Response to Core Safety Profiles (P3081)

Document #:
Date:
Project:
Audience:
Reply-to:

Contents
1 Abstract
2 Revision History

RO: December 2024 (midterm mailing)

Categorization of Features of [P3081]’s Safety Profiles

3.1 Rejection of unsafe program constructs (Language Profiles)
3.2 Implicit insertion of runtime checks
3.2.1 General approach oL oL
3.2.2 Container duck-typing
3.3 Silent changes to runtime behavior
3.4 Offering “modernization” suggestions

Conclusion
Acknowledgements

References

P3543R0

2024-12-17

Programming Language C+-+
EWG, SG21

Mungo Gill
<mungo.gillQ@me.com>
Corentin Jabot
<corentinjabot@gmail.com>
John Lakos
<jlakos@bloomberg.net>
Joshua Berne
<jberne4@bloomberg.net>
Timur Doumler
<papers@timur.audio>

NN

N O U e W

mailto:mungo.gill@me.com
mailto:corentinjabot@gmail.com
mailto:jlakos@bloomberg.net
mailto:jberne4@bloomberg.net
mailto:papers@timur.audio

1 Abstract

The authors of this paper believe that several of the features proposed by [P3081] are not yet sufficiently mature
for adoption. Paper [P3081], “Core safety profiles” was introduced to EWG in Wroclaw. Some of the Committee
members involved with writing [P2900] have raised several concerns; this brief paper enumerates those concerns
and makes constructive recommendations for how to quickly proceed towards safe adoption of the most urgently
needed and uncontentious aspects of [P3081] into C++26.

2 Revision History

RO: December 2024 (midterm mailing)

Initial revision

https://wg21.link/p3081
https://wg21.link/p3081
https://wg21.link/p2900
https://wg21.link/p3081

3 Categorization of Features of [P3081]’s Safety Profiles

[P3081] proposes some changes to the current behavior (including to currently defined, currently erroneous, and
currently undefined behavior) of ISO C++. These proposed changes are addressed individually in the sections
below.

3.1 Rejection of unsafe program constructs (Language Profiles)

This proposal involves restricting the set of C++ programs (or translation units) that will compile (or compile
without warning) to those using a known safe subset of the language that does not include some of the features
that developers are likely to misunderstand and misuse. The resulting errors will enable those developers to
then address each construct in turn by either replacing it with a safer construct or annotating it as being exempt
from checking.

For ease of discussion, this paper will use the term Language Profiles to describe such restrictions, which are
necessarily applicable only at compile time. Language Profiles necessarily do not affect code generation. For ex-
ample, removing a profile preserves all behaviors, and recompiling without a profile produces the same generated
code (modulo metadata, such as timestamps) as it did before. An important corollary for profile interoperability
is that if a program (or translation unit) is compiled under two different profiles, the behavior is the same as
that when compiled under either profile separately or when compiled with no profiles.

Language Profiles, i.e., [P3081]’s Safety Profiles as restricted to just subsetting the set of compilable valid
programs, is perhaps the least controversial aspect of the [P3081] proposal. It is the feature least likely to
conflict with other, more established efforts, such as Contracts, and the one that adds the most value. Although
the authors of this paper would, in principle, be in favor of such a change, some concerns do remain.

— Choosing applicable entities and scopes must be well defined and clearly specified with research, examples,
and implementation experience. If very granular scopes are pursued, clearly defining whether that gran-
ularity is at the lexical or logical level is needed, and the ramifications of this decision on real usage of
profiles must be examined.

— Giving developers a means to selectively suppress Language-Profile checking on sections of code is absolutely
needed and should again have associated research regarding to which scopes it should apply (and exactly
what profile will apply to uses of a type and where a suppression needs to be placed must also be well
defined and clearly specified). In particularly, note that semantic restrictions might relate to the use of
an entity or to how that entity is declared, defined, or instantiated, and which of the relevant profiles is
applicable for each individual use must be clear.

— A mechanism is needed to control the restrictions at a more fine-grained level than is currently proposed by
[P3081] since some of [P3081]’s suggested profiles currently contain or have the future potential to contain
numerous individual rules. In addition, the chosen syntax needs to allow for any future extension to apply
more nuanced control over how various features are used without necessarily disabling them entirely. As
an example, developers might wish to allow static_cast for integral-to-integral conversions but not for
downcasting. Such a mechanism could entail much more fine-grained profiles or explicit exploration of how
profiles (both Standard-provided and vendor-provided) will interact when they have overlapping rule sets.
In particular, for many rules, a necessity will be the ability to suppress the specific rule in a given context,
even if that rule might be a part of a wide number of profiles.

https://wg21.link/p3081
https://wg21.link/p3081
https://wg21.link/p3081
https://wg21.link/p3081
https://wg21.link/p3081
https://wg21.link/p3081

3.2 Implicit insertion of runtime checks
3.2.1 General approach

This aspect of the paper is arguably one of the least well developed and most controversial parts of [P3081] and
would actively change the semantics of currently working, correct programs, even those without UB. (For an
example, see [P3081]’s proposed behavioral changes to union.) In particular, SG21 has been working to provide
a mechanism — Contracts — for defining, conditionally, what is currently undefined behavior, and any approach
to doing so in a separate proposal must coordinate with that work.

The authors of [P3081] make assumptions about what will or will not be integrable with the current and
future direction of Contracts, while also declaring that the checks introduced by profiles shall have specific
properties (such as runtime-settable per-profile violation handlers or guarantees of specific evaluation semantics).
In particular, unlike [P2900], proposal [P3081] dictates some specific behaviors.

— The invocation of a new handler, with a new signature, for checks evaluated by different profiles, is directly
in conflict with the global violation handler model of [P2900].

— The choice of evaluation semantic for a contract assertion — whether it is ignored, observed, or enforced (or
quick-enforced if no violation handler should be invoked) is unclear but implied heavily (based on responses
given by the community about what they expect profiles to do) to be dictated by the use of a profile. In
contrast, [P2900] leaves this choice as implementation-defined behavior to make sure implementations have
the freedom to provide users the configurability they will need while leaving more fine-grained syntactic
control for future extensions.

— [P3081] does not attempt to ensure the inserted predicate is free from side effects; for example, an inserted
size() call on an arbitrary object may be computationally intensive or require a database query.

Each of these points has been discussed heavily within SG21 and EWG over the course of many years, and the
results of these discussions should be leveraged and not discarded.

[P3081] asserts that

“This can in the future be easily integrated with contracts when we get them. We do meed the contract
group/category extension so that we can have customized global handler specifically for Bounds checks”

Such integration, however, is not possible given [P3081] as currently written and is unlikely to be true in future
versions unless there is greater collaboration between the authors of [P3081] and SG21.

The introduction of new runtime checks when a Safety Profile is present absolutely must be done in a way
that either exclusively uses facilities provided by Contracts or has strong consensus in SG21 as being forward
compatible with future extensions to provide such facilities. These checks are unquestionably runtime checks of
correctness, and all such runtime checking incontrovertibly falls squarely within the purview of SG21.

Importantly, any runtime checks introduced by [P3081] for behavior that is undefined behavior in the Standard
specification today are already preconditions introduced as implicit preconditions into the language itself by
[P3100].

In particular, [P3100] proposes that preconditions of basic language constructs should instead introduce contract
assertions whose runtime behavior can be controlled in the same way as that of any other contract assertion.
This transformation includes any undefined behavior for which a condition can be readily identified, including
array bounds violations, null-pointer dereference, integer overflow, and many more. In addition, by providing
a well-defined behavior when those contract assertions are ignored (instead of assumed, as they currently are)
[P3100] aims to minimize the negative risks and bolster security even when the checks are not enabled. Finally,
as mechanisms for in-source control of contract assertions (i.e., labels) are introduced, SG21 will work to be able
to apply the same groupings and vocabulary to core language preconditions as well.

The only proposal [P3081] offers beyond those of [P3100] for these implicit preconditions is to muddy what
behaviors are conforming for such checks.

https://wg21.link/p3081
https://wg21.link/p3081
https://wg21.link/p3081
https://wg21.link/p2900
https://wg21.link/p3081
https://wg21.link/p2900
https://wg21.link/p2900
https://wg21.link/p3081
https://wg21.link/p3081
https://wg21.link/p3081
https://wg21.link/p3081
https://wg21.link/p3081
https://wg21.link/p3100
https://wg21.link/p3100
https://wg21.link/p3100
https://wg21.link/p3081
https://wg21.link/p3100

The authors of this paper suggest taking one of three courses of action with respect to runtime checking in
profiles.

1.

Remove all parts of the proposal that introduce new runtime checks and pursue those as supplementary
papers that make their way through SG21 and SG23 to ensure that they integrate correctly with the rest
of the C++ ecosystem, including Contracts.

. Leverage [P2900] Contracts directly, and do not impose any new restrictions that are not otherwise im-

posed. In particular, describe each runtime check in terms of the equivalent contract assertions, having
no indication of any particular evaluation semantic or any novel use of the violation handler. Select the
desired safety checks from the set of core-language preconditions delineated in [P3100].

— Each such contract assertion may have any of the available evaluation semantics, depending on how
the program is being built (i.e., it is implementation defined).

— When a contract assertion is invoked, the violation handler shall be invoked with a kind value of
implicit and a detection_mode that captures the specific type of implicit contract assertion being
violated.

— A recommended (but not required) practice that certain semantics be preferred when the relevant
profile is in effect would likely be acceptable.

. Safety by default is being widely requested by government and industry alike. Instead of having the profile

turn on any runtime dynamic safety apparatus (which will likely go largely unnoticed and unused), consider
the approach of enabling all runtime safety checks by default — the same way library contract checks are
treated — and then, only by explicit request, remove some or all. This approach has several benefits.

— C++ takes a bold move to make itself safe by default instead of vice versa (great for public relations).
— Novices who would never think to turn on profiles will get the benefit by default.

— Established professional developers who need to claw back the performance can do so explicitly on
the command line.

Note that by adopting this approach, the problem would essentially reduce to approach 1 above.

If the Committee instead continues down the path of developing a parallel system for runtime checking and
simply hopes the systems can all be reconciled later, then the Committee risks shipping a Standard with no
cohesive approach to reliably handling incorrect software. The authors of this paper are strongly against such a
course of action.

3.2.2 Container duck-typing

The paper’s suggested approach includes adding bounds checking to containers solely based on a duck-typed
deduction using the availability of operators and member functions without knowing for sure what purpose the
container serves, what those members do, or even whether the class is, in fact, a container at all. [P3081]’s
proposal would cause a wide variety of existing, perfectly valid code to fail unpredictably at run time:

Containers that are not zero-indexed

Sparse containers

Map-like types the compiler cannot detect as being map-like

A two-color image where size () is in bytes but for which indexing is by pixel (i.e., by bit)
Ring-like containers

Containers that automatically grow.

[P3081] also fails to consider that some library vendors already (and will continue in the future to) choose to put
contract preconditions on their operator [], which would result in double and possibly inconsistent checking.

https://wg21.link/p2900
https://wg21.link/p3100
https://wg21.link/p3081
https://wg21.link/p3081

3.3 Silent changes to runtime behavior

[P3081] proposes that, in some cases, a Safety Profile setting should cause a change that will impact essential
runtime behavior, e.g., on page 5:

“We should normatively require that the compiler actually perform a safe dynamic_cast, without changing
the code which still says static_cast.”

The idea of deliberately modifying the defined runtime behavior of a program depending on which Safety Profile
is active is dangerous. If a piece of code is genuinely unsafe, then the only viable solution is for that code itself
to be modified so as to render it safe regardless of which Safety Profile is active.

Consider that profiles will evolve with and across groups and projects over time, but programs must always
retain the same meaning across time and space or else must simply and safely fail to compile. The prime
directive is necessarily that safety does not affect semantics other than to limit compilation (or compilation
without warnings).

https://wg21.link/p3081

3.4 Offering “modernization” suggestions

Under this proposal, compilers would be mandated to produce “patch files” or similar containing code changes,
with the expectation that the developer will commit these changes directly to their source control system. The
authors of this paper do have some concerns about this proposed change.

— [P3081]’s approach is straying into the realm of what is considered Qol, and implementations already offer
such modernizations.

— Any Safety Profiles requiring control flow analysis could have a noticeable impact, now or in the future, on
compile times. This kind of gating where the problem is unbounded must not be legislated in the Standard
because it would put an unreasonable burden on compiler vendors to accomplish an arbitrarily hard task
in a reasonable amount of compilation time. Thus, strictly limiting what can be required to that which
has a bounded time-complexity solution for all cases will be necessary.

— As more elaborate Safety Profiles are added, complex code structures might not have a single potential
modernization, which becomes a problem if different toolchains result in different changes.

— Some of [P3081]’s suggested changes are not safety issues but merely stylistic preferences; historically, the
Standard’s role has not been to dictate to developers or implementers style or coding standards that are
not purely objective and verifiable.

— At least one implementer has raised serious concerns about this aspect of the [P3081] proposal in discussion
on the reflector. One must question whether valuable Committee time should be expended to add this
feature if implementers have no intention of ever delivering it.

https://wg21.link/p3081
https://wg21.link/p3081
https://wg21.link/p3081

4 Conclusion

The authors of this paper are firmly convinced that, to increase immediate consensus in time for the C++26
deadline, all but the language-subsetting aspects (i.e., Language Profiles) be removed from [P3081], notably

— all runtime checks until a more mature proposal (designed in collaboration with, and approved by, SG21)
can be brought forward or runtime checks that leverage [P2900] Contracts in the same manner as [P3100],
with no new forward-incompatible restrictions on the expected behavior

— all “fix it” changes where the compiler is silently reinterpreting the developer’s own choice of cast
— all mandated modernization suggestions

The authors of this paper also encourage forethought about how to incorporate more nuanced syntax for a user
to express general design rules and coding standards beyond a binary yes/no to a given C++ feature, construct,
or keyword.

https://wg21.link/p3081
https://wg21.link/p2900
https://wg21.link/p3100

5 Acknowledgements

This document is written in Markdown and depends on the extensions in pandoc and mpark/wg21, and we would
like to thank the authors of those extensions and associated libraries.

Thanks to Lori Hughes for reviewing this paper and providing valuable editorial feedback.

6 References

[P2900] Joshua Berne, Timur Doumler, Andrzej Krzemienski and others. Contracts for C++.
https://wg21.link /p2900

[P3081] Herb Sutter. Core safety Profiles: Specification, adoptability, and impact.
https://wg21.link /p3081

[P3100] Timur Doumler, Gasper Azman, Joshua Berne. Undefined and erroneous behaviour is a contract
violation.

https://wg21.link /p3100

https://pandoc.org/MANUAL.html#pandocs-markdown
https://github.com/mpark/wg21
https://wg21.link/p2900
https://wg21.link/p3081
https://wg21.link/p3100

	Abstract
	Revision History
	R0: December 2024 (midterm mailing)r0-december-2024-midterm-mailing

	Categorization of Features of [P3081]’s Safety Profiles
	Rejection of unsafe program constructs (Language Profiles)
	Implicit insertion of runtime checks
	General approach
	Container duck-typing

	Silent changes to runtime behavior
	Offering “modernization” suggestions

	Conclusion
	Acknowledgements
	References

