

1

mailto:ameredith1@bloomberg.net
mailto:jeremy@rifkin.dev
mailto:mfwippich@gmail.com


Revision history
R1 April 2025 (mid-term mailing)

— Updated to use the new expansion statement syntax from [P1306R3]
— Added section on use in structured bindings.

R0 June 2019 (pre-Cologne mailing)

Original version of the paper for the 2019 pre-Cologne mailing.

2



1 Introduction
Packs from structured bindings ([P1061R10]) and expansion statements ([P1306R3]) are new language features
slated for C++26. These features both allow compile-time repetition of destructurable types through either fold
expressions or a for-loop-like syntax.

However there are no standard compile-time sequences of integers that support these new language features.
Such sequences are integral to supporting indexed access when iterating or folding over multiple sequences.

A simple fix would be to enhance the library template std::integer_sequence implementing the structured
bindings protocol, enabling its use with both new features.

1.1 History
Expansion statements are a new language feature originally intended for C++20 that will add compile-time
iteration and code generation to C++26.

Despite feature approval by EWG for C++20, it failed to land in time due to design and implementability
concerns raised during the Core wording review. Those concerns have now been addressed and [P1306R3] was
once again approved by EWG for adoption, now targeting C++26.

The first revision of this paper was written in 2019. We are revisiting it now that expansion statements are landing
in C++26 as an essential component of reflection, and packs from structured bindings have been introduced
making this proposal even more useful.

1.2 An essential C++26 feature
C++26 introduces two new language features that facilitate compile-time repetition over packs. We view the
ability to use std::integer_sequence with these features as essential to their success.

For example, a common pattern for obtaining a pack of integers of length COUNT within a function template is to
take advantage of lambda template arguments and type deduction on the function-call argument to the lambda
to obtain an integer sequence pack, moving the majority of the function template’s logic into the lambda itself.
[]<std::size_t ...INDEX>(std::index_sequence<INDEX...>) {

// here lies the enclosing function's implementation
} (std::make_index_sequence<COUNT>());

Aside from the roundabout and cumbersome syntax, this introduces unnecessary nesting in code already strug-
gling under the weight of template syntax. A cursory GitHub Code Search finds 3.3k instances this pattern using
lambdas to produce integer packs. While this is not an every-day language construct, it is not an uncommon
pattern and important within its domain. We expect more C++ metaprogramming in the coming years so we
need a more ergonomic solution.

This paper proposes adding support for the structured bindings protocol to std::integer_sequence to enable
refactorings that use std::integer_sequence in an expansion statement or structured binding to produce more
readable and maintainable code. Embracing the new language features provided by C++26 we would rewrite
code that used the unnecessary lambda pattern as either
constexpr auto [...INDEX] = std::make_index_sequence<COUNT>();
// the parameter pack `INDEX` is now usable directly in the function body
// ...

or
template for(constexpr size_t INDEX : std::make_index_sequence<COUNT>()) {

// ...
}

3

https://github.com/search?type=code&q=%2F%5B.*%5D%3C.*%3E/s*(.*(index_sequence%7Cinteger_sequence)%2B%2F+language%3Ac%2B%2B+-is%3Afork%3A


2 Motivation and Use Cases
Expansion statements allow for iteration over a variety of compile-time sequences such as parameter packs and
(constexpr) spans of reflections — see [P2996] for examples of reflection. In particular, expansion statements
can iterate and generate code for any type that can, during constant evaluation, be destructured though the tuple
protocol. Additionally, packs can now be introduced with structured bindings and used with fold expressions.

2.1 Comparing tuples
It is relatively straightforward to implement comparison for std::tuple using a fold expression, but needs either
a lambda expression or an auxiliary function to introduce a context for the pack expansion.
template<class ...TTypes, class ...UTypes>

requires (sizeof...(TTypes) == sizeof...(UTypes))
constexpr
bool operator==(tuple<TTypes...> const & lhs, tuple<UTypes...> const & rhs) {

auto impl = [&, this]<size_t ...INDEX>(index_sequence<INDEX...>) {
return ((get<INDEX>(lhs) == get<INDEX>(rhs)) && ...);

};

return impl(index_sequence_for<TTypes...>{});
}

Note that this is the more readable form of this code, often developers who are overly familiar with this idiom
will eliminate the local variable, producing code that is opaque to all but the most seasoned developer.
template<class ...TTypes, class ...UTypes>

requires (sizeof...(TTypes) == sizeof...(UTypes))
constexpr
bool operator==(tuple<TTypes...> const & lhs, tuple<UTypes...> const & rhs) {

return [&, this]<size_t ...INDEX>(index_sequence<INDEX...>) {
return ((get<INDEX>(lhs) == get<INDEX>(rhs)) && ...);

}(index_sequence_for<TTypes...>());
}

It is straightforward to implement comparison using a fold expression when index_sequence is destructurable.
template<class ...TTypes, class ...UTypes>

requires (sizeof...(TTypes) == sizeof...(UTypes))
constexpr
bool operator==(tuple<TTypes...> const & lhs, tuple<UTypes...> const & rhs) {

constexpr auto [...INDEX] = index_sequence_for<TTypes...>{};
return ((get<INDEX>(lhs) == get<INDEX>(rhs)) && ...);

}

4



2.2 Implementing std::tuple::swap
It is similarly straightforward to implement tuple::swap using a fold expression over the comma operator, but
also somewhat of a hack. This is the kind of code we would like to be able to write more cleanly using an
expansion statement.
template <class ...TTypes>
constexpr
void tuple<TTypes...>::swap(tuple& other) noexcept((is_nothrow_swappable_v<TTypes> and ...))
{

auto impl = [&, this]<size_t ...INDEX>(index_sequence<INDEX...>) {
((void)swap(get<INDEX>(*this), get<INDEX>(other)), ...);

};

impl(index_sequence_for<TTypes...>{});
}

Note that in addition to the internal use of a lambda expression to create the parameter pack to fold over, we
must also cast the result of the swap call to void in case users provide an ADL-discoverable swap function that
returns a user defined type that, in turn, provides an overload for the comma operator.

We can eliminate the fold expression and stop worrying about the surprising corner cases handling ADL-swap
by using a C++26 expansion statement like so:
template <class ...TTypes>
constexpr
void tuple<TTypes...>::swap(tuple& other) noexcept((is_nothrow_swappable_v<TTypes> and ...))
{

auto impl = [&, this]<size_t ...INDEX>(index_sequence<INDEX...>) {
template for(constexpr size_t N : {INDEX...}) {
swap(get<N>(*this), get<N>(other));

}
};

impl(index_sequence_for<TTypes...>{});
}

However, there is no easy way to eliminate the lambda expression, as we cannot iterate over an integer_sequence
using just the facilities provided in [P1306R3]. In fact, this “new and improved” version is actually longer than
the single fold expression that it replaces, although we claim that the code is easier to read with fewer subtleties
that readers must be aware of.

The heart of the problem is that expansion statements are an excellent tool to iterate over a single sequence, but
do not provide an index to support iterating over two sequences in parallel. We propose that the simplest way
to resolve the concerns is to add the missing pieces that would enable use of integer_sequence in a structured
binding. That is sufficient to support use in expansion statements, and is general enough to be a feature in its
own right. With such support, the tuple::swap example simplifies to:
template <class ...TTypes>
constexpr
void tuple<TTypes...>::swap(tuple& other) noexcept((is_nothrow_swappable_v<TTypes> and ...))
{

template for(constexpr size_t INDEX : index_sequence_for<TTypes...>{}) {
swap(get<INDEX>(*this), get<INDEX>(other));

}
}

5



2.3 Splicing reflections with structured bindings
Supporting decomposition of integer_sequences interacts well with the proposed changes of [P1061R10] Struc-
tured Bindings can introduce a Pack and [P2686R5] constexpr structured bindings.

In a lot of existing code the following pattern is used to introduce a sequence of integers as a pack of constants.
[]<std::size_t ...INDEX>(std::index_sequence<INDEX...>) {

// ...
} (std::make_index_sequence<COUNT>());

Not only is this rather verbose, it introduces a new function scope. This can be avoided by introducing the pack
of integers INDEX through a structured binding instead.
constexpr auto [...INDEX] = std::make_index_sequence<COUNT>();

As [P1306R3] mentions, introducing a new function scope can be problematic. For instance, reflections of function
parameters ([P3096R5]) can be spliced only within their corresponding function body. Expansion statements
alleviate this issue, but are not usable whenever we want to fold over a pack of reflections or expand them into
an argument list.

For instance, consider the following (invalid) example:
void foo(int x, char c) {

[:expand(parameters_of(^^foo)):]
>> []<auto ...parameters>(){

bar([:parameters:]...); // oops
}

}

By using the features introduced in [P1061R10] and [P2686R5], the introduction of a new function scope can be
avoided.
void foo(int x, char c) {

constexpr auto [...INDEX] = std::make_index_sequence<parameters_of(^^foo).size()>();
bar([:parameters_of(^^foo)[INDEX]:]...);

}

6



3 Proposed Solution
3.1 Make integer_sequence support structured bindings
integer_sequence is missing three things in order to support use in structured bindings:

— A partial specialization for tuple_size
— A partial specialization for tuple_elememt
— Overloads of get<INDEX>()

The first two bullets are fairly straightforward to implement. For the get function, we propose a single overload
taking an integer_sequence by value, as it is an immutable empty type, and likewise returning its result by
value.

3.2 Sample implementation

template<class T, T ...VALUES>
struct tuple_size<integer_sequence<T, VALUES...>>

: integral_constant<size_t, sizeof...(VALUES)>
{ };

template<size_t INDEX, class T, T ...VALUES>
requires (INDEX < sizeof...(VALUES))

struct tuple_element<INDEX, integer_sequence<T, VALUES...>> {
using type = T;

};

template<size_t INDEX, class T, T ...VALUES>
requires (INDEX < sizeof...(VALUES))

constexpr T get(integer_sequence<T, VALUES...>) noexcept {
return VALUES...[INDEX];

}

7



4 Wording
Make the following changes to the C++ Working Draft. All wording is relative to [N5008], the latest draft at
the time of writing.

22.2.1 [utility.syn] Header <utility> synopsis
1 The header <utility> contains some basic function and class templates that are used throughout the rest of

the library.
#include <compare> // see 17.12.1
#include <initializer_list> // see 17.11.2

namespace std {
// 22.2.2, swap
...

// 21.2, Compile-time integer sequences
template<class T, T...>
struct integer_sequence;

template<size_t... I>
using index_sequence = integer_sequence<size_t, I...>;

template<class T, T N>
using make_integer_sequence = integer_sequence<T, see below>;

template<size_t N>
using make_index_sequence = make_integer_sequence<size_t, N>;

template<class... T>
using index_sequence_for = make_index_sequence<sizeof...(T)>;

// forward declaration for structured binding support
template<class T> struct tuple_size;
template<size_t I, class T> struct tuple_element;

// structured binding support for integer_sequence
template<class T, T... Values>
struct tuple_size<integer_sequence<T, Values...>>;

template<size_t I, class T, T... Values>
struct tuple_element<I, integer_sequence<T, Values...>>;

template<size_t I, class T, T... Values>
constexpr T get(integer_sequence<T, Values...>) noexcept;

// 22.3, class template pair
template<class T1, class T2>
struct pair;

...

// 22.3.4, tuple-like access to pair
template struct tuple_size;
template< size_t I, classT> struct tuple_element;

template<class T1, class T2> struct tuple_size<pair<T1, T2>>;

8

https://wg21.link/utility.syn


template<size_t I, class T1, class T2> struct tuple_element<I, pair<T1, T2>>;

}

21.2 [intseq] Compile-time integer sequences

21.2.4 [intseq.binding] Structured binding support

template<class T, T... Values>
struct tuple_size<integer_sequence<T, Values...>>
: integral_constant<size_t, sizeof...(Values)> { };

template<size_t I, class T, T... Values>
struct tuple_element<I, integer_sequence<T, Values...>> {
using type = T;

};

1 Mandates: I < sizeof...(Values).
template<size_t I, class T, T... Values>
constexpr T get(integer_sequence<T, Values...>) noexcept;

3 Mandates: I < sizeof...(Values).
4 Returns: Values...[I].

9

https://wg21.link/intseq


5 Acknowledgements
Thanks to Michael Park for the pandoc-based framework used to transform this document’s source from Mark-
down.

Thanks to Vittorio Romeo and Daveed Vandevoorde for their insights into the initial contents of this paper.

6 References
[N5008] Thomas Köppe. Working Draft, Programming Languages — C++.

https://wg21.link/n5008

[P1061R10] Barry Revzin, Jonathan Wakely. 2024-11-24. Structured Bindings can introduce a Pack.
https://wg21.link/p1061r10

[P1306R3] Dan Katz, Andrew Sutton, Sam Goodrick, Daveed Vandevoorde. 2024-10-14. Expansion statements.

https://wg21.link/p1306r3

[P2686R5] Corentin Jabot, Brian Bi. 2024-11-12. constexpr structured bindings and references to constexpr
variables.
https://wg21.link/p2686r5

[P2996] Wyatt Childers, Peter Dimov, Dan Katz, Barry Revzin, Andrew Sutton, Faisal Vali, Daveed Vandevoorde.
Reflection for C++26.
https://wg21.link/p2996

[P3096R5] Adam Lach, Walter Genovese. 2024-12-14. Function Parameter Reflection in Reflection for C++26.
https://wg21.link/p3096r5

10

https://wg21.link/n5008
https://wg21.link/p1061r10
https://wg21.link/p1306r3
https://wg21.link/p2686r5
https://wg21.link/p2996
https://wg21.link/p3096r5

	Abstractabstract
	Revision historyrevision-history
	Introduction
	History
	An essential C++26 feature

	Motivation and Use Cases
	Comparing tuples
	Implementing std::tuple::swap
	Splicing reflections with structured bindings

	Proposed Solution
	Make integer_sequence support structured bindings
	Sample implementation

	Wording
	Acknowledgements
	References

